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Abstract:



We investigate the efficiency of multi-step Newton method (the classical Newton method in which the first derivative is re-evaluated periodically after m steps) for solving nonlinear equations, F(x)=0,F:D⊆Rn→Rn. We highlight the following property of multi-step Newton method with respect to some other Newton-type method: for a given n, there exist thresholds of m, that is an interval [image: there is no content], such that for m inside of this interval, the efficiency index of multi-step Newton method is better than that of other Newton-type method. We also search for optimal values of m.
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1. Introduction


There is currently an increasing interest in developing iterative methods for solving systems of nonlinear equations, F(x)=0,F:D⊆Rn→Rn, with high order of convergence by using only the first derivative of F and its inverse. We will use the term “Newton-type method” for such an iterative procedure. A typical example of Newton-type method is the multi-step Newton method (other terms, “modified Newton method”, “multi-step frozen Jacobian version of the Newton method” [1], etc.) in which the first derivative of F is re-evaluated periodically after m steps. If x denotes the current iteration, the next iteration [image: there is no content] is obtained by the following scheme:


x=currentiteration,y1=x;ComputeF′(x);Fork=1tomComputeF(yk);SolvethelinearsystemF′(x)s=−F(yk);yk+1=yk+s;xnext:=ym+1.











The method has high convergence order, equal to [image: there is no content], and the computational cost is due by the inner steps for the computation of [image: there is no content]. This cost can be estimated by the total number d of functional evaluations of F and [image: there is no content] (in our case [image: there is no content]). The efficiency of the method can be then measured by the Ostrowski index of efficiency, given by [image: there is no content], where [image: there is no content] is the convergence order. A more accurate measurement of efficiency is the Traub index of efficiency, given by the same formula, but for which d is now the total number of arithmetical operations (usually products/divisions) necessary to obtain the next iteration (in our case [image: there is no content], that is, [image: there is no content] operations for [image: there is no content] factorization and [image: there is no content] operations for solving the triangular systems [2]).



A plethora of high order Newton-type methods also exist, in which the inner steps do not involve any loop calculation, such as, for example, the four order Jarratt method [3], the fifth order “M5” method [2] and sixth order WKG method [4] (these methods will be used in this note as test examples). It is worth mentioning that M5 method has excellent computational properties (convergence order and complexity) and, as a consequence, a high efficiency index.



The particular case [image: there is no content] was considered by Potra and Ptak [5]. Using non-discrete induction, they proved the order three of convergence and gave sharp a priori and a posteriori error for this particular case. Often it is called “Potra-Ptak” method [6,7]. In the case of a single equation, Potra-Ptak method was considered by Traub [8] (1982). Ortega and Rheinboldt [9] proved order three of convergence for Potra-Ptak method in n-dimensional spaces (Theorem 10.2.4, [9]). Note that Potra-Ptak method is a particular case of a multipoint iterative process with order three of convergence considered by Ezquerro and Hernandez [10].



Numerical experiments show that the Ostrowski/Traub efficiency index of multi-step Newton method has the following property with respect to the other Newton-type method: Under some conditions, for given n, there exists an interval [image: there is no content], such that for m inside of this interval, the efficiency index of multi-step Newton method is better than that of considered Newton-type method. We say that [image: there is no content] are the thresholds of m, inferior and superior, respectively. This property was tested experimentally by the author for several high order Newton-type methods, like classical Newton, Jarratt, M5, WKG.



In this paper, we give a simple condition ensuring that this property holds for some class of Newton-type methods. In particular, this condition is verified by classical Newton method and M5 method.




2. The Threshold


Lemma 1.

Let [image: there is no content] be the real function in two variables defined by


[image: there is no content]








where [image: there is no content] is the natural logarithm. Then for any n∈N+,n≥2 the equation [image: there is no content] has a unique solution [image: there is no content].





Proof. 

The proof involves simple elementary calculus, such that some details are omitted.



We have


[image: there is no content]











Suppose that


[image: there is no content]








then [image: there is no content]. Therefore, there exists [image: there is no content] such that [image: there is no content]. The solution [image: there is no content] of the equation [image: there is no content] is unique in [image: there is no content]. Indeed, the derivative of g with respect to m is [image: there is no content] and the function g is strictly decreasing on [image: there is no content]. ☐





Remark 1.

Suppose that, for some n and some p,0<p<1, the following is true


ln(np+1)np+1>np+n2−13n.



(1)







Then [image: there is no content] (the proof is elementary). Note that, for given p, (1) is not satisfied for any n, but it is satisfied on some interval of n, usually very large when [image: there is no content]. For example, if [image: there is no content] then this interval is [image: there is no content]; if [image: there is no content] then the interval is [image: there is no content].





We consider next an iterative method of Newton-type which has [image: there is no content] as convergence order and which uses only the first derivative and its inverse in inner steps. Jarratt, M5 and WKG methods are examples of such Newton-type method. The main processing consists of the solution of one or several linear systems having the first derivative as matrix. The total number of products/divisions of such a method is given by [image: there is no content], where [image: there is no content] and P is a polynomial of degree 2.



The theorem below gives a comparative analysis of Traub efficiency indexes of multi-step Newton method and this Newton-type method. Recall that the Traub efficiency index of multi-step Newton method, is:


[image: there is no content]











Theorem 1.

Consider a Newton-type method with the convergence order [image: there is no content] and the number of products/divisions [image: there is no content]. Suppose that, for a given n, the following condition is satisfied


d(n)>n2(me+1)lnϱ,



(2)




where [image: there is no content] is defined in Lemma 1. Then there exist the thresholds [image: there is no content] such that


Ims(m,n)>ϱ1/d(n)ifm∈(mi,ms),Ims(m,n)<ϱ1/d(n)ifm∉(mi,ms).













Proof. 

The derivative of [image: there is no content] with respect to m is


[image: there is no content]











Thus, for any n, sgnIms′(m,n)=sgng(m,n) and from Lemma 1 it results that [image: there is no content] on [image: there is no content] and [image: there is no content] on [image: there is no content]. Therefore [image: there is no content] is strictly increasing on [image: there is no content] and strictly decreasing on [image: there is no content]. For [image: there is no content] we have


[image: there is no content]








and from (2) we obtain


Ims(me,n)>ϱ1/d(n).



(3)







As


[image: there is no content]








and [image: there is no content], for m sufficiently large, we have


Ims(m,n)<ϱ1/d(n).



(4)







From (3) and (4) it results that there exists [image: there is no content] as superior threshold.



Next we have to consider two cases:

	(1)

	
[image: there is no content]; in this case [image: there is no content] for [image: there is no content] and [image: there is no content] is the inferior threshold of m.




	(2)

	
[image: there is no content]; then this inequality and (3) imply that there exists [image: there is no content] such that [image: there is no content] for [image: there is no content], that is [image: there is no content] is inferior threshold of m.






 ☐





The graphs of indexes for the three cases are given in Figure 1.


Figure 1. The Traub efficiency indexes. (a) classical Newton method; (b) Jarratt method; (c) M5 method.
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The case [image: there is no content] is illustrated by classical Newton method (Figure 1a), the case [image: there is no content], by Jarratt method (Figure 1b) and the case [image: there is no content], by M5 method (Figure 1c).



Remark 2.

It is desirable that condition (2) to be satisfied for a large interval of n, or even for all n. If (1) is satisfied for some n and p, then the condition (2) can be replaced by the following stronger condition


[image: there is no content]



(5)









The condition (5) is easier to check, but it gives a more restrictive interval for n.



Particular Cases



We check that the condition (2) is satisfied for classical Newton method and for M5 method and therefore Theorem 1 can be applied.



It is easy to see that in the case of Newton method, the condition (2) is satisfied for all n. The stronger condition (5) gives for n the interval [image: there is no content]. For example, if [image: there is no content] then the threshold for m is [image: there is no content]



In the case of M5 method, the condition (2) is satisfied for all [image: there is no content]. The stronger condition (5) gives for n the interval [image: there is no content]. For example, if [image: there is no content] then the thresholds for m are [image: there is no content], [image: there is no content]




3. On the Optimal Number of Inner Steps in Multi-Step Newton Method


In [2] M5 method is compared with three high order method, Newton, Jarratt and WKG, and with respect to the both Ostrowski and Traub indexes. It is shown that the M5 method has better efficiency than all these methods. The previous analysis shows that the multi-step Newton method has still better Traub efficiency index, provided that [image: there is no content] and m belong to the interval [image: there is no content]. The following two problems arise: 1. Is there an m, independent of n, such that the multi-step Newton index is larger that M5 index? 2. Is there an optimal number [image: there is no content] of multi-step Newton method for which the difference between the index of the multi-step Newton and the index of M5 method is maxim?



Both problems have affirmative answers.

	
Several numerical tests show that the sequence [image: there is no content] is a decreasing sequence as n increases (the proof is elementary). Therefore we can take for m the larger term of the sequence [image: there is no content], which is [image: there is no content]. Therefore [image: there is no content] for [image: there is no content] (Figure 2).


Figure 2. The graphs of indexes of multi-step Newton and M5 methods.
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Let I be the efficiency index of some iterative methods of Newton-type. The optimal value of the number of inner steps in multi-step Newton method with respect to some I, is the value of [image: there is no content] for which [image: there is no content] is maximum. The properties of functions [image: there is no content] and I (for all considered cases) show that such optimal value exists and is unique.








For example, if [image: there is no content] (the Newton method) the value of m for which [image: there is no content] is maximum, is [image: there is no content] (Ostrowski index) and [image: there is no content] (Traub index). Thus [image: there is no content]. We can conclude that the Potra-Ptak method is the most efficient method with respect to the classical Newton method.



In the case of M5 method the optimal value is [image: there is no content] (Traub index).



Remark 3.

The efficiency indexes of Newton-type methods tend to value 1 when [image: there is no content]. Thus, these indexes differ slightly from each other, even for n not very large. For example, if [image: there is no content], the thresholds of multi-step Newton method with respect to M5 method are mi=6,ms=14 and the maximum of [image: there is no content] for [image: there is no content] is obtained by [image: there is no content] and has the value [image: there is no content]. The maximum efficiency index of Potra-Ptak method, for the same value of n, is [image: there is no content]. Therefore, the efficiency index increases very little from Potra-Ptak method to the most efficient Newton-type method, approx [image: there is no content] in percent.
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