

 An Efficient Algorithm for the Separable Nonlinear Least Squares Problem

An Efficient Algorithm for the Separable Nonlinear Least Squares Problem

Algorithms 2017, 10(3), 78; doi:10.3390/a10030078

Article

An Efficient Algorithm for the Separable Nonlinear Least Squares Problem

Yunqiu Shen * and Tjalling J. Ypma *

Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063, USA

*

Correspondence: Tel.: +1-360-650-3785 (T.J.Y.)

Received: 7 June 2017 / Accepted: 1 July 2017 / Published: 10 July 2017

Abstract:

The nonlinear least squares problem [image: there is no content], where [image: there is no content] is a full-rank [image: there is no content] matrix, [image: there is no content], [image: there is no content] and [image: there is no content] with [image: there is no content], can be solved by first solving a reduced problem [image: there is no content] to find the optimal value [image: there is no content] of y, and then solving the resulting linear least squares problem [image: there is no content] to find the optimal value [image: there is no content] of z. We have previously justified the use of the reduced function [image: there is no content], where [image: there is no content] is a matrix whose columns form an orthonormal basis for the nullspace of [image: there is no content], and presented a quadratically convergent Gauss–Newton type method for solving [image: there is no content] based on the use of QR factorization. In this note, we show how LU factorization can replace the QR factorization in those computations, halving the associated computational cost while also providing opportunities to exploit sparsity and thus further enhance computational efficiency.

Keywords:

separable equations; nonlinear least squares; full-rank matrices; QR factorization; over-determined systems; Gauss–Newton method; least squares solutions; LU factorization; quadratic convergence

MSC:

65H10

1. Introduction

Many applications [1,2,3] lead to the need to find a solution [image: there is no content] of the separable nonlinear overdetermined least squares problem

[image: there is no content]

(1)

where the full-rank matrix [image: there is no content] and the vector [image: there is no content] are twice Lipschitz continuously differentiable functions of [image: there is no content], [image: there is no content] and [image: there is no content]. Here, we are using the Euclidean norm. The classic Golub–Pereyra variable projection method [4] replaces the problem (1) by the simpler least squares problem

[image: there is no content]

(2)

Once [image: there is no content] has been obtained by solving (2), [image: there is no content] can be found by solving the resulting linear least squares problem

[image: there is no content]

(3)

formally,

[image: there is no content]

(4)

where [image: there is no content] is the pseudo-inverse of [image: there is no content]. An alternative method that reduces (1) to a smaller least squares problem [image: there is no content] was proposed in [5,6] for the case [image: there is no content], and the associated iterative technique was then applied to the case [image: there is no content] in [7] but without a complete analytical justification. The reduced system is

[image: there is no content]

(5)

where [image: there is no content] is an [image: there is no content] matrix whose columns form an orthonormal basis for [image: there is no content]. In [8], we presented a quadratically convergent Gauss–Newton type iterative method, incorporating second derivative terms, to solve this problem, and provided a complete theoretical justification for our technique. In particular, we showed in [8] that our Gauss–Newton type method, and also the standard Gauss–Newton method [9,10,11], which omits the second derivative terms and is not quadratically convergent, are both invariant with respect to the specific basis matrix [image: there is no content] that is used at any particular point in the iteration. This makes it possible to substitute, at each point of the iteration, any easily computed local orthonormal basis for the nullspace of [image: there is no content]. This observation also makes it possible to compute both the first and the second derivatives involved in the computation very cheaply.

Many instances of (1), such as those arising from the discretization of linear differential equations with only a few nonlinear parameters, involve [image: there is no content], while ℓ and n are fixed and small. In this case, the main computational cost in each step of our quadratically convergent Gauss–Newton type method of [8] is the QR factorization of [image: there is no content], costing approximately [image: there is no content] flops [12] per iteration. In this note, we show how the relevant computations can instead be performed by using one LU factorization of [image: there is no content] per iteration, so that the computational cost of the computation is essentially halved to [image: there is no content] flops [12]. We note that, in the case of discretizations of differential equations, the matrix [image: there is no content] is typically very sparse and strongly patterned. Since LU factorization more easily exploits and preserves such sparsity and patterns than does QR factorization, this technique also opens up opportunities for further reductions in the computational cost in such applications.

In a previous paper [3], we presented the use of LU factorizations in the context of solving separable systems of nonlinear equations and zero-residual separable nonlinear least squares problems. We mentioned there that extending that approach to nonzero residual problems remained an open question. The current paper resolves that question, while also improving on the technique of [3] in other ways. In particular, our new method does not involve the singular value decomposition, and in contrast to the use of the standard Gauss–Newton method in [3], it retains quadratic convergence even in the case of nonzero residual problems. The latter is achieved by retaining the second derivative terms, and we show here how those terms can be computed very efficiently. This is in contrast to the usual use of the Gauss–Newton method, which sacrifices the quadratic convergence for the convenience of not computing the second derivatives.

In the next section, we present the relevant results from [8] relating to our technique for solving (5) by our Gauss–Newton type method using QR factorization, and show how those results and methods can be modified to use LU factorization. The resulting algorithm and some numerical examples to illustrate the method are given in the following two sections. The numerical results exhibit the quadratic convergence expected from our Gauss–Newton type method.

2. Analysis

We begin by presenting the relevant background results from [8]. Assume that [image: there is no content] and [image: there is no content] are twice Lipschitz continuously differentiable in a neighborhood of the least squares solution [image: there is no content] of (1). As shown in [5,6,7,8], there exists a smoothly differentiable [image: there is no content] matrix [image: there is no content] whose columns form an orthonormal basis of [image: there is no content] in a neighborhood of [image: there is no content]. Then, finding the least squares solution of (1) can be reduced to finding the least squares solution of (5). Our Gauss–Newton type method for solving (5) takes the form

[(f′(y(m)))Tf′(y(m))+Σi=1ℓfi(y(m))Hi(y(m))](y(m+1)−y(m))=−(f′(y(m)))Tf(y(m)),

(6)

where [image: there is no content] and [image: there is no content], [image: there is no content] and [image: there is no content] denote the derivative of [image: there is no content], the i-th component of [image: there is no content], and the Hessian matrix of [image: there is no content], respectively.

In [8], we proved that, at any point [image: there is no content] in the iteration (6), the particular matrix [image: there is no content] whose columns form an orthonormal basis for the nullspace of [image: there is no content] can be replaced by any other orthonormal basis [image: there is no content] for this space, without changing [image: there is no content]. Thus, instead of using the function [image: there is no content] in (6), we may use a different function [image: there is no content] at each iteration point [image: there is no content]. This freedom to use any orthonormal basis for the nullspace of [image: there is no content] at the point [image: there is no content] is key to our numerical technique. It also permits us to write simply [image: there is no content] and [image: there is no content] instead of [image: there is no content] and [image: there is no content] in the rest of this note, regardless of the particular matrix [image: there is no content] being used, and for simplicity we write [image: there is no content] instead of [image: there is no content]. The analysis below centers on the efficient computation of the terms required to use (6) at the particular point [image: there is no content].

The following results are derived and used in [5,6,7,8] and are required for our analysis below. With the terms as defined above, and writing [image: there is no content] for the i-th column of the matrix [image: there is no content],

CT(y)A(y)=0,CT(y)C(y)=I,

(7)

[image: there is no content]

(8)

and the [image: there is no content]-th entry of the [image: there is no content] Hessian matrix [image: there is no content] is

[image: there is no content]

(9)

Here, we use [image: there is no content] and [image: there is no content] to denote the termwise first derivative w.r.t. [image: there is no content] and second derivative w.r.t. [image: there is no content], respectively, of [image: there is no content], for j,k=1,…,n.

Define the [image: there is no content] nonsingular matrix

[image: there is no content]

(10)

Then, we showed in [8] that

[image: there is no content]

(11)

and

[image: there is no content]

(12)

where the [image: there is no content]-entry [image: there is no content] of the upper triangular matrix [image: there is no content] is

[image: there is no content]

Throughout the rest of this paper, we assume not only that [image: there is no content] has full rank N, but also that it is sufficiently well-conditioned that LU factorization with partial pivoting can be performed safely. For separable nonlinear systems with a rank-deficient [image: there is no content], the technique of bordered matrices [13,14,15,16] may be applied to produce a full rank matrix.

The following theorem lays the foundation for our approach to using the LU factorization.

Theorem 1.

Let the LU factorization of the rectangular matrix [image: there is no content] with some permutation matrix [image: there is no content] be

[image: there is no content]

(13)

where [image: there is no content] is [image: there is no content], [image: there is no content] is an [image: there is no content] permutation matrix, [image: there is no content] is an [image: there is no content] unit lower triangular matrix and [image: there is no content] is an [image: there is no content] nonsingular upper triangular matrix.

	(a)

	
The matrix

[image: there is no content]

(14)

where

[image: there is no content]

is nonsingular.

	(b)

	
Define

[image: there is no content]

(15)

Then, the thin positive QR factorization

[image: there is no content]

(16)

produces a thin orthonormal [image: there is no content] matrix [image: there is no content] and a small [image: there is no content] nonsingular upper triangular matrix [image: there is no content], and

CT(y¯)A(y¯)=0,CT(y¯)C(y¯)=Iℓ.

(17)

Proof.

(a) By direct computation, [image: there is no content] is a product of nonsingular matrices:

M¯(y¯)=PT(y¯)L(y¯)U(y¯)0Iℓ=PT(y¯)L(y¯)0IℓU(y¯)00Iℓ.

(18)

(b) By (15) and (16),

CT(y¯)A(y¯)=R−T(y¯)ΨT(y¯)A(y¯)=R−T(y¯)0Iℓ[M¯(y¯)]−1(y¯)A(y¯)=R−T(y¯)0IℓIN0=0.

☐

From (17), we see that the matrix [image: there is no content] constructed in the theorem satisfies (7) at [image: there is no content], and thus, as shown in [8], Equations (11) and (12) hold for this matrix at [image: there is no content].

To determine the computational cost, recall that we assume that [image: there is no content], while ℓ and n are fixed and small. Then, the thin QR factorization in (16) is cheap since the matrix [image: there is no content] has only ℓ columns. More specifically, the LU factorization of the [image: there is no content] dimensional [image: there is no content] in (13) costs [image: there is no content] flops, with an additional [image: there is no content] comparisons to produce [image: there is no content] [12], while computing [image: there is no content] only costs [image: there is no content] flops and the thin QR factorization of the [image: there is no content] dimensional matrix [image: there is no content] takes only [image: there is no content] flops [12].

Notice that solving (11) and (12) involves solving several equations of the form [image: there is no content]. However, the matrix [image: there is no content] defined in (10) and which is used in (11) and (12), differs from the matrix [image: there is no content] defined in (14) whose LU factors are given in (18). To reduce the cost of solving (11) and (12) from [image: there is no content] to [image: there is no content] operations, we can exploit the factorization (18) of the matrix [image: there is no content], as below. This result is essentially an application of the Sherman–Morrison–Woodbury formula.

Theorem 2.

Let [image: there is no content] be the LU factorization of [image: there is no content] with a permutation matrix [image: there is no content] as in (13), and let the matrices [image: there is no content], [image: there is no content] and [image: there is no content] be defined as in (14)–(16), while [image: there is no content] is defined by (10). Denote

[image: there is no content]

(19)

Then,

	(a)

	
[image: there is no content];

	(b)

	
For [image: there is no content], [image: there is no content] if and only if

wTM¯(y¯)=vT,uT=wTW(y¯).

(20)

Proof.

[image: there is no content] By (18),

W(y¯)M(y¯)=W(y¯)A(y¯)∣C(y¯)={IN+ℓ−[C(y¯)−S(y¯)]CT(y¯)}A(y¯)∣{IN+ℓ−[C(y¯)−S(y¯)]CT(y¯)}C(y¯)=A(y¯)∣C(y¯)−[C(y¯)−S(y¯)]=[A(y¯)∣S(y¯)]=M¯(y¯).

Then,

M−1(y¯)=M¯−1(y¯)[M¯(y¯)]M−1(y¯)=M¯−1(y¯)[W(y¯)M(y¯)]M−1(y¯)=M¯−1(y¯)W(y¯).

Part (b) follows directly from (a). ☐

Finally, we show how the value [image: there is no content] defined by (3) can be computed efficiently using the LU factorization of [image: there is no content].

Theorem 3.

[image: there is no content] if and only if

[image: there is no content]

(21)

Proof.

Let the QR factorization of [image: there is no content] be

[image: there is no content]

Since [image: there is no content] is full rank, we see that

[image: there is no content]

Since [image: there is no content] is an orthonormal matrix, there exists an [image: there is no content] orthogonal matrix [image: there is no content] such that

[image: there is no content]

Hence, the conclusion follows. ☐

Computing [image: there is no content] via (21) involves the matrix [image: there is no content] of (10), but the technique of Theorem 2 may again be used to replace this by the known LU factorization (18) of [image: there is no content] obtained from the LU factorization of [image: there is no content]. Thus, the cost of this step is also only [image: there is no content] flops.

3. Algorithm

We now give a detailed Algorithm 1 based on the analysis from the last section.

	Algorithm 1: Given the function [image: there is no content] with a matrix [image: there is no content] that is full rank in a neighborhood of [image: there is no content], a small positive real number [image: there is no content], a positive integer [image: there is no content], and a point [image: there is no content] near the solution [image: there is no content]. For [image: there is no content], do steps [image: there is no content]–[image: there is no content]:

	
	(a)

	
Compute the LU factorization (13) of [image: there is no content] :

[image: there is no content]

	(b)

	
Form the matrix [image: there is no content] and the matrix [image: there is no content] as in (14);

	(c)

	
Use (16) and the factorization (18) to form the matrix [image: there is no content];

	(d)

	
Compute [image: there is no content];

	(e)

	
Use (11) and (20) to solve for [C(y(m))]j′,j=1,...,n;

	(f)

	
Use (8) to form [image: there is no content];

	(g)

	
Use (12) and (20) to solve for [CT(y(m))]j,k″,j,k=1,...,n;

	(h)

	
Use (9) to find the [image: there is no content]-th entry of Hi(y(m)),i=1,…,ℓ;

	(i)

	
Form the matrix [image: there is no content] for the left-hand side of (6);

	(j)

	
Form the vector [image: there is no content] for the right side of (6);

	(k)

	
Compute [image: there is no content] by solving (6);

	(l)

	
If [image: there is no content] stop, output [image: there is no content] and [image: there is no content] from (21) using (19) and (20). Otherwise, if [image: there is no content], replace m by [image: there is no content] and go to [image: there is no content]; if [image: there is no content], output that the method fails to obtain [image: there is no content] within given [image: there is no content] and [image: there is no content].

Note that the cost of solving (6) for [image: there is no content] is only [image: there is no content] since the matrix involved is only [image: there is no content] and we assume [image: there is no content]. Thus, the overall cost per iteration remains [image: there is no content], the primary cost being the LU factorization of [image: there is no content]. The standard Gauss–Newton method, which omits the second derivative terms, omits steps (g) and (h), but the resulting method is no longer quadratically convergent.

4. Examples

We present three examples to illustrate our algorithm for computing the least squares solution of overdetermined separable equations. Our examples have large N and small [image: there is no content], approximating the theoretical characteristic that [image: there is no content] as [image: there is no content]. Similar results hold if we use much larger N.

Example 1.

Consider the least squares solution of the overdetermined system

[image: there is no content]

(22)

where

A1(y)=−211−21⋯1−211−2,b1(y)=0(2k+1)×1,

A2(y)=eTk+10,b2(y)=−10.02α(y,y*,β),

with

[image: there is no content]

and [image: there is no content] (thus [image: there is no content]), and where [image: there is no content] is the [image: there is no content]-th standard unit vector in [image: there is no content]. The selected value of [image: there is no content] is the value of the exact solution [image: there is no content]. Here, [image: there is no content].

The problem can be regarded as a constrained generalized eigenvalue problem. We choose [image: there is no content], [image: there is no content], and [image: there is no content]. For the eigenvalues of matrices of the form of [image: there is no content], see [17]. Beginning with [image: there is no content] and using Algorithm 1, we obtain the results in Table 1 for [image: there is no content], which shows quadratic convergence of the method.

Table 1. Gauss–Newton type iterations for Example 1.

	
m

	
[image: there is no content]

	
[image: there is no content]

	
0

	
4.80000000000000e+001

	
1.1229e+000

	
1

	
4.90312546237768e+001

	
9.1617e−002

	
2

	
4.91243552951534e+001

	
1.4840e−003

	
3

	
4.91228716369764e+001

	
3.8635e−007

	
4

	
4.91228712506304e+001

	
2.8422e−014

After [image: there is no content] is obtained, we compute [image: there is no content] using (21), where [image: there is no content], [image: there is no content][image: there is no content]. We find that [image: there is no content], and the 2-norm of the residual of [image: there is no content] is ≈0.06.

Example 2.

Consider the least squares solution of the overdetermined system

[image: there is no content]

(23)

where

A1(y)=111⋱⋱11N×N,b1(y)=−1−y10⋯0N×1,

A2(y)=y1000⋯0y2y100⋯00y2y10⋯03×N,b2(y)=1−y1+y121+y1−y2+y1y22−y1+y2−y22.

Here, we use [image: there is no content], thus [image: there is no content], and [image: there is no content].

We choose [image: there is no content]. The least squares solution of (23) is [image: there is no content]. Beginning with [image: there is no content] and using Algorithm 1, we obtain the results in Table 2 for [image: there is no content]. These results show the expected quadratic convergence. After [image: there is no content] is obtained, we compute [image: there is no content] using (21). Here, [image: there is no content], zj*=(−1)j+1,j=1,…,23, and the exact residual is [image: there is no content]. We find that [image: there is no content], while 2-norm of the residual of [image: there is no content] is [image: there is no content].

Table 2. Gauss–Newton type iterations for Example 2.

	
m

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
0

	
 1.0000e−001

	
 1.0000e−001

	
1.4142e−001

	
1

	
−3.2975e−002

	
−1.7299e−002

	
3.7238e−002

	
2

	
 8.5227e−004

	
 3.5533e−004

	
9.2338e−004

	
3

	
−1.5227e−008

	
−6.1721e−009

	
1.6890e−008

	
4

	
−4.3532e−016

	
−1.8608e−016

	
4.7342e−016

Our last example arises from a discretization, using the finite element method, of the one-dimensional elliptic interface problem [image: there is no content], for [image: there is no content], where [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content]. The boundary conditions are [image: there is no content] and [image: there is no content], and the interface conditions are [image: there is no content] and [image: there is no content]. For more on interface problems, see [18]. In this discretization, the slopes of the basis tent functions on either side of the interface [image: there is no content] are modified from [image: there is no content] and [image: there is no content] to [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content] on the respective line segments. In our setting, [image: there is no content] and [image: there is no content] are given, and [image: there is no content] represent the nonlinear variables.

Example 3.

Consider the least squares solution of the overdetermined system

[image: there is no content]

(24)

where the [image: there is no content] matrix [image: there is no content] is defined as

[image: there is no content]

with [image: there is no content] and

[image: there is no content]

where [image: there is no content] and [image: there is no content], [image: there is no content], and the square matrices F are tridiagonal of the form

2−1−12−1⋯−12−1−12,

the vectors E have all entries one, [image: there is no content] are the jth standard unit vectors, and

γ1=1−(xk+1−α)s2α−xk,γ2=[1−(xk+1−α)s2]β−(α−xk)s2.

(25)

The exact least squares solution is [image: there is no content].

We use [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. Using the Algorithm 1 with [image: there is no content], we obtain the results in Table 3 for [image: there is no content], which shows quadratic convergence of the method. After [image: there is no content] is obtained, we obtain [image: there is no content] using (21). Here, [image: there is no content] and [image: there is no content], and the exact residual is [image: there is no content]. We find that [image: there is no content] and the 2-norm of the residual of [image: there is no content] is [image: there is no content].

Table 3. Gauss–Newton type iterations for Example 3.

	
m

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
0

	
 5.0000e−001

	
 2.0000e−001

	
5.3852e−001

	
1

	
 1.4160e+000

	
 1.7845e−001

	
1.4272e+000

	
2

	
 2.0255e−002

	
 2.5279e−003

	
2.0412e−002

	
3

	
−1.3048e−006

	
−1.6292e−007

	
1.3149e−006

	
4

	
 1.4921e−013

	
 1.8652e−014

	
1.5038e−013

5. Conclusions

We have shown how LU factorization can be used to solve separable nonlinear least squares problems with nonzero residuals. Our Gauss-Newton type method retains the second derivative terms and is quadratically convergent. The technique is most efficient for situations in which there are few nonlinear terms and variables. In that context we show how the second derivative terms can be computed relatively cheaply. Our numerical examples demonstrate the effectiveness of the technique in some areas of application.

Acknowledgments

Publication costs were provided by Western Washington University, Bellingham, WA 98225, USA.

Author Contributions

Yunqiu Shen conceived the key ideas and drafted the paper; Tjalling Ypma refined the details and the presentation.

Conflicts of Interest

The authors declare no conflict of interest.

References

	1.
Golub, G.H.; Pereyra, V. Separable nonlinear least squares: the variable projection method and its applications. Topic Review. Inverse Probl. 2003, 19, R1–R26. [Google Scholar] [CrossRef]

	2.
Mullen, K.M.; van Stokkum, I.M. The variable projection algorithm in time-resolved spectroscopy, microscopy and mass spectrometry applications. Numer. Algorithms 2009, 51, 319–340. [Google Scholar] [CrossRef]

	3.
Shen, Y.-Q.; Ypma, T.J. Solving separable nonlinear equations using LU factorization. ISRN Math. Anal. 2013, 2013, 258072. [Google Scholar] [CrossRef] [PubMed]

	4.
Golub, G.H.; Pereyra, V. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 1973, 10, 413–432. [Google Scholar] [CrossRef]

	5.
Shen, Y.-Q.; Ypma, T.J. Solving nonlinear systems of equations with only one nonlinear variable. J. Comput. Appl. Math. 1990, 30, 235–246. [Google Scholar] [CrossRef]

	6.
Ypma, T.J.; Shen, Y.-Q. Solving N+m nonlinear equations with only m nonlinear variables. Computing 1990, 44, 259–271. [Google Scholar] [CrossRef]

	7.
Lukeman, G.G. Separable Overdetermined Nonlinear Systems: An Application of the Shen-Ypma Algorithm; VDM Verlag: Saarbrucken, Germany, 2009. [Google Scholar]

	8.
Shen, Y.; Ypma, T.J. Solving Separable Least Squares Problems using QR factorization. J. Comp. Appl. Math. submitted.

	9.
Dennis, J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Corrected Reprint of the 1983 Original; SIAM: Philadelphia, PA, USA, 1996. [Google Scholar]

	10.
Deuflhard, P.; Hohmann, A. Numerical Analysis in Modern Scientific Computing, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]

	11.
Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]

	12.
Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; Johns Hopkins: Baltimore, MD, USA, 1996. [Google Scholar]

	13.
Shen, Y.-Q.; Ypma, T.J. Newton’s method for singular nonlinear equations using approximate left and right nullspaces of the Jacobian. Appl. Numer. Math. 2005, 54, 256–265. [Google Scholar] [CrossRef]

	14.
Shen, Y.-Q.; Ypma, T.J. Solving rank-deficient separable nonlinear equations. Appl. Numer. Math. 2007, 57, 609–615. [Google Scholar] [CrossRef]

	15.
Shen, Y.-Q.; Ypma, T.J. Numerical bifurcation of separable parameterized equations. Elect. Trans. Numer. Anal. 2009, 34, 31–43. [Google Scholar]

	16.
Shen, Y.-Q.; Ypma, T.J. Rank deficiency and bifurcation into affine subspaces for separable parametrized equations. Math. Comp. 2016, 85, 271–293. [Google Scholar] [CrossRef]

	17.
Smith, G.D. Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed.; Oxford University Press: New York, NY, USA, 1985. [Google Scholar]

	18.
Li, Z.; Ito, K. The Immersed Interface Method; SIAM: Philadelphia, PA, USA, 2006. [Google Scholar]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 algorithms-10-00078

 		
 algorithms-10-00078

media/file0.png

