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Abstract: We investigate the efficiency of multi-step Newton method (the classical Newton method in
which the first derivative is re-evaluated periodically after m steps) for solving nonlinear equations,
F(x) = 0, F : D ⊆ Rn → Rn. We highlight the following property of multi-step Newton method
with respect to some other Newton-type method: for a given n, there exist thresholds of m, that is
an interval (mi, ms), such that for m inside of this interval, the efficiency index of multi-step Newton
method is better than that of other Newton-type method. We also search for optimal values of m.
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1. Introduction

There is currently an increasing interest in developing iterative methods for solving systems of
nonlinear equations, F(x) = 0, F : D ⊆ Rn → Rn, with high order of convergence by using only the
first derivative of F and its inverse. We will use the term “Newton-type method” for such an iterative
procedure. A typical example of Newton-type method is the multi-step Newton method (other terms,
“modified Newton method”, “multi-step frozen Jacobian version of the Newton method” [1], etc.)
in which the first derivative of F is re-evaluated periodically after m steps. If x denotes the current
iteration, the next iteration xnext is obtained by the following scheme:

x = current iteration, y1 = x;
Compute F′(x);
For k = 1 to m

Compute F(yk);
Solve the linear system F′(x)s = −F(yk);
yk+1 = yk + s;

xnext := ym+1.

The method has high convergence order, equal to m + 1, and the computational cost is due by the
inner steps for the computation of yk. This cost can be estimated by the total number d of functional
evaluations of F and F′ (in our case d = n2 + mn). The efficiency of the method can be then measured
by the Ostrowski index of efficiency, given by I = $

1
d , where $ is the convergence order. A more

accurate measurement of efficiency is the Traub index of efficiency, given by the same formula, but for
which d is now the total number of arithmetical operations (usually products/divisions) necessary
to obtain the next iteration (in our case d = (n3 + 3mn2 − n)/3, that is, (n3 − n)/3 operations for LU
factorization and mn2 operations for solving the triangular systems [2]).

A plethora of high order Newton-type methods also exist, in which the inner steps do not involve
any loop calculation, such as, for example, the four order Jarratt method [3], the fifth order “M5”
method [2] and sixth order WKG method [4] (these methods will be used in this note as test examples).

Algorithms 2017, 10, 75; doi:10.3390/a10030075 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a10030075
http://www.mdpi.com/journal/algorithms


Algorithms 2017, 10, 75 2 of 5

It is worth mentioning that M5 method has excellent computational properties (convergence order and
complexity) and, as a consequence, a high efficiency index.

The particular case m = 2 was considered by Potra and Ptak [5]. Using non-discrete induction,
they proved the order three of convergence and gave sharp a priori and a posteriori error for
this particular case. Often it is called “Potra-Ptak” method [6,7]. In the case of a single equation,
Potra-Ptak method was considered by Traub [8] (1982). Ortega and Rheinboldt [9] proved order
three of convergence for Potra-Ptak method in n-dimensional spaces (Theorem 10.2.4, [9]). Note that
Potra-Ptak method is a particular case of a multipoint iterative process with order three of convergence
considered by Ezquerro and Hernandez [10].

Numerical experiments show that the Ostrowski/Traub efficiency index of multi-step Newton
method has the following property with respect to the other Newton-type method: Under some
conditions, for given n, there exists an interval (mi, ms), such that for m inside of this interval,
the efficiency index of multi-step Newton method is better than that of considered Newton-type
method. We say that mi, ms are the thresholds of m, inferior and superior, respectively. This property
was tested experimentally by the author for several high order Newton-type methods, like classical
Newton, Jarratt, M5, WKG.

In this paper, we give a simple condition ensuring that this property holds for some class of
Newton-type methods. In particular, this condition is verified by classical Newton method and
M5 method.

2. The Threshold

Lemma 1. Let g : [1, ∞)× [1, ∞)→ R be the real function in two variables defined by

g(m, n) = m− ln(m + 1)m+1 +
n2 − 1

3n
,

where ln is the natural logarithm. Then for any n ∈ N+, n ≥ 2 the equation g(m, n) = 0 has a unique solution
me ∈ (1, ∞).

Proof. The proof involves simple elementary calculus, such that some details are omitted.
We have

g(1, n) = 1− ln(4) +
n2 − 1

3n
> 0.

Suppose that

m > e
n2−1

3n − 1,

then g(m, n) < 0. Therefore, there exists me such that g(me, n) = 0. The solution me of the equation
g(m, n) = 0 is unique in (1, ∞). Indeed, the derivative of g with respect to m is g′(m, n) = −ln(m + 1)
and the function g is strictly decreasing on [1, ∞).

Remark 1. Suppose that, for some n and some p, 0 < p < 1, the following is true

ln(np + 1)np+1 > np +
n2 − 1

3n
. (1)

Then np > me (the proof is elementary). Note that, for given p, (1) is not satisfied for any n, but it is
satisfied on some interval of n, usually very large when p ≈ 1. For example, if p = 2/3 = 0.666 . . . then this
interval is [1, 1.756× 103]; if p = 0.8 then the interval is [1, 1.257× 108].

We consider next an iterative method of Newton-type which has $ as convergence order and which
uses only the first derivative and its inverse in inner steps. Jarratt, M5 and WKG methods are examples
of such Newton-type method. The main processing consists of the solution of one or several linear
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systems having the first derivative as matrix. The total number of products/divisions of such a method
is given by d(n) = an3 + P(n), where a > 0 and P is a polynomial of degree 2.

The theorem below gives a comparative analysis of Traub efficiency indexes of multi-step Newton
method and this Newton-type method. Recall that the Traub efficiency index of multi-step Newton
method, is:

Ims(m, n) = (m + 1)
3

n3+3mn2−n .

Theorem 1. Consider a Newton-type method with the convergence order $ ≥ 2 and the number of
products/divisions d(n). Suppose that, for a given n, the following condition is satisfied

d(n) > n2(me + 1)ln$, (2)

where me is defined in Lemma 1. Then there exist the thresholds mi, ms ∈ [1, ∞) such that{
Ims(m, n) > $1/d(n) i f m ∈ (mi, ms),
Ims(m, n) < $1/d(n) i f m /∈ (mi, ms).

Proof. The derivative of Ims with respect to m is

I′ms(m, n) = 9(n2 + 3mn− 1)(m + 1)
3

n3+3mn2−n
−1g(m, n).

Thus, for any n, sgn I′ms(m, n) = sgn g(m, n) and from Lemma 1 it results that I′ms(m, n) > 0
on [1, me) and I′ms(m, n) < 0 on (me, ∞). Therefore Ims is strictly increasing on (1, me) and strictly
decreasing on (me, ∞). For m = me we have

Ims(me, n) = e
1

n2(me+1)

and from (2) we obtain
Ims(me, n) > $1/d(n). (3)

As

lim
m→∞

Ims(m, n) =
[

lim
m→∞

(m + 1)m+1
] 1

n2
= 1,

and $1/d(n) > 1, for m sufficiently large, we have

Ims(m, n) < $1/d(n). (4)

From (3) and (4) it results that there exists ms ∈ (me, ∞) as superior threshold.
Next we have to consider two cases:

(1) Ims(1, n) ≥ $1/d(n); in this case Ims(m.n) > $1/d(n) for m ∈ (1, me) and mi = 1 is the inferior
threshold of m.

(2) Ims(1, n) < $1/d(n); then this inequality and (3) imply that there exists mi ∈ (1, me) such that
Ims(m, n) < d1/d(n) for m ∈ (mi, me), that is mi is inferior threshold of m.

The graphs of indexes for the three cases are given in Figure 1.
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Figure 1. The Traub efficiency indexes. (a) classical Newton method; (b) Jarratt method; (c) M5 method.

The case Ims(1, n) = $1/d(n) is illustrated by classical Newton method (Figure 1a), the case
Ims(1, n) > $1/d(n), by Jarratt method (Figure 1b) and the case Ims(1, n) < $1/d(n), by M5 method
(Figure 1c).

Remark 2. It is desirable that condition (2) to be satisfied for a large interval of n, or even for all n. If (1) is
satisfied for some n and p, then the condition (2) can be replaced by the following stronger condition

d(n) > n2(np + 1)ln$, (5).

The condition (5) is easier to check, but it gives a more restrictive interval for n.

Particular Cases

We check that the condition (2) is satisfied for classical Newton method and for M5 method and
therefore Theorem 1 can be applied.

It is easy to see that in the case of Newton method, the condition (2) is satisfied for all n.
The stronger condition (5) gives for n the interval [7, 1.756 × 103]. For example, if n = 15 then
the threshold for m is ms = 22.101 . . .

In the case of M5 method, the condition (2) is satisfied for all n ∈ [32, ∞). The stronger condition (5)
gives for n the interval [100, 1.756 × 103]. For example, if n = 40 then the thresholds for m are
mi = 5.229 . . . , ms = 14.431 . . .

3. On the Optimal Number of Inner Steps in Multi-Step Newton Method

In [2] M5 method is compared with three high order method, Newton, Jarratt and WKG, and with
respect to the both Ostrowski and Traub indexes. It is shown that the M5 method has better efficiency
than all these methods. The previous analysis shows that the multi-step Newton method has still better
Traub efficiency index, provided that n ≥ 32 and m belong to the interval (mi, ms). The following two
problems arise: 1. Is there an m, independent of n, such that the multi-step Newton index is larger that
M5 index? 2. Is there an optimal number mopt of multi-step Newton method for which the difference
between the index of the multi-step Newton and the index of M5 method is maxim?

Both problems have affirmative answers.

1. Several numerical tests show that the sequence {mi} is a decreasing sequence as n increases
(the proof is elementary). Therefore we can take for m the larger term of the sequence {mi},
which is m = 7. Therefore Ims(7, n) > IM5(n) for n ≥ 32 (Figure 2).

2. Let I be the efficiency index of some iterative methods of Newton-type. The optimal value of
the number of inner steps in multi-step Newton method with respect to some I, is the value
of m ∈ (mi, ms) for which Ims(m, n)− I(n) is maximum. The properties of functions Ims and I
(for all considered cases) show that such optimal value exists and is unique.
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Figure 2. The graphs of indexes of multi-step Newton and M5 methods.

For example, if I = In (the Newton method) the value of m for which Ims(m, n) − In(n) is
maximum, is mopt = 1.901 . . . (Ostrowski index) and mopt = 2.311 . . . (Traub index). Thus mopt = 2.
We can conclude that the Potra-Ptak method is the most efficient method with respect to the classical
Newton method.

In the case of M5 method the optimal value is mopt = 10 (Traub index).

Remark 3. The efficiency indexes of Newton-type methods tend to value 1 when n→ ∞. Thus, these indexes
differ slightly from each other, even for n not very large. For example, if n = 40, the thresholds of multi-step
Newton method with respect to M5 method are mi = 6, ms = 14 and the maximum of Ims for m ∈ (mi, ms) is
obtained by m = 6 and has the value 1.000385. The maximum efficiency index of Potra-Ptak method, for the
same value of n, is 1.000312. Therefore, the efficiency index increases very little from Potra-Ptak method to the
most efficient Newton-type method, approx 0.006705 in percent.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ullah, M.Z.; Ahmad, F.; Alshomrani, A.S.; Alzahrani, A.K.; Alghamadi, M.S.; Ahmad, S.; Ahmad, S. Frozen
Jacobian iterative method for solving systems of nonlinear equations: Application to nonlinear IVPs and
BVPs. J. Nonlinear Sci. Appl. 2016, 9, 6021–6033.

2. Cordero, A.; Hernandez-Veron, M.A.; Romero, N.; Torregrosa, I.R. Semilocal convergence by using recurrence
relations for a fifth-order method in Banach spaces. J. Comput. Appl. Math. 2015, 273, 205–213.

3. Jarrat, P. Some fourth order multipoint iterative methods for solving equations. Math. Comput. 1966, 20,
434–437.

4. Wang, X.; Kou, I.; Gu, C. Semilocal convergence for a sixth-order Jarratt method in Banach spaces.
Numer. Algorithms 2011, 57, 441–456.

5. Potra, F.A.; Ptak, V. Nondiscrete Induction and Iterative Proccesses; Pitman: London, UK, 1984.
6. Soleymani, F. Optimal eighth-order simple root-finders free from derivative. WSEAS Trans. Inf. Sci. Appl.

2011, 8, 293–299.
7. Thukral, R. New modification of Newton method with third order of convergence for solving nonlinear

equation of type f (0) = 0. Am. J. Comput. Appl. Math. 2016, 6, 14–18.
8. Traub, J.F. Iterative Methods for the Solution of Equations; Chelsea Publishing Company: New York, NY, USA, 1982.
9. Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equation in Several Variables; Academic Press:

New York, NY, USA, 1970.
10. Ezquerro, J.A.; Hernandez, M.A. An optimization of Chebyshev’s method. J. Complex. 2009, 25, 343–361.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Threshold
	On the Optimal Number of Inner Steps in Multi-Step Newton Method

