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Abstract: Due to the lack of powerful model description methods, the identification of
Hammerstein systems based on the non-uniform input-output dataset remains a challenging problem.
This paper introduces a time-varying backward shift operator to describe periodically non-uniformly
sampled-data Hammerstein systems, which can simplify the structure of the lifted models using
the traditional lifting technique. Furthermore, an auxiliary model-based multi-innovation stochastic
gradient algorithm is presented to estimate the parameters involved in the linear and nonlinear
blocks. The simulation results confirm that the proposed algorithm is effective and can achieve a high
estimation performance.
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1. Introduction

The dynamics of most practical systems are inherently nonlinear due to complex physical,
chemical and biological mechanisms. The modeling of nonlinear systems is challenging and has
become an active research area in both academia and industry [1,2]. To simplify the modeling problem,
block-oriented models, which are composed of linear dynamic blocks in combination with nonlinear
memoryless blocks, have been widely utilized to describe nonlinear systems. The state of the art in
designing, analyzing and implementing identification algorithms for block-oriented nonlinear systems
were well summarized in a recent book by Giri and Bai [3]. Depending on the location of the static
nonlinear component, block-oriented models can be classified into the Hammerstein model, the Wiener
model and the Hammerstein–Wiener model [4–6]. The Hammerstein model represents a class of input
nonlinear systems, where the nonlinear block is prior to the linear one. It can flexibly approximate
various input nonlinearities, such as saturation, dead zone, backlash and hysteresis, thus having been
extensively employed in realistic applications [7–11].

For decades, the identification of Hammerstein nonlinear systems has attracted much attention,
and numerous methods have been reported in the literature. For example, Pouliquen et al.
studied the parameter estimation of Hammerstein systems where the linear part is described by
an output error model and presented an iterative algorithm based on the optimal bounding ellipsoid
criterion [12]. Ding et al. applied the auxiliary model identification principle to deal with unmeasurable
noise-free outputs in Hammerstein output error systems, presented a recursive least squares (RLS)
algorithm and investigated its convergence properties [13]. Filipovic derived a robust extended
RLS algorithm to estimate the parameters of Hammerstein systems interfered by non-Gaussian
disturbance [14]. Gao et al. proposed a blind identification algorithm for Hammerstein systems
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with hysteresis nonlinearity and further developed a composite control strategy to track the reference
input [15].

Among various new methodologies in the identification area, the multi-innovation theory has
been considered as a useful way to improve estimation precision and convergence rate. The basic
idea of the multi-innovation theory is innovation expanding, which helps to update the parameter
estimates at each recursion using the data over a moving and fixed-size window [16,17]. Typically,
the multi-innovation theory is incorporated with the RLS algorithm, the stochastic gradient (SG)
algorithm, the stochastic Newton recursive algorithm, etc., to address identification problems [18].
For instance, a multi-innovation RLS algorithm was developed for Hammerstein AutoRegressive
eXogenous (ARX) systems with backlash nonlinearity [19]. Furthermore, a multi-innovation SG
algorithm [20] and an auxiliary model-based multi-innovation generalized extended SG algorithm [21]
were proposed to estimate the parameters of Hammerstein nonlinear ARX and Box–Jenkins systems,
respectively. Compared with the multi-innovation RLS algorithm, the multi-innovation SG algorithm
is more efficient in computation because it avoids performing large matrix inversion [22].

The above-mentioned Hammerstein systems all belong to single-rate systems, the inputs
and outputs of which are uniformly sampled at the same rate. However, non-uniform sampling can be
encountered in practice due to hardware limitations or economic considerations [23–25]. For example,
influenced by transmission delays and packet losses, the input-output data in networked control
systems might be available at non-uniformly spaced time instants [26,27]. The non-uniform sampling
includes the uniform sampling as its special case, which can always preserve controllability and
observability in discretization [28]. Furthermore, it can overcome the restriction of the Nyquist limit and
enable a much lower average sampling frequency. Therefore, intentional non-uniform sampling has the
potential to reduce the hardware cost in control applications [29]. Due to the complexity of arbitrary
non-uniform sampling, most of the literature works have focused on periodically non-uniformly
sampled-data systems [30,31]. For periodically non-uniformly sampled-data Hammerstein systems,
Li et al. derived the lifted transfer function model by means of the lifting technique and presented
a least squares-based iterative algorithm for parameter estimation [32]. The lifting technique is
a benchmark tool to deal with multirate and non-uniformly sampled-data systems [33,34]. However,
the corresponding lifted models are complex and involve a large number of parameters, which brings
a great challenge for identification. To simplify the model structure and reduce the identification
complexity, Xie et al. put forward a novel input-output representation of linear systems with
non-uniform sampling by introducing a time-varying backward shift operator δ−1 [35]. On the basis
of that work, this paper aims to propose a δ−1-based model to describe periodically non-uniformly
sampled-data Hammerstein systems and presents an auxiliary model-based multi-innovation SG
algorithm to estimate the model parameters.

The rest of this paper is organized as follows. Section 2 formulates the identification problem
of periodically non-uniformly sampled-data Hammerstein systems. Identification algorithms are
proposed in Section 3, and an example is provided in Section 4 to examine their estimation performance.
Finally, concluding remarks are given in Section 5.

2. Problem Description

Consider a periodically non-uniformly sampled-data Hammerstein system as depicted in Figure 1,
in which Hτ is a periodic non-uniform zero-order hold, converting a discrete-time input sequence
{u(kT + ti)} to a continuous-time input u(t), i.e.,

u(t) =


u(kT + t0), kT + t0 ≤ t < kT + t1 (t0 = 0),
u(kT + t1), kT + t1 ≤ t < kT + t2,

...
u(kT + tq−1), kT + tq−1 ≤ t < kT + tq (tq = T),
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where k = 0, 1, · · · ; T is the frame period spaced by q non-uniform sampling instants
ti (i = 0, 1, · · · , q− 1).

( )f
( )u t ( )u t

P
( )w t

S
( )iy kT t

( )v t

( )y t
H

( )iu kT t

Figure 1. Periodically non-uniformly sampled-data Hammerstein system.

By passing through a nonlinear static block f (·), u(t) is transformed into an unmeasurable inner
input u(t) to a linear dynamic process P with order n, which can be expressed as:

u(t) =
nc

∑
m=1

cm fm[u(t)], (1)

where fm[u(t)] are known nonlinear basis functions and cm are unknown coefficients to be estimated.
The noise-free output w(t) of the process P is corrupted by a white noise v(t),

generating a measurable output y(t). The non-uniform sampler Sτ has a synchronous sampling
pattern with Hτ ; thus, the discrete-time output sequence {y(kT + ti)} is obtained at sampling instants
t = kT + ti (i = 0, 1, · · · , q− 1).

For the notational simplicity, in the following the data s(kT + ti), at non-uniform sampling
time t = kT + ti, is denoted by si(k). By using a time-varying backward shift operator
δ−1 [δ−1si(k) = si−1(k)] proposed in [35], the mapping relationship between the inner input ui(k)
and the noise-free output wi(k) of the periodically non-uniformly sampled-data Hammerstein system
can be represented as:

wi(k) =
Bi(δ)

Ai(δ)
ui(k), i = 0, 1, 2, · · · , q− 1, (2)

where:

Ai(δ) := 1 + ai1δ−1 + ai2δ−2 + · · ·+ ainδ−n,

Bi(δ) := bi0 + bi1δ−1 + bi2δ−2 + · · ·+ binδ−n.

From the system schematic diagram in Figure 1, we have:

yi(k) = wi(k) + vi(k). (3)

Given the non-uniformly-sampled input-output data {ui(k), yi(k), k = 0, 1, 2, · · · ,
i = 0, 1, 2, · · · , q− 1}, the objective of this paper is to estimate the parameters of the nonlinear block
in (1):

c := [c1, c2, · · · , cnc ]
T ∈ Rnc ,

and the parameters of the linear block in (2):

ai := [ai1, ai2, · · · , ain]
T ∈ Rn,

bi := [bi0, bi1, bi2, · · · , bin]
T ∈ Rn+1.
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3. Identification Algorithms

3.1. The AM-SG Algorithm

According to the over-parameterized linear regression approach [36], define the information
vector ϕi(k) and the parameter vector θi as:

ϕi(k) :=

[
ϕiw(k)
ϕiu(k)

]
∈ Rn0 , θi :=

[
ai
θiu

]
∈ Rn0 , n0 = n + (n + 1)nc,

ϕiw(k) :=


−wi−1(k)
−wi−2(k)

...
−wi−n(k)

 ∈ Rn, φij(k) :=


f1[ui−j(k)]
f2[ui−j(k)]

...
fnc [ui−j(k)]

 ∈ Rnc , j = 0, 1, 2, · · · , n,

ϕiu(k) :=


φi0(k)
φi1(k)
φi2(k)

...
φin(k)

 ∈ R(n+1)nc , θiu :=


bi0c
bi1c
bi2c

...
binc

 ∈ R(n+1)nc .

Using Equation (1), Equation (2) can be written in the following vector form:

wi(k) =−
n

∑
j=1

aijwi−j(k) +
n

∑
j=0

bij

[
nc

∑
m=1

cm fm[ui−j(k)]

]
=ϕT

i (k)θi. (4)

Substituting Equation (4) into Equation (3), we have:

yi(k) = ϕT
i (k)θi + vi(k). (5)

Equation (5) is the identification model of the periodically non-uniformly sampled-data
Hammerstein system, in which the parameter vector θi includes the products of parameters bij
and cm. To guarantee a unique parametrization, the first coefficient c1 of the nonlinear function is
assumed to be one [14,37]. Furthermore, the information vector ϕi(k) contains unmeasurable noise-free
outputs wi−j(k). A solution to this difficulty is to replace wi−j(k) with their estimates ŵi−j(k) based on
the auxiliary model identification idea [38–40]. Accordingly, define the estimate of ϕi(k) as:

ϕ̂i(k) :=

[
ϕ̂iw(k)
ϕiu(k)

]
,

ϕ̂iw(k) := [−ŵi−1(k), −ŵi−2(k), · · · , −ŵi−n(k)]T.

Using the estimates ϕ̂i(k) and θ̂i(k) to replace ϕi(k) and θi in (4), respectively, yields

ŵi(k) = ϕ̂T
i (k)θ̂i(k). (6)

Applying the stochastic gradient search principle to minimize the following criterion function:

J1(θi) = E
{
[yi(k)− ϕ̂T

i (k)θi]
2
}

,
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an auxiliary model-based stochastic gradient (AM-SG) algorithm can be derived for identifying
the parameter vector θi in (5):

θ̂i(k) = θ̂i(k− 1) +
ϕ̂i(k)
ri(k)

[yi(k)− ϕ̂T
i (k)θ̂i(k− 1)], (7)

ri(k) = ri(k− 1) + ‖ϕ̂i(k)‖
2, ri(0) = 1. (8)

3.2. The AM-MISG Algorithm

The AM-SG algorithm only uses the current dataset to update the parameter estimates. Therefore,
it has a slow convergence rate and low estimation accuracy. To improve the identification performance
of the AM-SG algorithm, an innovation length p is introduced to derive an auxiliary model-based
multi-innovation stochastic gradient (AM-MISG) algorithm.

Considering the most recent p sets of input-output data, define the stacked output vector Yi(p, k),
the stacked noise vector Vi(p, k) and the stacked information matrix Ψi(p, k) as:

Yi(p, k) = [yi(k), yi(k− 1), · · · , yi(k− p + 1)]T ∈ Rp,

Vi(p, k) = [vi(k), vi(k− 1), · · · , vi(k− p + 1)]T ∈ Rp,

Ψi(p, k) = [ϕi(k), ϕi(k− 1), · · · , ϕi(k− p + 1)] ∈ Rn0×p.

Equation (5) can be expanded into the following matrix form:

Yi(p, k) = ΨT
i (p, k)θi + Vi(p, k). (9)

However, the information vectors ϕi(k − l), l = 0, 1, · · · , p − 1 in Ψi(p, k) include unknown
noise-free outputs. Let ϕ̂i(k− l) be their estimates; the estimate of Ψi(p, k) can be defined as:

Ψ̂i(p, k) = [ϕ̂i(k), ϕ̂i(k− 1), · · · , ϕ̂i(k− p + 1)] ∈ Rn0×p.

Define the following criterion function:

J2(θi) = ‖Vi(p, k)‖2 =
∥∥∥Yi(p, k)− Ψ̂

T

i (p, k)θi

∥∥∥2
, (10)

where ‖X‖2 = tr[XXT] represents the norm of the matrix X. The gradient of J2(θi) with respect to θi is
given by:

grad[J2(θi)] =
∂J2(θi)

∂θi
= −2Ψ̂i(p, k)[Yi(p, k)− Ψ̂

T

i (p, k)θi].

Applying the stochastic gradient search principle to minimize the criterion function in (10),
we have:

θ̂i(k) = θ̂i(k− 1)− µi(k)gradJ2[θ̂i(k− 1)]

= θ̂i(k− 1) + 2µi(k)Ψ̂i(p, k)[Yi(p, k)− Ψ̂
T

i (p, k)θ̂i(k− 1)], (11)

where µi(k) > 0 is called the step size or the convergence factor. For the convenience of formula
derivation, let µi(k) = 1

2ri(k)
; Equation (11) can be rewritten into:

θ̂i(k) = θ̂i(k− 1) +
1

ri(k)
Ψ̂i(p, k)[Yi(p, k)− Ψ̂

T

i (p, k)θ̂i(k− 1)] (12)

=

[
I − 1

ri(k)
Ψ̂i(p, k)Ψ̂T

i (p, k)
]

θ̂i(k− 1) +
1

ri(k)
Ψ̂i(p, k)Yi(p, k).
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To guarantee the convergence of this recursive algorithm, all eigenvalues of the matrix[
I − 1

ri(k)
Ψ̂i(p, k)Ψ̂T

i (p, k)
]

should be located inside the unit circle. Therefore, a conservative choice of
1

ri(k)
is:

0 <
1

ri(k)
6

1
λmax[Ψ̂i(p, k)Ψ̂T

i (p, k)]
.

In this paper, we take a common choice:

ri(k) = λiri(k− 1) + ‖ϕ̂i(k)‖
2, ri(0) = 1, (13)

where λi ∈ (0, 1] is the forgetting factor.
Substituting Equation (13) into Equation (12), the auxiliary model-based multi-innovation

stochastic gradient (AM-MISG) algorithm can be derived:

θ̂i(k) = θ̂i(k− 1) +
Ψ̂i(p, k)

ri(k)
[Yi(p, k)− Ψ̂

T

i (p, k)θ̂i(k− 1)], (14)

ri(k) = λiri(k− 1) + ‖ϕ̂i(k)‖
2, ri(0) = 1, (15)

Yi(p, k) = [yi(k), yi(k− 1), · · · , yi(k− p + 1)]T, (16)

Ψ̂i(p, k) = [ϕ̂i(k), ϕ̂i(k− 1), · · · , ϕ̂i(k− p + 1)], (17)

ϕ̂i(k) =

[
ϕ̂iw(k)
ϕiu(k)

]
, (18)

ϕ̂iw(k) = [−ŵi−1(k), −ŵi−2(k), · · · , −ŵi−n(k)]T, (19)

ϕiu(k) = [φT
i0(k), φT

i1(k), φT
i2(k), · · · , φT

in(k)]
T, (20)

φij(k) = [ f1[ui−j(k)], f2[ui−j(k)], · · · , fnc [ui−j(k)]]T, j = 0, 1, 2, · · · , n, (21)

ŵi(k) = ϕ̂T
i (k)θ̂i(k). (22)

Since c1 = 1, the estimates of aij and bij can be directly read from θ̂i(k),

âij(k) = θ̂i,j(k), j = 1, 2, · · · , n, (23)

b̂ij(k) = θ̂i,n+nc j+1(k), j = 0, 1, 2, · · · , n, (24)

where θ̂i,j(k) represents the j-th element of θ̂i(k). Note that cm (m = 2, 3, · · · , nc) has been estimated
n + 1 times at each non-uniform sampling instant kT + ti (i = 0, 1, 2, · · · , q− 1). Therefore, we can
simply take their average like in [36] as the estimate of cm over the k-th frame period, i.e.,

ĉm(k) =
1

q(n + 1)

q−1

∑
i=0

n

∑
j=0

θ̂i,n+nc j+m(k)

b̂ij(k)
, m = 2, 3, · · · , nc. (25)

Furthermore, a more numerically-sound SVD-based approach proposed by Bai [41] can be applied
to obtain the estimates of bij and cm.

The flowchart of the AM-MISG algorithm in (14)–(25) for computing the parameter estimates
of periodically non-uniformly sampled-data Hammerstein systems can be illustrated in Figure 2,
and the detailed implementation steps are summarized as follows:

1. Initialization: Choose the data length L, the innovation length p and the forgetting factor λi;
give the nonlinear basis functions { fm(·), m = 1, 2, · · · , nc}; set ui(k) = 0, yi(k) = 0, ŵi(k) = 0
for k 6 0 and i = 0, 1, 2, · · · , q− 1; take the initial values to be θ̂i(0) = 1n0 /p0, where p0 = 106

and 1n0 is a column vector of ones; let k = 1 and i = 0.
2. Collect the non-uniformly sampled input-output data ui(k) and yi(k).
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3. Calculate fm[ui(k)] based on ui(k); form ϕ̂iw(k), ϕiu(k), φij(k) by (19)–(21); and construct ϕ̂i(k)
by (18).

4. Form the stacked output vector Yi(p, k) and the stacked information matrix Ψ̂i(p, k) by (16)
and (17), respectively.

5. Compute the step size ri(k) by (15) and update the parameter estimate θ̂i(k) by (14); calculate ŵi(k)
by (22); obtain âij(k) and b̂ij(k) based on (23) and (24), respectively.

6. If i < q− 1, then increase i by one, and go to Step 2; otherwise, compute ĉm(k), m = 2, 3, · · · , nc

by (25); let i = 0 and go to the next step.
7. If k < L, then increase k by one, and go to Step 2; otherwise, terminate the computing process.

�
�

�
�Start

?

Initialization: let k = 1 and i = 0

?

Collect ui(k) and yi(k)

?
Form ϕ̂iw(k), ϕiu(k), φij(k),

construct ϕ̂i(k)

?

Form Yi(p, k) and Ψ̂i(p, k)

?

Compute ri(k) and update θ̂i(k),
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?

   
   

   

```
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         k < L?
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�
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�
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Figure 2. The flowchart of computing the parameter estimate.

3.3. The Main Convergence Result

The main convergence result of the proposed AM-MISG algorithm for periodically non-uniformly
sampled-data Hammerstein systems is given in the following theorem.

Theorem 1. Assume that the noise sequences vi(k) (i = 0, 1, 2, · · · , q− 1) satisfy:
(A1) E[vi(k)] = 0, E[v2

i (k)] 6 σ2 < ∞, E[vi(k)vi(j)] = 0, k 6= j,
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and there exist a positive constant α and an integer N such that the following persistent excitation
condition holds:

(A2) ∑N
j=0 ∑

p−1
l=0

ϕ̂i(k+j−l)ϕ̂T
i (k+j−l)

ri(k+j) > αI.

Then, the parameter estimation vector θ̂i(k) given by the AM-MISG algorithm consistently converges to
the true parameter vector θi in the mean-square sense.

Theorem 1 can be proven in a similar way to [42]. Therefore, its detailed proof is omitted here.

4. Simulation Example

Assume that the nonlinear block in Figure 1 is described by:

u(t) = u(t) + 0.5u2(t) + 0.25u3(t),

and the linear continuous process P is described by:

P(s) =
1

4s2 + 2s + 1
.

Over a frame period of T = 2
√

2 + 1 s, the input-output data are non-uniformly-sampled twice
(i.e., q = 2) at t0 = 0 s and t1 =

√
2 s. According to Theorem 1 in [35], the following δ−1-based transfer

function model is derived:

w0(k) =
1− 0.61623δ−1 + 0.50931δ−2

1− 0.8086δ−1 + 0.25514δ−2 u0(k),

w1(k) =
1− 0.49522δ−1 + 0.75553δ−2

1− 0.94779δ−1 + 0.57794δ−2 u1(k).

Therefore, the parameters of this periodically non-uniformly sampled-data Hammerstein
system are:

a0 = [−0.8086, 0.25514]T, b0 = [1, −0.61623, 0.50931]T,

a1 = [−0.94779, 0.57794]T, b1 = [1, −0.49522, 0.75553]T,

c = [1, 0.5, 0.25]T.

In the simulation, take the non-uniform inputs {u0(k)} and {u1(k)} as two uncorrelated random
sequences with zero mean and unit variance, {v0(k)} and {v1(k)} as two white noise sequences
with zero mean and variance σ2 = 0.102. Based on 5000 non-uniform input-output dataset, applying
the AM-MISG algorithm in (14)–(25) with λ0 = λ1 = 0.95 to estimate the system parameters, the results
for p = 1, p = 5 and p = 12 are shown in Tables 1–3, respectively, where ε is the estimation error
defined as:

ε =

√
‖â0 − a0‖2 + ‖b̂0 − b0‖2 + ‖â1 − a1‖2 + ‖b̂1 − b1‖2 + ‖ĉ− c‖2

‖a0‖2 + ‖b0‖2 + ‖a1‖2 + ‖b1‖2 + ‖c‖2 × 100%.

Meanwhile, the estimation errors ε versus k are shown in Figure 3.
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Table 1. The auxiliary model-based multi-innovation stochastic gradient (AM-MISG) parameter
estimates and errors (p = 1).

k 100 200 500 1000 2000 3000 4000 5000 True Values

a01 −0.23798 −0.23467 −0.24155 −0.23676 −0.32003 −0.37711 −0.42344 −0.46120 −0.80860
a02 −0.17253 −0.15925 −0.14095 −0.10136 −0.07608 −0.04580 −0.00265 0.02211 0.25514
b00 0.21247 0.28325 0.36820 0.43435 0.54777 0.63347 0.70653 0.76997 1.00000
b01 0.03019 0.01933 0.01196 0.00916 0.00769 −0.01410 −0.04420 −0.08780 −0.61623
b02 0.08793 0.10742 0.14003 0.18442 0.23272 0.28553 0.31263 0.32151 0.50931
a11 −0.14144 −0.17751 −0.20109 −0.25406 −0.32583 −0.39976 −0.44355 −0.49299 −0.94779
a12 −0.26469 −0.24184 −0.17359 −0.12188 −0.07576 −0.02374 0.04034 0.07391 0.57794
b10 0.24088 0.32232 0.39463 0.45898 0.57929 0.66877 0.73108 0.77370 1.00000
b11 0.02779 0.05257 0.07272 0.09047 0.11098 0.11615 0.10811 0.09453 −0.49522
b12 0.04644 0.04343 0.04713 0.07480 0.12538 0.16100 0.18916 0.22188 0.75553
c2 1.05391 0.96668 0.98187 0.93895 0.80087 0.72297 0.66712 0.63075 0.50000
c3 1.79633 1.68065 1.44046 1.16009 0.82335 0.65456 0.52589 0.45922 0.25000

ε (%) 103.04890 97.41924 89.40996 80.57154 68.94369 61.44114 55.52206 51.00555

Table 2. The AM-MISG parameter estimates and errors (p = 5).

k 100 200 500 1000 2000 3000 4000 5000 True Values

a01 −0.17179 −0.18574 −0.31748 −0.41405 −0.61777 −0.71905 −0.76959 −0.80135 −0.80860
a02 −0.17111 −0.11012 −0.05496 0.01077 0.12643 0.17775 0.21975 0.24397 0.25514
b00 0.37344 0.45616 0.62647 0.76016 0.91687 0.95693 0.98483 0.99692 1.00000
b01 0.06673 0.04317 0.02695 −0.05431 −0.24467 −0.39466 −0.50874 −0.56748 −0.61623
b02 0.18052 0.22395 0.27192 0.33856 0.35650 0.39392 0.41745 0.43668 0.50931
a11 −0.34108 −0.41100 −0.47313 −0.56512 −0.68070 −0.77319 −0.82088 −0.85964 −0.94779
a12 −0.01887 −0.03044 0.07773 0.16053 0.30682 0.37436 0.44459 0.47782 0.57794
b10 0.38009 0.49836 0.59120 0.75693 0.92872 0.97376 0.98098 0.98525 1.00000
b11 0.02215 0.04295 0.06078 0.02968 −0.07356 −0.20574 −0.29673 −0.36568 −0.49522
b12 0.10985 0.13310 0.18300 0.25133 0.33733 0.43426 0.52067 0.59753 0.75553
c2 0.97825 0.90595 0.80559 0.63455 0.51789 0.50729 0.50178 0.50388 0.50000
c3 1.35667 1.13733 0.73326 0.47388 0.31951 0.27787 0.26181 0.25438 0.25000

ε (%) 84.52995 75.91772 61.64633 48.73054 32.94076 22.45332 15.03823 10.03271

Table 3. The AM-MISG parameter estimates and errors (p = 12).

k 100 200 500 1000 2000 3000 4000 5000 True Values

a01 −0.21097 −0.29207 −0.48337 −0.62718 −0.78913 −0.82242 −0.82167 −0.81394 −0.80860
a02 −0.09616 −0.00999 0.04310 0.14720 0.23542 0.25631 0.25755 0.25552 0.25514
b00 0.46831 0.60206 0.82476 0.92527 0.99463 0.99562 0.99966 1.00088 1.00000
b01 0.05982 0.04225 −0.06860 −0.27395 −0.53707 −0.61472 −0.62645 −0.62093 −0.61623
b02 0.27987 0.32848 0.34589 0.38704 0.42283 0.47864 0.49652 0.50327 0.50931
a11 −0.42997 −0.51235 −0.60352 −0.72537 −0.84006 −0.90571 −0.93254 −0.94364 −0.94779
a12 −0.00011 0.04270 0.21788 0.32975 0.47520 0.53405 0.56383 0.57217 0.57794
b10 0.44256 0.61696 0.76526 0.92836 1.00028 0.99858 0.99669 1.00004 1.00000
b11 0.01971 0.05871 0.01162 −0.14602 −0.33453 −0.42806 −0.46968 −0.48801 −0.49522
b12 0.11625 0.16567 0.24897 0.36557 0.55820 0.68047 0.73284 0.75125 0.75553
c2 0.88043 0.76552 0.64129 0.52932 0.49418 0.49855 0.50087 0.49915 0.50000
c3 1.04485 0.79819 0.45534 0.30318 0.25542 0.25328 0.25163 0.25057 0.25000

ε (%) 73.56646 62.33004 45.43354 29.28325 12.29280 4.72652 1.75023 0.55900
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Figure 3. The AM-MISG estimation errors ε versus k with p = 1, 5, 12.

From Tables 1–3 and Figure 3, we can see that the parameter estimation error gradually
decreases as the data length k increases, demonstrating the effectiveness of the proposed AM-MISG
algorithm. Furthermore, the AM-MISG algorithm with a larger innovation length p can result in higher
identification accuracy and faster convergence to the true parameters.

To study the identification performance of the proposed AM-MISG algorithm against the output
noise, 50 Monte Carlo simulations for the noise variance being σ2 = 0.102 and σ2 = 0.502 have been
conducted, respectively. In each simulation run, a new dataset with length L = 5000 is generated to
estimate the model parameters. For the innovation length p = 1, p = 5 and p = 12, the mean values
and the standard deviations of the parameter estimates are listed in Tables 4 and 5. From the simulation
results, it can be observed that the estimation accuracy of the AM-MISG algorithm is higher when the
noise variance is smaller. For a larger noise variance, increasing the innovation length p can help to
obtain a satisfactory identification result.

Considering the noise variance σ2 = 0.102 and σ2 = 0.502, a separate dataset with length 30 has
been generated for model validation, respectively. Using the mean values of the parameter estimates
listed in Tables 4 and 5 for p = 12 to predict the outputs of the periodically non-uniformly sampled-data
Hammerstein system, the results are shown in Figure 4, where the solid line and the x-marks represent
the true measured outputs and the model predicted outputs, respectively. From Figure 4, it is clear that
the model predictions can catch the trend of the true outputs well, and the prediction performance
becomes better if a noise with smaller variance is introduced.

Table 4. The AM-MISG parameter estimates with standard deviations (σ2 = 0.102).

Parameters p = 1 p = 5 p = 12 True Values

a01 −0.4618± 0.0241 −0.7999± 0.0067 −0.8156± 0.0016 −0.80860
a02 0.0190± 0.0145 0.2390± 0.0050 0.2575± 0.0012 0.25514
b00 0.7923± 0.0148 0.9979± 0.0038 1.0001± 0.0010 1.00000
b01 −0.0783± 0.0165 −0.5640± 0.0081 −0.6243± 0.0020 −0.61623
b02 0.3478± 0.0153 0.4419± 0.0054 0.5030± 0.0019 0.50931
a11 −0.5010± 0.0187 −0.8457± 0.0105 −0.9396± 0.0024 −0.94779
a12 0.0944± 0.0165 0.4700± 0.0099 0.5707± 0.0021 0.57794
b10 0.7879± 0.0164 0.9951± 0.0049 0.9999± 0.0014 1.00000
b11 0.1057± 0.0137 −0.3463± 0.0136 −0.4830± 0.0029 −0.49522
b12 0.2357± 0.0127 0.5779± 0.0138 0.7465± 0.0033 0.75553
c2 0.6136± 0.0106 0.4982± 0.0035 0.4998± 0.0010 0.50000
c3 0.4436± 0.0153 0.2516± 0.0033 0.2499± 0.0009 0.25000
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Table 5. The AM-MISG parameter estimates with standard deviations (σ2 = 0.502).

Parameters p = 1 p = 5 p = 12 True Values

a01 −0.4613± 0.0261 −0.7870± 0.0217 −0.7921± 0.0249 −0.80860
a02 0.0186± 0.0168 0.2275± 0.0173 0.2376± 0.0268 0.25514
b00 0.7931± 0.0161 1.0017± 0.0170 1.0071± 0.0231 1.00000
b01 −0.0777± 0.0191 −0.5491± 0.0217 −0.5954± 0.0350 −0.61623
b02 0.3489± 0.0178 0.4452± 0.0203 0.5015± 0.0307 0.50931
a11 −0.5009± 0.0225 −0.8320± 0.0203 −0.9036± 0.0269 −0.94779
a12 0.0951± 0.0195 0.4552± 0.0203 0.5323± 0.0260 0.57794
b10 0.7872± 0.0197 0.9938± 0.0203 1.0007± 0.0295 1.00000
b11 0.1037± 0.0168 −0.3375± 0.0244 −0.4518± 0.0327 −0.49522
b12 0.2375± 0.0171 0.5744± 0.0256 0.7177± 0.0312 0.75553
c2 0.6130± 0.0121 0.4961± 0.0141 0.4949± 0.0207 0.50000
c3 0.4446± 0.0185 0.2510± 0.0138 0.2462± 0.0166 0.25000

0 20 40 60 80 100
−4

−2

0

2

4

6

t (s)

y
(t

)

 

 
Non−uniformly measrued output

AM−MISG predicted output

(a)

0 20 40 60 80 100
−4

−2

0

2

4

6

t (s)

y
(t

)

 

 
Non−uniformly measrued output

AM−MISG predicted output

(b)

Figure 4. The predicted outputs and the measured outputs. (a) For the noise variance σ2 = 0.102.
(b) For the noise variance σ2 = 0.502.

5. Conclusions

Based on the non-uniform input-output dataset, an auxiliary model-based stochastic gradient
(AM-SG) algorithm is developed in this paper to estimate the parameters of Hammerstein systems.
To improve the identification performance of the AM-SG algorithm, an auxiliary model-based
multi-innovation stochastic gradient (AM-MISG) algorithm is proposed by introducing an innovation
length p. The simulation results illustrate that the AM-MISG algorithm with a larger p can provide
more accurate parameter estimates and a faster convergence rate. In addition, the proposed algorithm
can be extended to identify more complex nonlinear systems with non-uniform sampling.
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