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Abstract: Higher-order cyclic cumulants (CCs) have been widely adopted for automatic modulation
recognition (AMR) in cognitive radio. However, the CC-based AMR suffers greatly from the
requirement of high-rate sampling. To overcome this limit, we resort to the theory of compressive
sensing (CS). By exploiting the sparsity of CCs, recognition features can be extracted from a small
amount of compressive measurements via a rough CS reconstruction algorithm. Accordingly,
a CS-based AMR scheme is formulated. Simulation results demonstrate the availability and
robustness of the proposed approach.

Keywords: higher-order cyclic cumulant (CC); compressive sensing (CS); automatic modulation
recognition (AMR)

1. Introduction

Automatic modulation recognition (AMR) always plays a crucial role in spectral monitoring,
surveillance, and spectrum sensing in cognitive radios. The concept of AMR is to classify an unknown
modulation by comparing it to hypothetical schemes [1]. As shown in previous literature, higher-order
cyclic cumulants (CCs)—inheriting the signal selectivity of higher-order cumulants [2]—have been
confirmed as suitable discriminating features for AMR [3–9]. However, to perform a CC-based AMR,
a large amount of signal symbols and an extremely higher sampling rate are both required to achieve
an acceptable performance, which definitely results in computational complexity and a heavy sampling
burden. To address this issue, we investigate the feature extraction in the framework of compressive
sensing (CS), which enables the idea that CCs can be estimated from a relatively small number of
compressive measurements. In the light of CS, Zhou and Hong [10] explored the sparsity of cyclic
spectrum, and extracted features with compressive measurements. However, this method is restricted
in the modulation pool consisting of a few lower-order modulations. Lim and Wakin [11] proposed
a CS-based AMR algorithm by exploiting the sparsity of cyclic moments (CMs). In this approach,
higher-order CC was indirectly derived by initially estimating several lower-order CMs. The drawback
appears that one has to repeatedly run the CS reconstruction and peak detection algorithm to obtain
the required CMs. It is no doubt a complicated process.

Since the CCs with specific nth-order/q-conjugate are sparse in the cyclic frequency domain,
we consider estimating CCs directly in a CS way with the absence of CM estimation. In this paper,
we first demonstrate that the CCs can be treated as the sparse representation of the successive temporal
higher-order cumulant sequence, such that the relationship between the compressive measurements
and CCs is exploited. Then, the feature extraction of AMR can be treated as a CS reconstruction
problem, and a simplified reconstruction algorithm is proposed. Simulation results validate the
effectiveness of this novel AMR algorithm.
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2. Statistical Characterization of Signal of Interest

Assuming an intercepted modulated signal x(t) is oversampled at a rate ρ/T, where ρ is an
integer and T is the symbol period, the observed discrete-time sequence can be expressed as [3]

x[l] = aejθej 2π
ρ ∆ f Tl ∑

k
sk p[l − kρ− l0] + n[l] (1)

where a is the signal amplitude, ∆ f denotes the carrier frequency offset, θ is the phase shift, p[l] is
the overall shape pulse sequence, l0 is the propagation delay, and n[l] is the additive Gaussian noise
sequence. The symbol sequence {sk} is a zero-mean independently and identically distributed (i.i.d.)
sequence, with values drawn from a finite-alphabet constellation. Without loss of generality, the
assumption of unit variance constellation is given; i.e. E[|sk|2] = 1.

Due to the cyclostationarity of the linearly modulated signal, the nth-order/q-conjugate
discrete-time CC can be inferred as [3]

Cβ
x (τ)n,q = an Cs,n,q

ρ
e−j2παl0 ej 2π

ρ ∆ f T ∑n
u=1(−)uτu

× ejθ(n−2q) ∑
l

n

∏
u=1

p(∗)u [l + τu]e−j2παl (2)

α = k/ρ, β = α + (n− 2q)T∆ f /ρ, k integer,

Cβ
x (τ)n,q 6= 0, (3)

where β represents cyclic frequency (CF) given by (3), τ = [τ1, . . . , τn−1, τn]|τn=0 is the delay-vector,
Cs,n,q denotes the nth-order/q-conjugate cumulant of transmitted constellation, and (−)u is the optional
minus sign associated with the optional conjugation (∗)u. Because n[l] is assumed to be a stationary,
zero-mean Gaussian process, its cumulants are time independent and non-zero only for the second
order. Since our work focuses on the higher-order (n ≥ 3) CCs of x[l], the noise contribution does
not appear in (3). Moreover, we also find that the CFs are determined by the (normalized) carrier
frequency offset T∆ f /ρ and the (normalized) symbol rate 1/ρ.

It is also worth noting that for the raised cosine pulse shape, the actual set of CFs is essentially
limited by the signal bandwidth B = (1 + r)/(2T), where r denotes the roll-off factor, 0 ≤ r ≤ 1.
Thus, to avoid aliasing in the cyclic frequency domain, the oversampling factor should be fixed
according to the order n and the roll-off factor r, and a result is given as follows: For n even, if
2m/n < r ≤ (2m + 2)/n, the necessary and sufficient condition for the oversampling factor is
ρ ≥ n + 2m + 1, if r = 0, ρ ≥ n− 1, m = 1, . . . , n/2− 1. Additionally, when n odd, the CCs are zero
and the set of CFs is empty. One can refer to [9] for more details.

By inspection of (2), the fact that the CC is directly proportional to the corresponding cumulant
of the signal constellation implies the potential as a signature of modulation format. Nevertheless,
the rotation caused by l0, θ, and ∆ f considerably restricts its application for AMR. In response, one
way is to select the (n, n/2) CCs with τ = 0 (i.e., the zero delay vector) [6,7], and the other way is to
utilize the magnitudes of CCs [8,9] as discriminating features.

Although the (n, n/2) CCs have avoided the effect of carrier frequency offset and is suited for
the blind AMR, only limited types of modulations can be recognized. In contrast, based on the prior
knowledge of carrier frequency offset and symbol rate, the possible combinations of CC magnitudes
are more flexible, and can consequently deal with a wider range of modulations. A typical feature
vector formulated by CC magnitudes is given by [9]

F =
[
|Cβ

x (0)(n,q0)
|, . . . , |Cβ

x (0)(n,qk)
|], (4)
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where β = 1/ρ + (n− qi)T∆ f /ρ.
Along with this formulation of feature vector, a hierarchical scheme is widely adopted by the

AMR [8], with which lower-order CCs are used to make initial classification, followed by higher-order
CCs to further refine the decision. The hierarchical scheme not only leads to a more perfect performance
but also saves the computational cost of CC-based AMR.

3. CS-based AMR

For a CC-based AMR, the sampling rate for signal acquisition is always several times larger than
the Nyquist rate to ensure the absence of the aliasing effect in the area of cyclic frequencies. For instance,
to recognize a more extensive number of modulations, many studies appeal to 8th-order CCs [8,9].
According to the result presented before, the oversampling factor reaches up to 11 with 0.35 roll-off
factor. Besides, a large amount of symbols (a large observation interval) is also necessary for better
recognition performance in most cases [3]. All of the above yields a heavy computational and storage
burden. Fortunately, the development of CS enlightens a way to relieve this burden. By employing the
sparsity of CMs, Lim and Wakin [11] estimated CMs from compressive measurements, then derived
CC through cyclic moment to cumulant formula [9]. Because of the requirement of all the necessary
nth- and lower-order CMs, it seems cumbersome.

3.1. CS-Based Cyclic Characteristic Analysis

In this subsection, we attempt to exploit the sparsity structure of CC function, and investigate the
relationship between the compressive measurements and CCs.

Assuming x = {x[l]}N−1
l=0 is the set of uniform samples at the oversampling rate ρ/T,

the nth-order/q-conjugate temporal cumulant (TC) can be expressed as [12]

Cx,n,q[l, τ] = Cumulant{x(∗)u [l + τu]}n
u=1, (5)

where Cumulant is the cumulant operator, and τn = 0. TC is a periodic function for cyclostationary
signals, with its Fourier components given by

Cβ
x (τ)n,q =

1
N

N−1

∑
l=0

Cx,n,q[l, τ]e−j2πβl . (6)

From (3), when Cβ
x (τ)n,q 6= 0, the expression (6) is the CC at CF β. Assuming that the vector c

represents the quantities {Cx,n,q[l, τ]}N−1
l=0 , η is the Fourier coefficient vector, and Φ is the N-point

discrete Fourier transform (DFT) matrix, it holds evidently from (6) that η = Φc. Equivalently,
c = ΦHη, where (·)H denotes the conjugate transpose operator. Clearly, the nth-order/q-conjugate
CCs can be viewed as the set of nonzero elements of vector η, and the location of nonzero element
implies the corresponding CF. Thus, the calculation of CCs is equivalent to locating the peaks in η.
Since the CFs belong to a finite set depending on the signal bandwidth and order n [9], the CCs can
be treated as sparse in the Fourier domain under the assumption of no cyclic leakage. Sparsity of
CCs motivates the application of CS. CS argues that sparse vector η can be recovered from M � N
compressive measurements cz, obtained by cz = Ψc, where Ψ ∈ RM×N is the so-called measurement
matrix. If Ψ satisfies the condition known as the restricted isometry property (RIP), the exact recovery
of η can be achieved by solving an optimization problem, as follows:

minimize‖η̂‖0 subject to cz = Aη̂ (7)

where A = ΨΦH. In previous studies, a variety of greedy iterative algorithms and convex solvers have
been adopted for signal recovery [13,14].

However, there still remains the issue that the relationship between TCs and the compressive
measurements has not been established. Before proceeding, it should be pointed out that in practical
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implementations with finite data samples, the estimators of involved statistics are defined on the basis
of averaging of the sample values taken through the observation interval.

Assume that the received signal sequence xr[s] with length L is divided into W frames with length
N, where W = bL/Nc (b·c denotes floor operation). Then, xr[s] can be recognized as a mixture of W
sequences {x(k)[l]}W

k=1 [15]. We define the estimator of higher-order temporal moment (TM) as

Rx,n,q[l, τ] =
1

W

W

∑
k=1

n

∏
u=1

x(k)
(∗)u

[l + τu]. (8)

By substituting (8) into the moment-cumulant (M-C) formula [9], we obtain the estimator of TC

Cx,n,q[l, τ] = ∑
{pn}

(−1)I−1(I − 1)!
I

∏
i=1

Rx,ni ,qi [l, τ], (9)

where {pn} is the set of distinct partitions of {1, 2, . . . , n}, I is the number of subsets in each partition,
ni and qi correspond to the number of elements and the number of conjugated terms in the ith subset.

For each frame represented by x(k), we acquire the compressive measurements by multiplying it
by the same random matrix Ψ. Ψ is designed as a M× N binary matrix, M� N, containing a single 1
in a random position in each row. When M = O(s log N), where s is the sparsity level of η, Ψ is proved
to meet the RIP, and η can be reconstructed with high probability [16]. Consequently, the compressive
measurements z(k) = {z(k)[m]}M−1

m=0 , is actually the subset of x(k) indexed by {λm}M−1
m=0 , elements of

which are randomly drawn from {0, . . . , N − 1}. It can be easily deduced that

Cz,n,q[m, τ] = Cx,n,q[λm, τ], (10)

which implies that cz in (7) can be estimated from nonuniform samples by using (8) and (9).
In practice, based on the strategy of non-uniform sampling (NUS) [17], compressive measurements

can be directly acquired from the continuous waveform x(t). Moreover, a novel signal acquisition
setup proposed in [11] was available to generate various compressive signal lag products. As a result,
we just need to divide x(t) into W temporal windows, let them undergo the aforementioned setup,
respectively, and then the TMs and TCs can be calculated successively.

3.2. Feature Selection

As a case study of CS-based AMR, we investigate the modulation pool consisting of 4QAM,
32QAM, 16QAM, 16PSK, 8ASK. The theoretical values of constellation cumulants of candidate
modulations, are given by Table 1. Accordingly, the feature vector is formatted as

F =
[
|Cβ0

x (0)(8,0)|, |C
β0
x (0)(4,0)|

]
, (11)

where β0 = 1/ρ + (n− 2q)T∆ f /ρ, corresponding to α = 1/ρ.

Table 1. Cumulant values of candidate constellations.

Cs,4,0 Cs,6,0 Cs,8,0

4QAM 1 0 −34
32QAM −0.19 0 −1.9926
16QAM −0.68 0 −13.9808
8ASK −1.2381 7.1889 −92.018
16PSK 0 0 0
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3.3. Feature Extraction

Based on the fact that the carrier frequency offset and the symbol rate can be properly estimated
with compressive measurements respectively [18], feature extraction can be implemented by solving
the problem expressed by (7). Lim and Wakin [11] proposed a rough estimator as

η̂ = AHcz = ΦΨHcz, (12)

which can be interpreted as taking the fast Fourier transform (FFT) of the zero-padded vector ĉz

(a length-N vector containing the M entries of cz at the nonuniform sample locations). It is easy to find
that the estimator expressed by (12) is essentially the simplified Orthogonal Matching Pursuit (OMP)
algorithm without further iterations. Moreover, since AH satisfies the RIP, Lemmas of [19] guarantee
this reasonability of the rough estimator theoretically. Thus, the feature extraction can be described as:

Ĉβ0
x (0)(n,q) = vĉz, (13)

where v = {e−j2πβ0n}N−1
n=0 . Although this process is not a full-scale or exact recovery, it is simple and

efficient enough for an AMR application.
It is worth mentioning that the computation of TC in CS-based AMR is implemented with M

compressive measurements, instead of N uniform samples in classical AMR. Then, after zero-padding,
the N-point FFT is taken, just as in the classical method, such that a significant reduction of
computational burden is achieved.

Support Vector Machine (SVM) Classifier

In previous literature, the CC-based AMR is often realized by comparing the Euclidean distance
between the measured feature vector and its counterparts of catalog patterns. In our work, a support
vector machine (SVM) classifier is proposed. In SVM, groups of feature vectors are separated by
the hyperplane, derived from previously generated training sets. The SVM is more valid than the
aforementioned classifier, since it can not only perform the linear separation, but also the nonlinear
separation by using a variety of kernel functions [20].

4. Simulation and Performance Analysis

In order to validate the proposed algorithm and evaluate its performance, we consider two
modulation pools: Ω1 = {4QAM,16QAM,32QAM} for the scenario of intra-class recognition,
and Ω2 = {8ASK,16PSK,16QAM,4QAM} for the scenario of inter-class recognition. The transmit
and receive filters are square-root raised cosine pulses with 0.35 roll-off factor. Accordingly, at the
receiver, the signal is oversampled by a factor of 16 to eliminate aliasing. For each modulation type,
150 signals are generated for the training phase of the SVM system, and 1000 Monte Carlo trials are run
as the testing phase. The number of processed symbols is equal to 4096. Each signal is generated with
carrier frequency offset 500 Hz, symbol rate 1000 Hz. This classifier is tested in a variety of channel
conditions, with a signal-to-noise ratio (SNR) range of 0 dB to 12 dB. The performance metric is the
correct rate of recognition (COR)—the ratio between the number of correctly recognized signals and
the total number of testing signals. A key parameter of interest is the compression ratio γ = M/N
for sampling rate reduction. It is necessary that its impact on the performance of the proposed AMR
algorithm be investigated in our simulations.

Since the utilized estimators of cyclic statistics are biased due to the finite number of symbols
(finite observation interval), a relatively large amount of symbols (e.g., 4096) are of great help to
enhance the performance of the CC-based classifier [3].

Figure 1 plots the performance of the proposed algorithm (for the modulation pool Ω1) versus
SNR, for γ = 0.1, 0.2, and 0.3. The performance of the classical CC-based method with uniform
samples which was proposed in [8] is also shown in the same figure. As one can easily notice from
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Figure 1, all the curves degrade when SNR decreases. As is readily seen, when SNR ≥ 9 dB, the
proposed AMR provides a comparable performance (COR ≥ 93%), with only 20% of samples utilized
by the classical counterpart. Moreover, with γ = 0.3, the proposed method can achieve a perfect
performance (COR = 95%) at 6 dB SNR.

In Figure 2, for the modulation pool Ω2, the performance maintains a similar trend as shown in
Figure 1. It is noted that the performance for γ ≥ 0.2 is quite close to that of classical method when
SNR ≥ 6 dB.

From Figures 1 and 2, we can conclude that regardless of the effect of noise, the more
measurements are taken, the more excellent the performance can be. This is because the finite
sample effect can be adequately alleviated as the length of measurements increases. Providing a proper
tradeoff between SNR and γ, the CS-based AMR can be totally treated as an alternative of the classical
CC-based AMR, and affords dramatic savings of computational complexity and storage requirements.
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Figure 1. Performance versus signal-to-noise ratio (SNR) for Ω1.
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Figure 2. Performance versus SNR for Ω2.

Figures 3 and 4 compare the performance of the proposed algorithm to the CS-based AMR
proposed in [11] for γ = 0.2. It is apparent that these two curves almost converge, and the
former slightly outperforms the latter in both cases. This mainly results from the fact that in the
algorithm of [11], several lower-order CMs need to be estimated, which yields bias accumulation in
the computation of CCs. With the SNR degrading, these two classifiers both exhibit unacceptably poor
performance when SNR ≤ 0 dB (not shown in Figures 3 and 4).



Algorithms 2017, 10, 92 7 of 9

0 2 4 6 8 10 12
40

50

60

70

80

90

100

SNR (dB)

C
o

rr
ec

t 
R

at
e 

o
f 

R
ec

o
g

n
it

io
n

 (
%

)

Proposed AMR

[10]

Figure 3. Performance versus SNR for Ω1. AMR: automatic modulation recognition.
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Figure 4. Performance versus SNR for Ω2.

The results above reveal the fact that for a fixed observation, the proposed AMR performance
degrades as γ decreases. As a special case of γ = 1, the performance of the classical algorithm provides
an upper bound. On the other hand, as shown in Tables 2 and 3, for an equivalent number of samples,
nonuniform sampling has better classification performance than uniform sampling. This results from
the larger observation interval (larger symbol number), which is required by the nonuniform sampling.
As is well known, a larger observation interval always guarantees a more reliable feature estimation.

Table 2. Comparison for Ω1 between compressive sensing (CS) method and classical method with
equivalent number of samples.

Samples 10,240 15,360 20,480

Symbols 4096 640 4096 960 4096 1280
0 dB 39.4% 38.4% 44.7% 40.9% 51.8% 44.4%
3 dB 52.8% 49.2 % 64.6% 62.3% 77.8% 71.3%
6 dB 68.0% 59.6% 82.1 % 81.7% 95.3% 90.2%
9 dB 79.7% 78.4% 93.4% 92.7% 98.8% 97.2%
12dB 84.2% 72.1% 97.3% 94.1% 99.6% 97.4%
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Table 3. Comparison for Ω2 between CS method and classical method with equivalent number
of samples.

Samples 10,240 15,360 20,480

Symbols 4096 640 4096 960 4096 1280
0 dB 40.2% 37.8% 42.9% 40.3% 46.2% 40.9%
3 dB 57.7% 55.1% 68.6% 56.1 % 62.9% 54.6%
6 dB 73.9% 71.9% 88.3% 83.5% 86.8% 84.6%
9 dB 86.8% 84.9% 92.8% 92.8% 98.4% 97.3%
12dB 90.2% 88.7% 98.6% 96.0% 99.8% 98.8%

5. Conclusions

In this paper, we utilize the theory of CS to perform a CC-based AMR. Except for the significant
reduction of sampling burden compared with previously proposed algorithms, this algorithm includes
following advantages: Firstly, the CC estimator is developed without multiple times calculations
of CMs. Secondly, the feature extraction is implemented by a more convenient CS reconstruction
algorithm rather than a full-scale recovery. Both make the proposed AMR simple and efficient.
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