
algorithms

Article

Local Community Detection Based on Small Cliques

Michael Hamann *, Eike Röhrs and Dorothea Wagner

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany;
eike.roehrs@googlemail.com (E.R.); dorothea.wagner@kit.edu (D.W.)
* Correspondence: michael.hamann@kit.edu; Tel.: +49-721-608-47331

Received: 21 June 2017; Accepted: 4 August 2017; Published: 11 August 2017

Abstract: Community detection aims to find dense subgraphs in a network. We consider the problem
of finding a community locally around a seed node both in unweighted and weighted networks.
This is a faster alternative to algorithms that detect communities that cover the whole network when
actually only a single community is required. Further, many overlapping community detection
algorithms use local community detection algorithms as basic building block. We provide a broad
comparison of different existing strategies of expanding a seed node greedily into a community.
For this, we conduct an extensive experimental evaluation both on synthetic benchmark graphs as
well as real world networks. We show that results both on synthetic as well as real-world networks
can be significantly improved by starting from the largest clique in the neighborhood of the seed node.
Further, our experiments indicate that algorithms using scores based on triangles outperform other
algorithms in most cases. We provide theoretical descriptions as well as open source implementations
of all algorithms used.
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1. Introduction

Community detection is a common task in network analysis. Depending on the type of the
considered network, such a community can be a group of friends in a social network, a functional
module in a protein-protein interaction network or a group of similar documents in a network based
on document similarity. In general, the aim of community detection is to find subgraphs that are
internally dense but externally sparsely connected. A network can thereby be partitioned into disjoint
communities or covered by (possibly) overlapping communities. In order to formalize the fuzzy
concept of a community, many quality measures for determining what a good community is and even
more algorithms for detecting communities have been proposed. We refer the interested reader to [1–3]
for an overview.

We consider the special case of local community detection (LCD) where only a single community
around a given seed node or a set of seed nodes shall be detected. Local methods can be applied when
the user is e.g., just interested in identifying a group of people around a given person in a social network
or the functional subset a molecule belongs to within a biochemical network, and thus a clustering of
the whole network is not needed. The advantage of local methods is that their performance usually just
depends on the size of the detected community and not on the size of the whole network, which might
be very large or even unavailable. An example for such a network is the network that is defined by the
pages of the web and the links between them. Accessing this network by starting at a single node is
easy and computationally feasible. Having access to the whole network requires huge computational
resources and is basically impossible, so local community detection algorithms provide a viable
alternative here. Various local methods have been proposed that use the structure of the network to
detect communities locally [3,4]. The study in [4] however shows that local algorithms still perform
significantly worse than global, disjoint community detection algorithms on synthetic benchmark
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graphs. Expanding single nodes (LFM [5], OSLOM [6]), single edges (MOSES [7]) or maximal cliques
(GCE [8]) into communities is nevertheless a successful scheme for overlapping community detection.

In this paper, we compare different measures and algorithms for expanding communities by
greedily adding (and possibly removing) single nodes. Greedy expansion is both a common and
usually also scalable approach for finding communities. In our extensive experimental evaluation
we show that in many cases the seed node is not embedded in the detected community. The reason
for this is that many algorithms fail to correctly select the first nodes to add. To avoid this problem,
we examine starting the expansion of the community from a maximum clique that contains the seed
node as proposed by [9]. Further, we introduce Triangle Based Community Expansion as an alternative
strategy for greedy community expansion. It exploits the fact that edges inside communities are
usually embedded in triangles [10] and uses an edge score based on triangles for deciding which node
to try next.

We compare the performance of the algorithms on synthetic benchmark graphs generated
using the widely used LFR benchmark [11,12] with unweighted and weighted graphs with disjoint
ground truth communities as well as unweighted graphs with overlapping ground truth communities.
Further we also perform experiments on real-world social networks. We implemented all examined
algorithms in the network analysis toolkit NetworKit [13] and make them publicly available [14],
we aim to make them part of the official NetworKit code base. We show that starting from a clique
dramatically improves the accuracy of the detected communities both on synthetic and on real-world
networks. In the experimental evaluation we show that Triangle Based Community Expansion has a
solid performance and even without starting from a clique it still often finds the correct community.
The computationally more expensive LTE algorithm [15] whose scoring is based on triangles performs
best on most tested graphs and in particular on the tested real-world social networks. This indicates
that exploiting local structures like triangles is important for finding communities without global
knowledge and that exploiting such structures might lead to the development of better overlapping
clustering algorithms. To the best of our knowledge, we are the first to conduct such a systematic and
broad study that shows that starting with cliques does not only improve the detected community, but
also makes sure that the chosen seed node is actually embedded in the detected community, an aspect
frequently ignored in existing evaluations.

After providing a brief overview of the related work, we introduce the notations and the necessary
definitions, which we use in this work. In Sections 2 and 3 we present in more detail the algorithms
we compare. Thereafter, we show our experimental results. Lastly, we conclude with a summary and
outlook in Section 5.

1.1. Related Work

Numerous local community detection algorithms have been proposed [4,16–19]. Many of these
algorithms can be grouped as greedy community expansion [4], which also provides the basis of other
(more complex) algorithms. It can be described best as greedily adding the node to the community
that currently has the maximum value of some function that assigns a value to each node. This greedy
community expansion usually stops once the value of every node that could still be added is negative.
Often measures based on the ratio of internal edges to edges that are connected to the rest of the graph
are used. BME1 [20] additionally uses the distance to the seed node to assign less importance to edges
from nodes further away from the seed node. Other algorithms like iGMAC [21] also consider a wider
neighborhood of the nodes to be added and are thus computationally more expensive.

However, there are also algorithms that work with a different strategy, which is not based on
greedy community expansion. One of these is PageRank-Nibble, which works by locally approximating
PageRank-vectors [22]. It first computes a ranking of the nodes and only then finds a community
based on this ranking. Flow-Pro [23] starts a network flow from the seed node and adds nodes to the
communitiy when a sufficient part of the flow arrives at them. LEMON is an approach based on local
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spectral optimization [24]. From these algorithms, we only include PageRank-Nibble in our evaluation
as for the other algorithms no efficient implementation is available.

Many of the above-mentioned algorithms can also start from a set of seed nodes instead of
a single seed node. This can be used to identify a community more precisely as discussed in [25].
Starting from a maximum clique as proposed in [9] is a similar idea that helps identifying the
community more precisely.

Triangles are not only an important part of our Triangle Based Community Expansion algorithm
and the LTE algorithm [15], but are also used in other community detection algorithms [10,19,26].
Triangles have also already been popularized with respect to social networks by the social sciences
with the term of triadic closure and are the basis of the clustering coefficient [27,28].

1.2. Preliminaries

A weighted graph G = (V, E, w) consists of a node set V = {1, . . . , n} with n := |V| nodes, edge set
E ⊆ V × V with m := |E| undirected edges, and weights w : E → R>0 assigning a positive real
number to every edge. We treat unweighted graphs as weighted graphs where all weights are set to
1 (i.e., ∀{u, v} ∈ E : w({u, v}) = 1). In the context of this paper we only consider simple graphs,
i.e., graphs without self-loops and multi-edges.

The neighbors N(u) = {v|{u, v} ∈ E} of a node u are the nodes that are adjacent to it, i.e., that are
connected to it by an edge. Subsequently, the degree deg(u) := |N(u)| of a node u is its number of
neighbors, and the weighted degree degw(u) = ∑v∈N(u) w({u, v}) is the sum of the edge weights of all
edges incident to u. By N(S) for a set S ⊆ V we denote the union of all neighborhoods of the nodes in
S without S, i.e., N(S) := ∪u∈SN(u) \ S.

The volume vol(S) := ∑v∈S deg(v) of a set of nodes S ⊆ V is the sum of the degrees of all nodes
in S. The weighted volume volw(S) := ∑v∈S degw(v) of a set of nodes S ⊆ V is analogously the sum of
weighted degrees of all nodes in S.

A clique is a set of nodes that induce a complete subgraph in G. In other words, A ⊆ V is a clique,
if and only if ∀u ∈ A, ∀v ∈ A \ {u} : {u, v} ∈ E. Then, a maximal clique Q is a clique that can not be
enlarged by adding a node. A clique is called a triangle if it consists of exactly three nodes.

We define a community as a set of nodes C ⊆ V, with |C| = nC. The shell S(C) is a synonym for the
neighbors of the community C, i.e., S(C) = N(C). The boundary B(C) of a community C are the nodes
in C that have neighbors in the shell S(C), i.e., B(C) = {u ∈ C |N(u) ∩ S(C) 6= ∅}. We define the
weighted cut of two node sets S, T ⊆ V as cutw(S, T) := ∑u∈S,v∈T w({u, v}). As a shorthand, we define
the weighted cut of a community C as cutw(C) := cutw(C, V \ C).

2. Density-Based Local Community Detection Algorithms

In this section, we introduce the existing community detection algorithms based on the density
of internal and/or external edges of the community. We will compare these algorithms later in the
experimental evaluation. For some of them we describe how we adapted them for weighted graphs and
for most of them we describe how their running time can be optimized, an aspect often not included in
the original publications. If the algorithms have any parameters, we also mention the values we choose
for the experiments. We use the same values throughout all experiments as tweaking the parameters
for each graph (or set of graphs) requires knowledge about the expected communities which is not
always available in practice. For this paper, we only selected algorithms that are local in the sense that
they use only information about nodes located around the seed node, and, except PageRank-Nibble,
do not assume knowledge about the whole graph. In particular, this also means that these algorithms
do not know the number of nodes or edges and their running time does not depend on them.

2.1. GCE M/L

One of the simplest schemes of local community detection is expanding a community by adding in
each step the node of the shell that leads to the highest quality improvement of the community. In each



Algorithms 2017, 10, 90 4 of 22

step, the next node is selected by iterating over all nodes in the shell of the community. We examine the
two quality measures proposed for this algorithm by [4]: The M measure [29] and the L measure [17].

The M measure is defined as the number of internal edges of the community divided by the cut
of the community. This can be trivially generalized to weighted graphs by taking the sum of the edge
weights instead of the number of edges:

M(C) :=
volw(C)− cutw(C)

2 · cutw(C)

Large values of the M measure indicate internally dense and well-separated communities. It was
shown [4], that maximizing the M measure is actually equivalent to minimizing the conductance of
the community as long as the volume of the community is smaller than the volume of its complement.
The conductance of a community C is defined as:

CONDUCTANCE(C) =
cutw(C)

min(volw(C), volw(V \ C))
. (1)

The L measure is defined using two terms, an internal and an external part. The internal part Lin
is defined as the internal edge weights divided by the size of the community:

Lin :=
volw(C)− cutw(C)

|C|
The external part Lex is defined as the cut of the community divided by the size of the boundary:

Lex :=
cutw(C)
|B(C)|

The L measure is then the internal divided by the external L measure, i.e., L := Lin/Lex.
Note that if a community has no internal nodes, i.e., all nodes are adjacent to at least a node outside

the community, this is actually equivalent to the M measure as then |C| = |B(C)|. Therefore, large values
of the L measure again indicate internally dense and externally well-separated communities.

Implementation Details

To expand the community, we need to determine which node of the shell will lead to the maximum
improvement of the quality measure. In order to allow to compute this in constant time per node in
the shell, we store for every node in the shell the sum of the edge weights towards the community
and the sum of the remaining edge weights. This allows to determine the best candidate for the M
measure in a single scan over the shell. Whenever we add a node to the community, we iterate over its
neighbors and update their values. When a node is not yet in the shell, we also need to determine its
initial external degree, which is its degree minus the weight of the edge through which we discovered
the node. For unweighted graphs our graph data structure already stores the degree so this is possible
in constant time, for weighted graphs we need to iterate over the neighbors to determine the weighted
degree. Therefore, for unweighted graphs we get a total running time ofO(vol(C) + |C| · |S|), where C
is the final community and S is the largest shell encountered during the execution of the algorithm.
For weighted graphs, we get an additional running time of O(vol(S(C))) if the weighted degrees are
not pre-computed.

For the L measure we additionally need to be able to tell how much the boundary will change
when we add a node u of the shell to the community C. This depends on two factors: (a) if u has
any external neighbors, the boundary size is increased by 1, (b) if u has any neighbors in C whose
only external neighbor is u, then these nodes will no longer be part of the boundary. The first factor
can be easily determined by looking at the external degree of u. For the second factor, we maintain
two counters: For every node u in the boundary we store how many external neighbors ex(u) it has.
For every node v in the shell we store the counter exin(v) that denotes how many neighbors of v in C
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have only v as external neighbor, i.e., the number of nodes x ∈ N(v) ∩ C with ex(x) = 1. The counter
exin allows us to determine the change in the boundary size in constant time. We update these counter
values as follows: Whenever we add a node u to the community, we decrement the number of external
neighbors ex(v) of every neighbor v of u by 1. When the number of external neighbors ex(v) for
a node v in the boundary drops to 1, we need to notify this external neighbor x ∈ N(u) \ C as their
counter exin(v) needs to be increased. To determine x, we iterate over all neighbors of v. We then
increment exin(v) by 1. Note that the number of external neighbors ex(v) only decreases as more nodes
are added to the community. Therefore this will happen only once for every node in the boundary.
The asymptotic running time is thus the same as for optimizing the M measure.

2.2. Two-Phase L

The originally proposed algorithm for L-based community detection [17] is slightly more
complicated than GCE L. It considers three cases for the updated measures L′in and L′ex that may
lead to a higher value L′:

1. L′in > Lin and L′ex < Lex
2. L′in < Lin and L′ex < Lex
3. L′in > Lin and L′ex > Lex

In a first discovery phase, they iteratively add the node that leads to the maximum L′, but only if
it is in case 1 or 3, otherwise they do not consider that node again. In a second examination phase,
they re-consider every node and keep it only when it is in the first case. It may happen that the original
seed node is removed from the community in the second phase. Then they say that there is no local
community for that seed node.

Implementation Details

For the first discovery phase, we can use the same data structures as described for GCE L. In the
second examination phase, we can simply iterate over the neighborhood of every node again to
determine the change in L′in and L′ex its removal would cause. This means in total we get the same
running time as GCE L, though the running time depends on the community size after the first phase,
not on the final size.

2.3. LFM

The LFM algorithm [5] maximizes the fitness function

f (C) :=
volw(C)− cutw(C)

volw(C)α

where α is a real-valued, positive parameter. In each iteration, it adds the node that leads to the highest
improvement of f (C) to the community C and then removes every node whose removal increases
f (C). The parameter α can be used to influence the size of the detected communities. Large values of α

correspond to small communities while small values correspond to larger communities. The authors
report [5] that values below 0.5 usually lead to just one community while values larger than 2 led to the
smallest communities. Further, they recommend α = 1 as a natural choice which is also the parameter
we use in our experiments.

Their proposed LFM algorithm is actually an algorithm for detecting overlapping communities
that cover the whole graph by iteratively expanding a random seed node that has not yet been
assigned to a community into a new community. We only consider the basic building block of local
expansion here.
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Implementation Details

For LFM, we use the same data structure as GCE M for adding nodes to the community. In order
to allow removals by simply scanning over the nodes of the community once, we also store internal
and external (weighted) degrees of all nodes in the community. The running time is not so easy to state
in terms of the community size as nodes may be added and removed again. Each addition of a node u
needs timeO(deg(u) + |C|+ |S(C)|) as we scan first the shell to find u and then the community to find
a possible candidate for removal. Each removal of a node u needs time O(deg(u) + |C|) as we need to
scan C again to find other nodes that possibly need to be removed. Further, every time we add a node
to the shell we might also need to calculate its total weighted degree unless it has been pre-computed.

2.4. PageRank-Nibble

PageRank-Nibble [22] is a two-step algorithm: first, it approximates personalized PageRank
vectors around the seed node and sorts all nodes with a positive score according to that score in
decreasing order. Then it considers all communities that are a prefix of this sorted list and returns the
prefix with minimum conductance as community. A larger study of using different measures with
the same ordering criteria shows that conductance is actually a good choice [30]. The approximation
of the personalized PageRank vectors needs two parameters that determine the accuracy of the
approximation (ε) and the loop probability of a random walk (α). We use the values ε = 0.0001 and
α = 0.1, these are the values that performed best in a parameter study in [4]. The running time of the
algorithm is in O((ε · α)−1), i.e., for given parameter values, it is constant and therefore the maximum
detected community size is actually also constant. Finding the prefix with the best conductance is
possible in time linear in the volume of the found nodes if the total volume of the graph is known,
otherwise this needs to be computed to be able to optimize the true value of conductance and the
algorithm is not actually a local community detection algorithm.

3. Local Community Detection Algorithms Based on Small Cliques

When the GCE or LFM algorithm starts, the community consists only of a single node. Regardless
which neighbor is added first, the internal density of the resulting community of two nodes is the
same. Therefore regardless of the exactly used measure, the neighbor of the lowest degree will be
preferred. If the two nodes do not have a common neighbor, again the neighbor of the lowest degree is
chosen. This means that at the beginning of the expansion phase, nodes of low degree are preferred
regardless if they actually belong to the community of the seed node. Therefore, it is possible that the
community grows into a community where the seed node is not strongly embedded in. Experiments
(which are reported at the end of Section 4.3) show that this is actually a problem.

A possibility to avoid such problems is to consider not only the density of the community but also
its internal structure and the structure of its neighborhood. Not all edges are equally embedded in their
neighborhood, some of them have more common neighbors than others. The common neighbors of
the two nodes of an edge thereby form a triangle, i.e., a clique of size 3. The local tightness expansion
algorithm (LTE) [15] exploits this using an edge similarity score based on triangles. This score is
used both for the decision which node to add next and for the quality of the community. LocalT [19]
uses a quality measure for the community expansion process that is directly based on the number of
triangles in and outside of the community.

A different approach is to start directly with the maximum clique in the subgraph induced by
the neighbors as proposed in [9]. This also avoids the first error-prone steps. Our own approach,
Triangle Based Community Expansion (TCE) is similar to LTE, we also use an edge score based on
triangles. However, for the quality function of the community we use conductance. In the following,
we present all four approaches.
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3.1. LTE

The local tightness expansion algorithm (LTE) [15] defines its similarity score s of two connected
nodes u, v as follows:

s(u, v) :=
2 ·w(u, v) + ∑x∈N(u)∩N(v) w(u, x) ·w(v, x)√
(1 + ∑x∈N(u) w2(u, x)) · (1 + ∑x∈N(v) w2(v, x))

They then define the tightness T(C) of a community as

T(C) :=
SC

in
SC

in + SC
out

,

where SC
in is two times the sum of all internal similarities, i.e., using s as weight function,

SC
in = vols(C)− cuts(C) and SC

out is the sum of similarities between adjacent nodes inside and outside
the community, i.e., SC

out = cuts(C).
LTE always tries to add the node with “the largest similarity with nodes in C” [15]. We interpret

this as the sum of the similarities of the node and all adjacent nodes in C. correct This set of candidates
can be efficiently maintained in a priority queue. A node is only added to the community if its tunable
tightness gain is positive. This tunable tightness gain of a node a is defined as

τα
C(a) :=

SC
out

SC
in
−

αSa
out − Sa

in
2Sa

in
,

where Sa
in is the sum of the similarities of a and all adjacent nodes in C and Sa

out is the sum of the
similarities of a and all adjacent nodes outside of C. When τα

C(a) is not greater than 0, a is removed
from the set of candidates. If a is added to the community, the set of candidates is updated with the
neighbors of a, therefore, a node may be re-added to the queue later if a neighbor of it is added to
the community.

Implementation Details

The original paper [15] does not further address the calculation of the edge similarity scores but
simply assumes they are available in constant time. We do not assume this but instead use an efficient
triangle listing algorithm to calculate them. To allow fast triangle listing, we build and maintain a local
graph data structure. For processing the whole queue, we need to know the external similarity for
every node in the shell and therefore we need to be able to list all triangles a node in the shell is part of.
To allow this, our local graph H is the subgraph induced by the community C, its shell S(C) and the
shell of the shell S(S(C)). Using a hash table, we map global node ids to local, small integer node ids.

Note that when a new node u is added to the community, only scores of neighbors of u are affected.
Therefore, we need to either add u’s neighbors that are not in C to S or update their scores. The former
means that the score of node v only consists of s(u, v)/ degw(v). The latter implies that we need
an INCREASEKEY operation with the updated score: SCOREnew(v) = SCOREold(v) + s(u, v)/ degw(v).
The total running time of all priority queue operations are therefore O(vol(C) log(nH)) where nH
denotes the number of nodes in H. Using the h-graph data structure presented in [31], the triangle
listing is possible in total time for all nodes O(mH · α(H)), where mH is the number of edges in
H and α(H) is the arboricity of H. As we do not need all operations, we only maintain the list of
higher-degree neighbors of every node and therefore only need a simplified version of the h-graph
data structure. Note however, that, in order to add a node to H, we need to check for all of its incident
edges if the endpoint is in H. Therefore, in our situation we get an additional expected running time of
O(vol(C ∪ S(C) ∪ S(S(C)))), where vol denotes the volume in the whole graph. Whenever we add
a node u to the community C, we list all triangles u is part of and update the scores of its neighbors.
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We then also add all its neighbors to the shell and for each of them we list all their triangles to compute
the initial external score values.

For storing the shell, we use a 4-ary (max-)heap that supports increasing keys. This allows us
to update scores whenever we add a node to the community C. In total, we need O(vol(C)) priority
queue operations yielding total costs of O(vol(C) log(vol(C))).

The total running time is composed of building the local graph H, computing the scores by listing
triangles and updating the priority queue, which is in O(vol(C ∪ S(C) ∪ (S(S(C)))) + mH · α(H) +

vol(C) log(vol(C))). Studies on real world networks [31] show that the arboricity is small in practice,
which means that the running time is close to being linear in the volume of the nodes of H in the
original graph.

If the whole input graph shall be covered by communities, the scores can be pre-computed.
The running time is then reduced to the required time for the priority queue operations.

3.2. Local T

The local T algorithm [19] optimizes their T-measure which is based on internal and external
triangles of the community. They define Tin as the number of triangles where all three nodes are
in C. The number of external triangles Tex is then the number of triangles with exactly one node in
C. Note that triangles with exactly two nodes in C are neither internal or external according to this
definition. The T metric is then defined as follows:

T := Tin ·
{

Tin − Tex if Tin ≥ Tex

0 otherwise

Their approach is also iterative, in each iteration the node that maximizes the T-measure is added
to the community. If there are ties, the node with the lowest Tex score is preferred. Additionally,
they detect outliers, i.e., nodes only weakly connected to a community, and hubs. We do not evaluate
these steps here as identifying outliers or hubs is not the goal of this work.

Implementation Details

Similar to the data structure for LTE, we also maintain a local graph for Local T. The main
algorithmic difference is that no priority queue is used but instead for every node to be added to the
community, the whole shell is scanned. Apart from that the algorithm is very similar, we list triangles
and update scores at exactly the same places. Therefore, the total running time is O(vol(C ∪ S(C) ∪
(S(S(C)))) + mH · α(H) + |C| · |S|), where |S| is the maximum size of the shell which is in O(vol(C)).

Note that for LocalT each triangle needs to be considered in the context of the community and
therefore no scores can be pre-computed to make the algorithm faster.

3.3. Clique Based Community Expansion

The basic idea of Clique Based Community Expansion is to start with the maximum clique in the
subgraph induced by the neighbors of the seed node. For weighted graphs, we use the clique that has
the maximum sum of all edge weights inside it and towards s. This is an extension that can be applied
to all algorithms we consider. For algorithms based on simple greedy addition of nodes, we simply
first add all nodes of the clique, for PageRank-Nibble the PageRank approximation simply starts with
the initial weight equally distributed to the nodes in the clique.

For overlapping community detection, this was already considered by the Greedy Clique
Expansion algorithm [8]. It first lists all maximal cliques in the graph and then expands a subset of
them into communities. For local community detection, this was proposed by [9]. While they state
that this can be combined with any greedy expansion scheme, they only evaluate it in combination
with GCE M.
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Implementation Details

Our Clique Based Community Expansion implementation first creates the subgraph induced by
the neighbors N(s) of the seed node s. Then we detect cliques using the simple ELS-bare algorithm
of Eppstein et al. [32], which runs in time O(d2n3(d/3)) on a graph with n nodes and degeneracy d.
While they also present a faster algorithm, this algorithm still achieves good running times in practice
while being much simpler to implement [32]. In our usage of the algorithm n = deg(s), since we
only look in the neighborhood of a seed node s. For unweighted graphs we simply select the largest
clique, for weighted graphs we select the clique of maximum edge weight. For the weighted case,
we simply iterate over all neighbors of the clique nodes and sum up the weights of intra-clique edges.
As a graph with degeneracy d has at most d(n− d+1

2 ) edges and the number of maximal cliques is at
most (n− d)3(d/3) [33], this step needs at most O(d · n2 · 3(d/3)) asymptotically. Therefore, the total
running time of the initialization algorithm for unweighted graphs is the same as the running time for
finding the cliques on the graph induced by the neighbors of the seed node, while for weighted graphs
the clique selection step dominates the asymptotic worst case running time.

3.4. Triangle Based Community Expansion

Our Triangle Based Community Expansion (TCE) algorithm maintains the shell of the community
in a priority queue. The priority queue is sorted by a node score that determines how well a node
is connected to the community, taking the neighborhood of the node and its neighbors into account.
Our algorithm works iteratively by extracting a node from the queue and, if it improves the quality of
the community, adding it to the community. If it is not added, we proceed with the node that has the
next highest score and continue until no node from the current shell meets the condition.

Our node score uses an edge score based on triangles. We chose triangles as they were shown to be
a good indicator of community structure and are successfully used for community detection [19,26,30].
Specifically, we found the edge score described by Radicchi et al. [10] to perform quite well for
unweighted graphs. The score is given by the following equation:

|N(u) ∩ N(v)|+ 1
min(deg(u)− 1, deg(v)− 1)

(2)

We adapt this score to weighted graphs by replacing the +1-term by the weight of the edge and
the size of the intersection by the minimum weight of the two involved edges. Further, we removed
the −1 in the denominator as it is otherwise not clear what the score should be when one of the nodes
has only one neighbor. Therefore, our edge score is given by the following equation:

ω(u, v) =
w(u, v) + ∑x∈N(u)∩N(v) min(w(u, x), w(v, x))

min(degw(u), degw(v))
. (3)

It can be understood as the ratio between the number/weight of actual triangles and the maximum
possible number/weight of triangles. Note that for strictly positive edge weights, this edge score is
also always strictly positive and at most 1.

The node score is computed for a node u as:

SCORE(u) =
1

deg(u) ∑
v∈N(u)∩C

ω(u, v), (4)

which is the sum of all edge scores from edges connecting the node u to the community C, divided by
its unweighted degree. We normalize the score by the node’s unweighted degree, so that nodes with
high degree do not have high scores, simply by virtue of having many edges connecting it with the
community, regardless of edges, that connect it to other parts of the graph. Due to this normalization,
node scores are also at most 1.
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By always removing the node with the maximum score from the shell, we consider adding every
node in the shell to C at some time. However, using the node scores we prioritize some nodes over
others, which leads to community growth in the directions of nodes with higher node scores.

We add a node to the community, when adding it to the community improves the conductance
of the community. We choose conductance as it intuitively captures the definition of a community
and was shown to perform better than other scores in comparative study [30]. To use the original
conductance score as shown in Equation (1), we need to know vol(V\ C) in order to properly compute
the conductance of a community C, which requires knowledge of the entire graph’s volume. As we
do not want to assume this, we always use vol(C) in the denominator of conductance in Equation (1).
This approach mostly yields the same values as the original equation, since the community is usually
small in relation to the whole graph.

We show the pseudo-code of our algorithm TCE in Algorithm 1. It takes a graph G with edge
weights w and a seed node s. For simplicity we assume access to the whole graph here, however
the algorithm does not actually access the whole graph but only a local neighborhood of the nodes
added to the community. It begins by initializing the community C with s and the shell S as N(s),
the neighbors of s (lines 1,2). Then the loop is executed, taking the node umax ∈ S with the highest
node score (line 4), which is given by Equation (4). This node is then removed from S (line 5) and we
check if it would improve the conductance of C. If it improves the conductance, we add the node to C
and update S by inserting all neighbors of umax that are not in C (lines 6–8).

Algorithm 1: Triangle Based Community Expansion (TCE) detects a community around a given
node. Uses a node scoring function based on triangles to add nodes to the community.

Input: Graph G = (V, E), edge weights w(·, ·), seed node s.
Output: A community C of the seed node s.

1 C← {s}
2 S← N(s)

3 while S 6= ∅ do
4 umax ← arg maxu∈SSCORE(u; G, C, w)
5 S← S \ {umax}

6 if CONDUCTANCE(C ∪ {umax}) < CONDUCTANCE(C) then
7 C← C ∪ {umax}
8 S← S ∪ (N(umax) \ C)

Implementation Details

As for LTE and Local T, we build and maintain a local graph data structure for counting triangles.
For TCE, we only need the subgraph H induced by the community C and its shell S(C), as we are only
interested in triangles where at least one node is in C. Like for LTE, we use a 4-ary (max-)heap for
storing S that supports increasing keys.

When a new node u is added to the community, only scores of neighbors of u are affected.
Therefore, when a node u is added to the community, we only need to either add u’s neighbors that are
not in C to S or update their scores (Algorithm 1 (line 8)). The former means that the score of node v
only consists of ω(u, v)/ degw(v). The latter implies that we need an INCREASEKEY operation with the
updated score: SCOREnew(v) = SCOREold(v) + ω(u, v)/ degw(v). The total running time of all priority
queue operations are therefore O(vol(C) log(vol(C)).

The total running time is composed of building the local graph H, computing the scores by
listing triangles and updating the priority queue. In total, this is O(vol(C ∪ S(C)) + mH · α(H) +

vol(C) log(vol(C))). Note that compared to LTE, the subgraph H is smaller as it does not contain the
neighbors of the shell.
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4. Experiments

We compare the previously presented algorithms including the initialization using a clique on
weighted and unweighted graphs. Firstly, we present our experimental results on synthetic graphs
from the LFR benchmark [11,12]. Secondly, we evaluate our algorithms on 100 Facebook friendship
networks [34]. We start by describing our experimental setup and the used scoring and then continue
with the results on the synthetic and the real-world networks. At the end of this section, we also
evaluate the performance of the different algorithms.

4.1. Experimental Setup

For all of these local community detection algorithms, we provide novel or improved
implementations in C++ as part of the open source network analysis tool suite NetworKit [13].
The exact implementations used and the scripts used to generate graphs, evaluate the detected
communities and generate the plots are available online [14]. We aim to contribute the implementations
to the next release of NetworKit.

We also compare against the global community detection algorithm Infomap [35] which has been
shown to perform excellently on the synthetic benchmark graphs we use [11]. This allows us to see
how a state-of-the-art global community detection algorithm performs in comparison to the local
community detection algorithm. For Infomap we use the implementation provided by the authors to
optimize a two-level partition, i.e., a disjoint clustering of the whole graph. To get the community of
a seed node, we simply use the cluster detected by Infomap that contains the seed node.

All results are obtained on a computer with an Intel R© CoreTM i7 2600K Processor, run at 3.40 GHz
with 4 cores, activated hyper-threading, and 32 GB RAM.

We generate 20 random realizations for each synthetic graph and select a set of 20 random seed
nodes for each of them. In our experiments on real world networks we use 100 randomly chosen nodes
per graph as seeds, as there we have only one realization per graph.

4.2. Scoring

We compare the detected communities to the ground truth communities generated in the synthetic
benchmark graphs and the communities induced by the attribute “dormitory” in the Facebook
100 dataset. For simplicity we will call them also “ground truth” communities in the following.
For the comparison, we match each detected community with a ground truth community. We use two
variants of this: one where we compare the detected community to the best-matching ground truth
community that contains the seed node and one where we choose the best-matching ground truth
community irrespective of the seed. As score we use the standard F1 score. The F1 score is between 0
and 1, where 1 is the best score, it indicates a perfect match of ground truth and detected community.

The F1-score and the similar Jaccard-Index are often-used measures in the area of community
detection and graph clustering [4,17,21,36]. Both work well when comparing a single community
that an algorithm finds to one or several ground truth communities by taking into account nodes
correctly and incorrectly identified. Many other comparison measure typically used for comparing
detected communities to ground truth communities like NMI assume a whole clustering consisting of
many communities covering the whole graph. They are thus not suitable for our evaluation where
we explicitly want to compare individual detected communities to (possibly only some) ground
truth communities.

In order to give an idea how good a given F1 score is, we implemented a simple baseline algorithm.
The simplest idea would be to return a random set of nodes. However, any connected subgraph
containing the seed node could easily outperform this. To get a more realistic, yet basically random
community we instead perform a breadth-first search starting at the seed node. As input it takes not
only the seed node but also the size k of a random ground truth community the seed node is part of.
It returns the first k nodes it finds during the breadth-first search. Therefore, the size of the detected
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community always perfectly matches the size of one of the grount truth communities the seed node is
part of. In the experiments, we denote this algorithm by “BFS”.

4.3. Synthetic Graphs

The LFR benchmark is widely used for benchmarking community detection algorithms, as it
can be used to generate a wide variety of graphs with ground truth communities [2,4,8]. We briefly
describe the LFR benchmark here, for details we refer the reader to the original publications [11,12].

The LFR benchmark generates graphs with n nodes, a degree power law distribution according
to specified average and maximum degree and degree exponent as well as a power law community
size distribution with specified minimum and maximum community size and community size
exponent. For overlapping communities, Om specifies the number of communities every node is
part of. Out of all edges of a node u, (1− µt)deg(u)/Om edges connect it with nodes in its community,
while it is connected to µt deg(u) nodes that are outside of its community. Similarly, µw defines that
(1− µw)degw(u)/Om edge weight is distributed over intra-community edges of u and µw degw(u)
edge weight is distributed over inter-community edges of u. Hence, µt is referred to as the topological
mixing parameter and µw as the weight mixing parameter. If µt = µw, the edge weight is on average
1.0 for intra- and inter-community edges. In the case of unweighted graphs, we will frequently just use
µ to refer to µt Every node is assigned to Om different communities at random such that its internal
degree is smaller than the community size. We summarize the parameters and our chosen values in
Table 1.

Table 1. Parameters of the LFR benchmark that we use in our experiments.

Name Description Unweighted Overlapping Weighted

n number of nodes 5000 2000 5000
k average degree 20 39.5, 61.5, 78.1, 91.8, 103.5 20

kmax maximum degree 50 120 50
τ1 degree exponent −2 −2 −2

Cmin minimum community size 10, 20 60 20
Cmax maximum community size 50, 100 120 100

τ2 community size exponent −1 −2 −1
µt topological mixing 0.1, . . . , 0.9 0.2 0.3, 0.5, 0.8
β weight exponent −1.5

µw weight mixing 0.1, . . . , 0.9
Om communities per node 1 1, . . . , 5 1

For unweighted, disjoint communities we use the implementation of the LFR benchmark in
NetworKit. For the weighted and overlapping variants we use the implementations provided by the
authors of the LFR benchmark.

Unweighted Graphs

For the first experiment, we run the algorithms on the parameter set Unweighted in Table 1,
which are the large (5000 node) variants used by Lancichinetti et al. [11]. This parameter set consists of
two different community size ranges [10, 50] and [20, 100]. Therefore, we generate two different sets
of graphs for which we vary µt, the topological mixing parameter. We generate 20 instances of each
graph and let the algorithms run from 20 randomly picked seed nodes per graph.

Figure 1 shows the average F1-scores both for the variants starting from a single seed node
(left column) as well as when starting from the maximum clique (right column). The “Cl” algorithm in
the left column is just the maximum clique of the seed node, i.e., the starting point of the algorithms in
the right column.
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Figure 1. Avg. F1-scores on the LFR benchmark with the parameter set Unweighted, which we specify
in Table 1. The left column shows results when starting with a single seed node, the right column
shows results for starting with the maximum clique as well as Infomap for comparison.

The performance of the plain Local T algorithm is well below the performance of the baseline BFS,
with clique initialization it performs slightly better but still worse than all other algorithms. Even the
simple clique algorithm outperforms it in terms of F1 score. The density-based simple greedy expansion
algorithms GCE M, GCE L and LFM all perform very similar, which is not unexpected as they are
based on very similar quality functions. With a clique as initialization their performance is significantly
improved, in particular on the smaller communities they return almost perfect communities even
past µ = 0.5. The original L-based community detection algorithm, Two-Phase L, performs worse
than these simple expansion algorithms. One explanation for this behavior is that if the seed node
is no longer part of the detected community, the algorithm simply returns an empty community,
giving a score of 0. Only the triangle-based algorithms LTE and TCE perform well when initialized
with a single seed node. They also profit from the initialization with a clique, though. In particular
on the smaller communities their performance is not far from the Infomap algorithm, which is able
to perfectly recover the community structure till µ = 0.7. The PageRank-Nibble algorithm (PRN)
performs only well on the graphs with low values of µ, for higher values its performance degrades
very quickly.

To explore the performance of the different algorithms in more detail and get some explanations
for their behavior, we show more detailed results in Figure 2. In Figure 2a,b, we see the conductance of
the detected communities. Due to the definition of conductance and the ground truth communities
in LFR, µ corresponds exactly to the conductance of the ground truth communities. We can see here
that the triangle-based algorithms which almost perfectly recover the community structure (TCE and
LTE) also yield good, though not perfect conductance values. For the methods based on density and
simple greedy expansion, GCE M, GCE L, LFMLocal, we can see that the coductance of the detected
communities is improved by starting from a clique.
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Figure 2. Different measures for the 5000 node unweighted graph with disjoint big communities.

PageRank-Nibble shows an interesting behavior here: starting with µ = 0.4, the conductance stays
almost the same, i.e., is better than what the other algorithms find. Looking at Figure 2c,d which show
the sizes of the detected communities, we can see that PageRank-Nibble finds really large communities
that, starting with µ = 0.5 contain almost half of the nodes of the whole graph. The explanation for
this is that if you randomly cut a graph in two parts equally-sized parts, in expectation you also split
the neighbors of every node in two equally-sized parts. Therefore, for every node u in expectation
about half of u’s neighbors are in the same part as u and the other half is in the other part. This yields
a conductance of 0.5. Therefore, if the initial local PageRank approximation visits enough nodes,
a large enough prefix of the sorted nodes will have a lower conductance than the actual community.
Further, if the actual community is not perfectly detected, its conductance is higher and therefore the
effect starts already around µ = 0.4.

The Local T algorithm consistently finds way too large communities that also have high
conductance values except for some range around µ = 0.6, where probably the community size
is just right to get low conductance values regardless of the chosen cut.

Concerning the sizes, the density-based algorithms GCE M, GCE L and LFM as well as TCE and
LTE find approximately the right size, though for larger communities they tend to discover too few
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nodes. Starting with a clique improves this, the detected community sizes now rather correspond to
the correct size which is always returned by the BFS baseline by design. Only LTE then tends to detect
too large communities for µ ≥ 0.8 where the community structure cannot be recovered anymore.

For Two-Phase L we can clearly see that above µ = 0.5, the algorithm finds smaller and smaller
communities on average, meaning that more and more often it decides that the detected community is
no community and discards it.

In Figure 2e,f we report the average F1 score of every detected community with the best ground
truth community regardless if that community contains the seed node. For GCE M, GCE L and LFM
we can clearly see that they get much better scores compared to the comparison considering only the
ground truth community of the seed node. This shows that these algorithms find communities in
which the seed node is not strongly embedded. For the algorithms starting with a clique, this effect is
much weaker, though for higher values of µ it is visible for all algorithms. Existing work frequently
ignores this e.g., by just considering the cover that is detected by iteratively applying the algorithm to
nodes that do not yet belong to a community [5,15].

4.4. Overlapping Communities

Our parameter set for overlapping communities is inspired by the highly overlapping parameter
set used in [8]. All nodes belong to the same number of communities Om which is in the range [1, 5].
We modified the parameters slightly by not setting the average degree but the minimum degree
to 18 ·Om. This has the effect that the minimum internal degree of a community stays the same
with increasing values of Om. Using NetworKit, we calculated the expected average degree for this
minimum degree and used these as parameters for the LFR generator.

Figure 3 shows the results for these networks. Note that here we do not evaluate if an algorithm is
able to discover all or a specific community of a node, we compare to the community of the seed node
that is best matched. The performance of LocalT is extremely poor, it cannot detect any overlapping
communities and without a clique as initialization, it cannot even detect the non-overlapping
communities. PageRank-Nibble is also unable to discover any communities starting for Om ≥ 2,
which is not really surprising as the PageRank approximation has no way to decide for one of the
communities of the seed node. The other algorithms perform better, LTE being best when starting
without a clique. The largest clique of the seed node as initialization again improves the performance,
and, quite interestingly, when starting with a clique, the density-based algorithms GCE M, GCE L and
LFM perform better than the triangle-based algorithms LTE and TCE. A possible explanation for this
could be that triangles are less helpful in the case of overlapping communities as a node can have
triangles with neighbors of any community. Infomap completely fails to discover the overlapping
community structure, but this is expected as we only used the variant for disjoint communities.
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Figure 3. Results for overlapping communities with LFR graphs with parameter set “Overlapping” as
specified in Table 1.
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Weighted Graphs

For the weighted graphs, we use the parameter set “Weighted” in Table 1, those are the parameters
also used by Lancichinetti et al. [11]. This means that we have a single community size range, [20, 100].
We further choose three values for the topological mixing parameter µt = 0.3, 0.5, 0.8. The weight
mixing parameter is varied from 0.1 to 0.9 in each of these sets. For each µw we generate 20 instances
and run the algorithms from 20 randomly chosen seed nodes.

For the weighted graphs, we do not compare LocalT as it only works on unweighted graphs
and it is not clear how to generalize it to weighted graphs, the authors discuss this as future work.
In Figure 4 we show the results for the other algorithms. For each value of the topological mixing
parameter µt we plot the weight mixing parameter µw on the x-axis and the resulting average F1 score
on the y-axis.
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Figure 4. Avg. F1-scores on the LFR benchmark with the parameter set Weighted, as specified in
Table 1.

Comparing the two plots at µt = 0.3 and µt = 0.5, we can see that while most algorithms even
improve their performance at µt = 0.5, LTE has a worse performance. A possible explanation for
this is that its score of the community is based on the presence of triangles. While TCE is also based
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on triangles for the decision which node to add next, its score of the community is solely based on
the density and should thus be independent of the structure of the graph as long as the weights
are correctly distributed. This can be seen by its performance which is even better for µt = 0.5.
When initialized with a clique, LTE has fewer problems though and even outperforms Infomap for
high values of µw. This is probably due to its community score being based on the structure of the
graph and thus taking weights less into account. Two-Phase L performs worse than our baseline
BFS, apparently the two-phase process is not so suited for this kind of weighted graph. The other
density-based algorithms GCE M, GCE L and LFM perform similarly for unweighted graphs.

For µt = 0.8, none of the algorithms is able to accurately detect the community structure anymore.
This is most likely due to the low intra-community degree. Note that the chosen values of k = 20
and kmax = 50 result in a minimum degree of 10, which means that at µt = 0.8, the low-degree nodes
have only two neighbors in their own community. PageRank-Nibble seems to be least affected by this,
though its performance is also significantly worse than for µt < 0.8. LTE performs worse than the
other algorithms as it is most affected by the lack of triangles. Cliques also do not help anymore, this is
most likely also due to the low internal degree. The still good performance of Infomap shows, though,
that in principle the community structure is still detectable.

4.5. Facebook Graphs

The synthetic graphs of benchmarks, like LFR, are an excellent way to compare algorithms
and can show their quality. However, good performance on synthetic graphs does not necessarily
translate to good performance on real world graphs. Good performance on real world graphs is also
an important quality of algorithms. After all, we design our algorithms with the goal in mind to be
able to find communities on real graphs. Therefore, we test and evaluate the algorithms here on real
world social networks.

The Facebook 100 data set was first published by Traud et al. [34]. It consists of 100 graphs,
which are snapshots from September 2005. Each of these graphs describes the social network of
Facebook at a university or college and is restricted to that university/college. The graph of a university
or college consists of the persons, who work, study, or studied there. Unweighted edges between
persons (nodes) exist, if they are friends on Facebook and the nodes have attributes, like graduation
year, dormitory, major and high school. It has been shown that at least for some of the graphs there
are correlations between edges and the attributes dormitory and graduation year [34]. The Facebook
graphs are therefore frequently used in testing and comparing algorithms on real world data by looking
at the correlations with their attributes [4,8,37]. We compare against the community structure induced
by the dormitories. These are not ground truth communities, though. Therefore, our results only
show how well the communities detected by the algorithms and the attribute correlate. This has many
flaws, one of them being that the attribute is missing for some nodes. Another is that the subgraph
induced by one of the attribute values is not necessarily connected, in preliminary tests we found that
they often even consist of more than two connected components. As these flaws affect all algorithms
equally, we still consider this a valid evaluation.

We pick 100 random nodes as seed nodes on each graph and execute the algorithms for each
of them. When picking the seed nodes, we ensure that each of them has the dormitory attribute set.
Figure 5 shows the resulting F1-scores for all 100 graphs, which we sorted after the F1-score of LTE.

Clearly, LTE is the best-performing algorithm, in particular when starting with a single seed node.
There, on most graphs, none of the other algorithms even exceeds the performance of the baseline
BFS. When starting from the maximum clique, TCE, GCE M, GCE L and LFM perform much better
and now better than the BFS baseline on many graphs but still worse than LTE. LTE also profits from
starting from a clique, but only slightly. PageRank-Nibble does not seem to profit from the clique at
all, it appears rather that results are becoming worse when starting from a clique. The Two-Phase L
algorithm often decides that no community was discovered, on some of the graphs it even decided
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that for all 100 seed nodes. While Infomap is among the better algorithms, it does not outperform LTE
on most of the graphs.
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Figure 5. Average F1-scores of the algorithms on all 100 Facebook graphs. The scores are calculated by
treating the dormitory attribute as communities. The graphs are sorted by the F1-score of CCE.

4.6. Running Times

In Table 2 we present the running times (wall time) and detected community sizes of the local
community detection algorithms averaged over all 100 Facebook graphs and over the overlapping LFR
benchmark graphs. While they show different rankings, one can still find some similarities. First of
all, LocalT is the slowest algorithm by a large margin and returns the largest communities. LTE is
second-slowest, followed by TCE on the LFR graphs. A main difference between the Facebook and
the LFR graphs is the time required for listing all maximal cliques. While it is really fast on the LFR
graphs, it is slower than executing executing any local community detection algorithm apart from
LTE and LocalT on the Facebook networks. A possible explanation could be the different structure
of the Facebook networks with larger cliques and higher degrees, though the average clique size on
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the Facebook networks is with 14 only twice as large as the average on the LFR graphs, which is 7.
PageRank-Nibble is quite fast on both types of networks, closely followed by the simple expansion
strategies GCE M and GCE L. LFM with the more advanced removal strategy is slightly slower.
The Two-Phase L algorithm is the fastest algorithm on the Facebook networks, but there it also hardly
finds communities so probably it does not only find communities without the seed node as we saw
in earlier experiments but the expansion also stops early on these networks. On the LFR benchmark
where the performance was similar to the simpler density-based algorithms, Two-Phase L is slightly
slower than these algorithms but still faster than the triangle-based algorithms.

Table 2. Average times (ms) per seed node and average community sizes of the algorithms.

(a) On the Overlapping LFR Benchmark. (b) On the 100 Facebook Networks.

Size Time (ms) Size Time (ms)

Cl 7 0.4 TwoPhaseL 38 1.7
Cl+PRN 419 2.1 PRN 975 4.2

PRN 605 2.9 GCE M 282 5.9
Cl+GCE M 321 3.5 GCE L 270 6.7

GCE M 405 3.7 LFMLocal 221 9.8
Cl+GCE L 333 4.0 TCE 321 11.4

GCE L 411 4.4 Cl 14 13.0
LFMLocal 249 4.8 Cl+TwoPhaseL 52 17.5
Cl+LFM 242 5.1 Cl+PRN 1086 18.5

Cl+TwoPhaseL 243 5.3 Cl+GCE M 1009 45.1
TwoPhaseL 329 6.8 Cl+TCE 930 46.5

TCE 320 10.2 Cl+GCE L 919 48.0
Cl+TCE 320 10.5 Cl+LFM 907 77.4

LTE 294 26.4 LTE 257 107.5
Cl+LTE 436 28.8 Cl+LTE 407 150.5
LocalT 1618 49.7 LocalT 8066 1028.1

Cl+LocalT 1589 49.7 Cl+LocalT 8207 1054.7

4.7. Summary

In Figure 6 we summarize the experimental results concerning the quality of the found
communities. For each type of LFR graph with non-overlapping communities, we show the result
for µ = 0.5 as this is for all graphs a value where many algorithms still find reasonable results but
differences between algorithms are already visible. For LFR graphs with overlapping communities we
picked 4 communities per node for the same reason. For the set of 100 Facebook graphs we report the
average over the 10 graphs where LTE starting with a clique (the best-performing algorithm according
to our results) found the best-matching communities. On all considered types of graphs, the algorithms
not starting with a clique perform worse than those starting with a clique, though LTE and TCE still
show reasonable results for many graphs. The algorithms TwoPhaseL, PageRank-Nibble and LocalT
perform worse than the other algorithms on all types of graphs. On unweighted LFR graphs and on
the Facebook graphs, LTE with clique initialization wins. However, with overlapping communities
and with edge weights and a not so clear structure (i.e., µt ≥ 0.5), it seems its triangle-based score is
more easily confused and outperformed by the simpler density-based algorithms like LFM or GCE
with clique initialization. Our newly proposed TCE algorithm is between them, on weighted LFR
graphs it is even among the best-performing algorithms. Compared to the global, non-overlapping
Infomap algorithm the results are quite competitive, only on the weighted graphs Infomap performs
significantly better. On the Facebook networks, the performance of Infomap is even inferior to some
local algorithms. For the overlapping LFR networks, Infomap correctly finds that there is no good
non-overlapping community structure.

Overall, these results show that while using a clique as initialization is beneficial on all types
of graphs, the choice of the expansion algorithm should always depend on the type of the graph.
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For weighted graphs, it can be dangerous to depend too much on the structure of the graph as LTE
does. For LFR graphs with a highly overlapping community structure, methods solely based on the
density outperform those based on triangles which is a bit surprising as one would still expect that
intra-cluster edges are structurally more embedded. This could mean that possibly scores based on
triangles are not as sophisticated as those based on density and should be further improved.

Facebook top 10

overlapping Om
= 4

unweighted big = 0.5

unweighted small 
= 0.5

weighted t=
0.3, w

= 0.5

weighted t=
0.5, w

= 0.5

weighted t=
0.8, w

= 0.5

Infomap
Cl

BFS
Cl+TCE

Cl+LocalT
Cl+LTE
Cl+PRN
Cl+LFM

Cl+TwoPhaseL
Cl+GCE L
Cl+GCE M

TCE
LocalT

LTE
PRN

LFMLocal
TwoPhaseL

GCE L
GCE M

0.35 0.087 1 1 0.99 1 0.92
0.17 0.13 0.15 0.35 0.2 0.15 0.075
0.21 0.25 0.28 0.39 0.42 0.28 0.12
0.34 0.82 0.9 1 0.96 0.96 0.33
0.089 0.087 0.33 0.76

0.4 0.73 0.93 1 1 0.93 0.17
0.16 0.23 0.097 0.23 0.51 0.44 0.22
0.35 0.9 0.87 0.98 0.82 0.94 0.31
0.012 0.75 0.54 0.75 0.18 0.17 0.038
0.36 0.89 0.87 0.99 0.8 0.94 0.32
0.36 0.89 0.87 0.99 0.8 0.94 0.32
0.17 0.71 0.79 0.97 0.76 0.92 0.33
0.068 0.087 0.039 0.25
0.35 0.74 0.81 0.97 0.91 0.76 0.16
0.19 0.14 0.089 0.095 0.38 0.27 0.17
0.12 0.65 0.35 0.47 0.057 0.37 0.3
0.057 0.62 0.23 0.4 0.014 0.16 0.082
0.13 0.6 0.36 0.47 0.056 0.37 0.31
0.13 0.57 0.37 0.46 0.056 0.37 0.31

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. Summary of F1-Score - seed values of all types of networks considered. The results for the
Facebook networks are averages over the 10 networks where “Cl+LTE” had the best scores. LocalT
does not support edge weights and is therefore omitted for weighted graphs.

5. Conclusions

We have compared a set of 8 local community detection algorithms, one of them—Triangle Based
Community Expansion—being a novel algorithm. For the evaluation we used both synthetically
generated benchmark graphs and real-world social networks. We have shown that triangle-based
algorithms are superior to solely density-based algorithms, in particular on real-world networks.
Further, we have shown that all algorithms benefit from not starting from a single seed node but the
maximum clique in the neighborhood of the seed node.

Algorithms based on triangles could also be used to improve global overlapping community
detection algorithms such as GCE [8]. In the case of global algorithms, the pre-computation of edge
scores and using more efficient arrays instead of hash tables led to significant speedups as preliminary
experiments indicate. Further, our approach could also be extended to dynamic graphs, possibly using
a similar approach to [38]. Data structures for maintaining triangle counts [31,39] could thereby be
used to update edge and node scores.
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