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Abstract:



The well-known Kantorovich technique based on majorizing sequences is used to analyse the convergence of Newton’s method when it is used to solve nonlinear Fredholm integral equations. In addition, we obtain information about the domains of existence and uniqueness of a solution for these equations. Finally, we illustrate the above with two particular Fredholm integral equations.
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1. Introduction


Integral equations have numerous applications in almost all branches of the sciences and many physical processes and mathematical models in Engineering are usually governed by integral equations. The main feature of these equations is that they are usually nonlinear. In particular, nonlinear integral equations arise in fluid mechanics, biological models, solid state physics, kinetics chemistry, etc. In addition, many initial and boundary value problems can be easily turned into integral equations. One type of particularly interesting equation is a nonlinear Fredholm integral equation of the form


x(s)=f(s)+ϖ∫abK(s,t)x(t)pdt,s∈[a,b],p∈R,p≥2,



(1)




where [image: there is no content], [image: there is no content], the function [image: there is no content] is continuous on [image: there is no content] and given, the kernel [image: there is no content] is a known continuous function in [image: there is no content] and x is a solution to be determined.



As integral equations of the form (1) cannot be solved exactly, we use numerical methods to solve them; we can apply different numerical techniques and some of them can be found in the references of this work.



For a general background on numerical methods for integral equations of the form (1), the books of Atkinson [1] and Delves and Mohamed [2] are recommended. For a review of less recent methods, we refer the reader to the survey by Atkinson [3]. There is a great deal of publication on the numerical solution of Equation (1). In recent publications, different mathematical tools and numerical implementations have been applied to solve integral equations (1). In some of these publications, certain authors extensively use methods based on different kinds of wavelets [4,5]. Polynomial approximation methods using different base functions, such as Chebyshev polynomials, have been introduced; see for example [6,7]. An approximation with Sinc functions has been developed in [8]. Sinc methods have increasingly been recognized as powerful tools for tackling problems in applied physics and engineering [9]. Several different variants of numerical or theoretical studies on (1) have been developed in the literature. For some examples, see papers [10,11]. In terms of iterative schemes for solving Equation (1), in [12], we can find an iterative scheme based on the homotopy analysis method, which is a general analytic approach to obtain series solutions of various types of nonlinear equations and based on homotopy. In particular, by means of the aforementioned method, we can construct a continuous mapping of an initial guess approximation to the exact solution of the equation to be solved. In [13], the authors present an adapted modification to the Newton–Kantorovich method. Finally, in [14], the Newton–Kantorovich method and quadrature methods are combined to develop a new method for solving Equation (1).



In this work, we propose using Newton’s method for solving Equation (1). For this, we previously analysed the semilocal convergence of the method and then compared the efficacy of the method with the former techniques for solving a particular integral equation of the form (1). The semilocal convergence results need to know the conditions of the operator involved in the equation to be solved and the starting points of the iterative methods; the results show the existence of solutions of the equation that allow us to obtain the domain of existence of a solution.



The main interest of this work is two-fold. On the one hand, we conduct a qualitative study of Equation (1) and obtain results on the existence and uniqueness of a solution. On the other hand, we obtain the numerical resolution of the equation. For this, we previously consider a separable kernel [image: there is no content] and we directly approximate a solution of Equation (1). Secondly, by means of Taylor series, we consider the case of a non-separable kernel. For both aims, we use Newton’s method, which is the most well-known iterative method for solving nonlinear equations.



For the first aim, we study the application of Newton’s method to Equation (1) by analysing the convergence of the method and use its theoretical significance to draw conclusions about the existence and uniqueness of a solution, so that we can locate a solution of the equation from a domain of existence of solutions and then obtain a domain of uniqueness of solutions that allows us to isolate the solution previously located from other possible solutions of the equation. To achieve this aim, we use Kantorovich’s technique [15], that was developed by the Russian mathematician L. V. Kantorovich at the beginning of the 1950s and is based on the concept of “majorizing sequence”, which will be introduced later. For the second aim, we apply Newton’s method to numerically solve Equation (1).



This paper is organized as follows. In Section 2, we consider a particular equation of the form (1) and present the above-mentioned Kantorovich’s technique by introducing the concept of “majorizing sequence”. In Section 3, from the theoretical significance of Newton’s method, we obtain information about the existence and uniqueness of a solution for the nonlinear Fredholm integral equations introduced in Section 2. Finally, in Section 4, we illustrate all the above-mentioned with two applications where nonlinear Fredholm integral equations are involved and by considering separable and nonseparable kernels.




2. Kantorovich’s Technique


As mentioned in the introduction, this paper has two main aims: to obtain conclusions about the existence and uniqueness of a solution of (1) by using the theoretical significance of Newton’s method and to numerically approximate a solution of (1).



It is clear that solving (1) is equivalent to solving the equation [image: there is no content], where [image: there is no content],


[F(x)](s)=x(s)−f(s)−ϖ∫abK(s,t)x(t)pdt,s∈[a,b],



(2)




where


[image: there is no content]











For solving equation [image: there is no content], Newton’s method is


xn=xn−1−[F′(xn−1)]−1F(xn−1),n∈N,with x0 given in Ω.











The method has already been applied to approximate solutions of nonlinear integral equations [16,17]. However, the novelty of this work is in using Kantorovich’s technique to obtain a convergence result for Newton’s method when it is applied to solve (1) and, as a consequence, us the theoretical significance of the method to draw conclusions about the existence and uniqueness of a solution of (1) and about the region in which it is located, without finding the solution itself—this is sometimes more important than the actual knowledge of the solution. A solution is found by constructing a scalar function ad hoc which is used to define a majorizing sequence instead of using the classical quadratic polynomial of Kantorovich.



Kantorovich’s technique consists of translating the problem of solving equation [image: there is no content] in [image: there is no content] to solve a scalar equation [image: there is no content] and this is done once [image: there is no content] is fixed under certain conditions. In addition, the domains of existence and uniqueness of a solution for Equation (1) can be determined from the positive solutions of [image: there is no content].



The idea of Kantorovich’s technique is easy: once a real number [image: there is no content] is fixed, we define the scalar iterative method


tn=Nφ(tn−1)=tn−1−φ(tn−1)φ′(tn−1),n∈N,



(3)




such that


∥xn−xn−1∥≤tn−tn−1,for alln∈N.



(4)







Condition (4) means that the scalar sequence [image: there is no content]majorizes the sequence [image: there is no content] or, in other words, [image: there is no content] is a majorizing sequence of [image: there is no content]. Obviously, if [image: there is no content] is convergent, [image: there is no content] also is. Therefore, the convergence of the sequence [image: there is no content] is a consequence of the convergence of the sequence [image: there is no content] and the latter problem is much easier than the former one.



2.1. The Auxiliary Scalar Function


We begin by analysing the operator [image: there is no content] given in (2). So, from (2), it follows that the Fréchet derivatives of operator [image: there is no content] are


[F′(x)y](s)=y(s)−ϖp∫abK(s,t)x(t)p−1y(t)dt,










[F(k)(x)(y1y2⋯yk)](s)=−ϖp(p−1)⋯(p−k+1)∫abK(s,t)x(t)p−ky1(t)y2(t)⋯yk(t)dt,








for [image: there is no content], where [image: there is no content] denotes the integer part of the real number [image: there is no content].



In addition,


∥F(k)(x)∥≤|ϖ|pkk!S∥x∥p−k,








where [image: there is no content] with the infinity-norm. Next, taking into account that [image: there is no content], it follows


∥F(k)(x)∥≤|ϖ|pkk!S∥x∥p−k≤|ϖ|pkk!S∥x0∥+∥x−x0∥p−k










≤|ϖ|pkk!S∥x0∥+t−t0p−k,



(5)




provided that [image: there is no content]. Moreover, for [image: there is no content], we denote


∥F(i)(x0)∥≤|ϖ|pii!S∥x0∥p−i=Mi,








for [image: there is no content].



On the other hand, we observe that the existence of the operator [image: there is no content] must be guaranteed in the first step of Newton’s method, since [image: there is no content]. The existence of [image: there is no content] follows from the Banach lemma on invertible operators, so the operator [image: there is no content] exists and is such that


[image: there is no content]








provided that [image: there is no content]; namely,


[image: there is no content]



(6)







In addition, we denote [image: there is no content] and do


[image: there is no content]











Now, we consider [image: there is no content] and denote ωk(t;t0)=|ϖ|pkk!S∥x0∥+t−t0p−k, for [image: there is no content]. Then, as a consequence of the latter, we can find scalar functions [image: there is no content] such that [image: there is no content], for [image: there is no content], to construct a majorizing sequence [image: there is no content] as that given in (3) by solving the following initial value problem (see [18]):


y(k)(t)=|ϖ|pkk!S∥x0∥+t−t0p−k,y(t0)=ηβ,y′(t0)=−1β,y″(t0)=M2,y‴(t0)=M3,…,y(k−1)(t0)=Mk−1.











It is easy to see that there exists only one solution for the last initial value problem, that is:


φ(t)=∫t0t∫t0θk−1⋯∫t0θ1ωk(z;t0)dzdθ1⋯dθk−1+∑i=2k−1Mii!(t−t0)i−t−t0β+ηβ












[image: there is no content]



(7)





Notice that the scalar function defined in (7) and used to construct the scalar sequence [image: there is no content] given in (3) with [image: there is no content] defined in (7), that majorizes [image: there is no content] in [image: there is no content], is independent of k, so we can choose any k, such that [image: there is no content], to construct the last initial value problem that gives us [image: there is no content].



If [image: there is no content] and using only condition (5), we consider the initial value problem


y″(t)=|ϖ|p22!S∥x0∥+t−t0p−2,y(t0)=ηβ,y′(t0)=−1β,








whose unique solution also is (7).



Once such a majorizing sequence [image: there is no content] is determined from [image: there is no content], we have then to prove its convergence. For this, it is well known [15] that it is necessary that the scalar function [image: there is no content] has at least one positive real zero greater than or equal to [image: there is no content] and sequence [image: there is no content] is increasing and convergent to this zero.




2.2. The Majorizing Sequence


We begin by studying the function given in (7). Firstly, we notice that we have considered any [image: there is no content] in the last section, but we can consider [image: there is no content], so function [image: there is no content] is reduced to




[image: there is no content]



(8)





This is a consequence of the fact that [image: there is no content], which leads us to the sequence [image: there is no content], for any [image: there is no content], satisfies [image: there is no content], [image: there is no content], where [image: there is no content] with [image: there is no content], since we have, for [image: there is no content] and [image: there is no content],


[image: there is no content]










[image: there is no content]








for all [image: there is no content]. Therefore, the real sequences [image: there is no content] and [image: there is no content] given by Newton’s method when they are constructed from [image: there is no content] and [image: there is no content], respectively, can be obtained, one from the other, by translation. Besides, [image: there is no content], for all [image: there is no content], and all the results obtained previously are independent of the value [image: there is no content], so we choose [image: there is no content] because, in practice, it is the most favourable situation.



Secondly, we denote [image: there is no content], where [image: there is no content] is given in (8). Note that there exists only one positive real zero [image: there is no content] of [image: there is no content] in [image: there is no content] satisfying [image: there is no content], since [image: there is no content], [image: there is no content] and [image: there is no content] as [image: there is no content].



Theorem 1. 

If [image: there is no content], then [image: there is no content] has two real zeros r and R such that [image: there is no content].





Thirdly, by taking into account the classical Fourier conditions [19] for the convergence of Newton’s method in the scalar case, we establish that sequence [image: there is no content] is increasing and converges to r in the following result.



Theorem 2. 

If [image: there is no content], then sequence [image: there is no content] is increasing and converges to the positive real zero r of [image: there is no content].





Fourthly, we prove a system of recurrence relations in the next theorem that guarantees that [image: there is no content] is a majorizing sequence of [image: there is no content] in [image: there is no content], whose proof is similar to that given for Lemma 7 in [18].



Theorem 3. 

Suppose that [image: there is no content], for all [image: there is no content], and [image: there is no content]. If [image: there is no content], then the following four bounds are satisfied for all [image: there is no content]:

	(i) 

	
there exists [image: there is no content] and [image: there is no content],




	(ii) 

	
[image: there is no content], for [image: there is no content],




	(iii) 

	
[image: there is no content],




	(iv) 

	
[image: there is no content].











Note that (i), ([image: there is no content]) and ([image: there is no content]) are obvious if [image: there is no content] and ([image: there is no content]) are not necessary to prove ([image: there is no content]), since it follows from the initial condition [image: there is no content].



Finally, if [image: there is no content], we obtain a result similar to the last theorem which can be seen in [20].





3. Existence and Uniqueness of a Solution


Following Kantorovich’s technique, the convergence of sequence [image: there is no content] in [image: there is no content] is then guaranteed from the convergence of sequence [image: there is no content], since [image: there is no content] majorizes [image: there is no content], which allows us to draw conclusions on the location of a solution of equation (1). After locating a solution of Equation (1), we establish the uniqueness of a solution. For this, from now on, we denote [image: there is no content] and [image: there is no content].



Theorem 4. 

Let [image: there is no content] be such that condition (6) is satisfied and [image: there is no content] the function defined in (8). If [image: there is no content], where [image: there is no content], and [image: there is no content], then Equation (1) has a solution [image: there is no content] in [image: there is no content] and it is unique in [image: there is no content] if [image: there is no content] or in [image: there is no content] if [image: there is no content], where r and R are two positive real zeros of [image: there is no content].





Proof. 

From [image: there is no content] and [image: there is no content], it is clear that [image: there is no content] and [image: there is no content]. If we now suppose that [image: there is no content], for [image: there is no content], it follows, from Theorem 3, that the operator [image: there is no content] exists with [image: there is no content], [image: there is no content], for [image: there is no content], [image: there is no content] and [image: there is no content], so that


[image: there is no content]








and therefore [image: there is no content] and [image: there is no content] are well defined.



After that, it follows that [image: there is no content] is a Cauchy sequence; as a consequence, [image: there is no content] is a Cauchy sequence and [image: there is no content], since, from Theorem 2, the sequence [image: there is no content] is increasing and bounded above by r. Thus, [image: there is no content] is convergent, [image: there is no content] and


∥x*−xn∥≤r−tn,n≥0.



(9)




In addition, the combination of this and [image: there is no content] yields [image: there is no content], where [image: there is no content] is defined in (2).



Next, from Section 2.1, we have


[image: there is no content]








provided that [image: there is no content]. Now, as [image: there is no content], it is clear that [image: there is no content], for [image: there is no content], and, as a consequence of this, the uniqueness of a solution [image: there is no content] follows exactly that given for Theorem 11 in [18].  ☐






4. Applications


In this section, we present two applications where the above study done is illustrated. Both applications arise from the two possibilities that may present kernel [image: there is no content], depending on whether it is separable or not.



4.1. Application 1


We first consider the following nonlinear Fredholm integral equation,


x(s)=sin(πs)+15∫01cos(πs)sin(πt)x(t)3dt,



(10)




with [image: there is no content], that has been used by other authors as a numerical test [13,21]. Observe that, in this case, kernel [image: there is no content] is separable.



Firstly, we apply Theorem 4 to obtain domains of existence and uniqueness of a solution. For this, we observe that the corresponding function [image: there is no content] defined in (2) and associated with (10) is defined in [image: there is no content]. We then observe that condition (6) is required in Theorem 4. However, if we pay attention to the integral equation, we observe that the kernel is separable and we can then determine the corresponding operator [image: there is no content]. For this, we write [image: there is no content], so, if there exists [image: there is no content], we have


[image: there is no content]











If we now denote [image: there is no content], multiply next-to-last equality by [image: there is no content] and integrate it between 0 and 1, we obtain


[image: there is no content]








provided that


[image: there is no content]











Therefore,


[image: there is no content]











Now, as a consequence of the last formula, condition (6), that is required to prove the existence of the inverse operator [image: there is no content], can be omitted, provided that


[image: there is no content]











Therefore, it is sufficient to choose some starting point [image: there is no content] for Newton’s method such that the previous inequality holds. As [image: there is no content] is a reasonable choice as a starting point for Newton’s method, as we can see in [12,13,14], the last inequality holds, since [image: there is no content], and condition (6) is omitted.



After that, taking into account that [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], we construct the auxiliary scalar function


[image: there is no content]








and see that it has two positive real zeros [image: there is no content] and [image: there is no content]. Therefore, the domains of existence and uniqueness of a solution of Equation (10) are respectively


[image: there is no content]










[image: there is no content]











On the other hand, we can write the function [image: there is no content] in the following way


ϕ(t)=(r−t)(R−t)ℓ(t),ℓ(t)=25π(t+(4.19156))








and obtain a priori error estimates from Ostrsowski’s technique [19], that allow us to determine the number of iterations that we have to apply in Newton’s method to reach a previously fixed precision. For this, we write [image: there is no content] and [image: there is no content], for all [image: there is no content]. Then,


ϕ(tn)=αnγnℓ(tn),ϕ′(tn)=αnγnℓ′(tn)−(αn+γn)ℓ(tn)








and


[image: there is no content]











From [image: there is no content], it follows


[image: there is no content]










[image: there is no content]










[image: there is no content]








where [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], and then taking into account that [image: there is no content], we obtain


[image: there is no content]








where [image: there is no content] and [image: there is no content] for all [image: there is no content]. In Table 1, we can see the a priori error estimates that lead to the well-known quadratic convergence of Newton’s method.



Table 1. A priori error estimates.







	
n

	
[image: there is no content]

	
[image: there is no content]






	
0

	
[image: there is no content]

	
[image: there is no content]




	
1

	
[image: there is no content]

	
[image: there is no content]




	
2

	
[image: there is no content]

	
[image: there is no content]




	
3

	
[image: there is no content]

	
[image: there is no content]




	
4

	
[image: there is no content]

	
[image: there is no content]










Now, taking into account the exact solution


[image: there is no content]








of equation (10), we compare the obtained results with those given by other authors when different numerical methods are applied to solve (10).



In Table 2, we show the real errors for [image: there is no content] and [image: there is no content] when the adapted Newton’s method is used in [13] to solve (10) and some points of the interval involved are chosen. In Table 3, we show the real errors when a combination of Newton’s method and quadrature methods [14] and an iterative scheme based on the homotopy analysis method [12] are applied. Notice that [image: there is no content], since [image: there is no content], so we already improve the results obtained in Table 2 and Table 3 by other authors with four iterations of Newton’s method,


[image: there is no content]








and the stopping criterion [image: there is no content]. Finally, although we have already guaranteed that the numerical approximation given by [image: there is no content] to the solution [image: there is no content] of equation (10) is of at least order [image: there is no content], we see in Table 4 that this approximation is, in fact, of at least order [image: there is no content].



Table 2. Real errors for [image: there is no content] and [image: there is no content] when the adapted Newton’s method given in [13] is applied.







	
t

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]










Table 3. Real errors when a combination of Newton’s method and quadrature methods [14] and an iterative scheme based on the homotopy analysis method [12] are applied.







	
t

	
[14]-Errors

	
[12]-Errors






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]










Table 4. Real errors.







	
t

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]











4.2. Application 2


Secondly, we consider the following nonlinear integral Fredholm equation,


x(s)=s+12∫−1212estx(t)103dt,



(11)




with [image: there is no content]. Observe that, in this case, kernel [image: there is no content] is not separable. In addition, the corresponding function [image: there is no content] defined in (2) and associated with (11) is defined in [image: there is no content].



From Equation (11), we see that [image: there is no content] is a reasonable choice of starting point for Newton’s method. In addition, condition (6) of Theorem 4 is satisfied, since [image: there is no content], and the auxiliary scalar function [image: there is no content] involved in our study is


[image: there is no content]








that has two positive real zeros [image: there is no content] and [image: there is no content] As a consequence of Theorem 4, Equation (11) then has a solution [image: there is no content] in [image: there is no content] and it is unique in [image: there is no content].



As kernel [image: there is no content] is not separable, the application of Newton’s method for solving (11) is not easy. Taking into account this fact, we first use Taylor’s series to approximate [image: there is no content]. So,


K(s,t)=est=K˜(s,t)+R(ϵ,s,t);K˜(s,t)=∑i=0j−1sitii!,R(ϵ,s,t)=esϵj!sjtj,








where [image: there is no content], and consider the integral equation




x(s)=s+12∫−1212K˜(s,t)x(t)103dt,s∈−12,12.



(12)





Next, we take into account the following relation that is satisfied by [image: there is no content] and [image: there is no content], that are respectively solutions of (11) and (12):


[image: there is no content]








where [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] after taking norms in (11) and (12).



Thus, if we want to obtain, for example, an approximation of the solution [image: there is no content] of order [image: there is no content], it is sufficient to choose [image: there is no content] in (12). In this case, [image: there is no content], [image: there is no content], [image: there is no content], so [image: there is no content].



Hence, if we now look for a solution [image: there is no content] of (12) by Newton’s method, we look for an approximation [image: there is no content] such that [image: there is no content] is of order [image: there is no content], since


[image: there is no content]








if we take into account (9). In this case, it is sufficient to choose a number of iterations n of Newton’s method such that [image: there is no content] is of order [image: there is no content]. Note that the last fact is possible, since the sequence [image: there is no content] is known a priori, as we can see in Table 5.



Table 5. Sequence [image: there is no content] and a priori error estimates.







	
n

	
[image: there is no content]
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0

	
0
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1

	
[image: there is no content]
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2
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3
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4
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So, we can then apply Newton’s method from [image: there is no content] to approximate a solution [image: there is no content] of integral Equation (12), as we do in [22], and then choose the approximation


[image: there is no content]










[image: there is no content]








that is obtained after four iterations of Newton’s method with the stopping criterion [image: there is no content], since [image: there is no content]. In this case,


[image: there is no content]








and, as a consequence, [image: there is no content] is an approximation of the solution [image: there is no content] of Equation (11) of the order [image: there is no content] looked for.








Acknowledgments


This research was partially supported by Ministerio de Economía y Competitividad under grant MTM2014-52016-C2-1-P.




Author Contributions


The contributions of the two authors have been similar. Both authors have worked together to develop the present manuscript.




Conflicts of Interest


The authors declare no conflict of interest.




References


	1. 
Atkinson, K.E. The Numerical Solution of Integral Equations of the Second Kind; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]

	2. 
Delves, L.M.; Mohamed, J.L. Computational Methods for Integral Equations; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]

	3. 
Atkinson, K.E. A survey of numerical methods for solving nonlinear integral equations. J. Integr. Equ. Appl. 1992, 4, 15–46. [Google Scholar] [CrossRef]

	4. 
Babolian, E.; Shahsavaran, A. Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets. J. Comput. Appl. Math. 2009, 225, 87–95. [Google Scholar] [CrossRef]

	5. 
Mahmoudi, Y. Wavelet Galerkin method for numerical solution of nonlinear integral equation. Appl. Math. Comput. 2005, 167, 1119–1129. [Google Scholar] [CrossRef]

	6. 
Darijani, A.; Mohseni-Moghadam, M. Improved polynomial approximations for the solution of nonlinear integral equations. Sci. Iran. 2013, 20, 765–770. [Google Scholar]

	7. 
Yang, C. Chebyshev polynomial solution of nonlinear integral equations. J. Franklin Inst. 2012, 34, 9947–9956. [Google Scholar] [CrossRef]

	8. 
Maleknejad, K.; Mollapourasl, R.; Alizadeh, M. Convergence analysis for numerical solution of Fredholm integral equation by Sinc approximation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 2478–2485. [Google Scholar]

	9. 
Stenger, F. Numerical Methods Based on Sinc and Analytic Functions; Springer: New York, NY, USA, 1993. [Google Scholar]

	10. 
Allouch, C.; Sbibih, D.; Tahrichi, M. Superconvergent Nystrom and degenerate kernel methods for Hammerstein integral equations. J. Comput. Appl. Math. 2014, 258, 30–41. [Google Scholar] [CrossRef]

	11. 
Liang, J.; Yan, S.-H.; Agarwal, R.P.; Huang, T.-W. Integral solution of a class of nonlinear integral equations. Appl. Math. Comput. 2013, 219, 4950–4957. [Google Scholar]

	12. 
Awawdeh, F.; Adawi, A.; Al-Shara, S. A numerical method for solving nonlinear integral equations. Int. Math. Forum 2009, 4, 805–817. [Google Scholar]

	13. 
Nadir, M.; Khirani, A. Adapted Newton-Kantorovich method for nonlinear integral equations. J. Math. Stat. 2016, 12, 176–181. [Google Scholar] [CrossRef]

	14. 
Saberi-Nadja, J.; Heidari, M. Solving nonlinear integral equations in the Urysohn form by Newton-Kantorovich-quadrature method. Comput. Math. Appl. 2010, 60, 2018–2065. [Google Scholar]

	15. 
Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: New York, NY, USA, 1982. [Google Scholar]

	16. 
Ezquerro, J.A.; Hernández, M.A. The Newton method for Hammerstein equations. J. Comput. Anal. Appl. 2005, 7, 437–446. [Google Scholar]

	17. 
Gutiérrez, J.M.; Hernández, M.A.; Salanova, M.A. On the approximate solution of some Fredholm integral equations by Newton’s method. Southwest J. Pure Appl. Math. 2004, 1, 1–9. [Google Scholar]

	18. 
Ezquerro, J.A.; González, D.; Hernández, M.A. A semilocal convergence result for Newton’s method under generalized conditions of Kantorovich. J. Complexity 2014, 30, 309–324. [Google Scholar] [CrossRef]

	19. 
Ostrowski, A.M. Solution of Equations and Systems of Equations; Academic Press: New York, NY, USA, 1966. [Google Scholar]

	20. 
Ezquerro, J.A.; González, D.; Hernández, M.A. Majorizing sequences for Newton’s method from initial value problem. J. Comput. Appl. Math. 2012, 236, 2246–2258. [Google Scholar] [CrossRef]

	21. 
Rashidinia, J.; Parsa, A. Analytical-numerical solution for nonlinear integral equations of Hammerstein typ. Int. J. Math. Model. Comput. 2012, 2, 61–69. [Google Scholar]

	22. 
Ezquerro, J.A.; Hernández-Verón, M.A. Newton’s Method: An Updated Approach of Kantorovich’s Theory; Birkhäuser: Cham, Switzerland, 2017. [Google Scholar]

















© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).







nav.xhtml


  algorithms-10-00089


  
    		
      algorithms-10-00089
    


  




  





media/file0.png





media/file1.png





