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Abstract: In this paper we propose a parallel two-stage iteration algorithm for solving large-scale
continuous Sylvester equations. By splitting the coefficient matrices, the original linear system is
transformed into a symmetric linear system which is then solved by using the SYMMLQ algorithm.
In order to improve the relative parallel efficiency, an adjusting strategy is explored during the
iteration calculation of the SYMMLQ algorithm to decrease the degree of the reduce-operator from
two to one communications at each step. Moreover, the convergence of the iteration scheme is
discussed, and finally numerical results are reported showing that the proposed method is an efficient
and robust algorithm for this class of continuous Sylvester equations on a parallel machine.
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1. Introduction

The solution of the continuous Sylvester equation

AX + XB = F (1)

with large sparse matrices A ∈ Rn×n , B ∈ Rn×n , X ∈ Rn×n , F ∈ Rn×n and with A, B positive definite
is a common task in numerical linear algebra. It arises in many scientific computing and engineering
applications, such as control theory [1,2], neural networks, model reduction [3], image processing [4],
and so on. Therefore, the problem has remained an active area of research. In this context, recent
methodological advances have been thoroughly discussed in many papers [5–20]. Iterative methods
for solving linear or nonlinear equations have seen constant improvement in recent years to reduce the
computational time; for example, two multi-step derivative-free iterative methods [5]: block Jacobi
two stage method [6] and SYMMLQ algorithm [7–9]. In addition, widely-used direct methods are, for
instance, the Bartels–Stewart [10] and the Hessenberg–Schur method [11]. The main idea is to transform
A and B into triangular or Hessenberg form [21] by an orthogonal similarity transformation and then
to solve the resulting system of linear equations directly by a back-substitution process. However,
this method is not applicable in large-scale problems due to the prohibitive computational issue.
In order to overcome this limitation, fast iterative methods have been developed such as the Smith
method [12], the alternating direction implicit (ADI) method [13], gradient-based methods [14,15], and
the Krylov subspace-based algorithm [7,16,17]. At present, the conjugate gradient (CG) method [7]
and the preconditioned conjugate gradient method [18] are popularly used with the advantages of
small storage and suitability for parallel computing. Typically, the SYMMLQ algorithm [7–9] is quite
efficient in the case of symmetric coefficient matrices, as it has tremendous advantages in small storage
capacity and stable computations. However, it is not a good option for multi-computer systems due
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to the high cost of global communication. For asymmetric coefficient matrices, a modified conjugate
gradient method (MCG) is useful. However, its convergence speed is slow [22,23].

Another type of iteration based on splitting methods allows us to better utilize standard
methodologies. For instance, Bai et al. [24] proposed Hermitian and skew-Hermitian splitting
(HSS) iteration methods for solving systems of linear equations with non-Hermitian positive definite
form. This has been studied widely and generalized in [25–28]. Recently, a Hermitian and
skew-Hermitian splitting (HSS) iteration method for solving large sparse continuous Sylvester
equations with non-Hermitian and positive definite/semidefinite matrices was discussed in [29].
Wang et al. [30] presented a positive-definite and skew-Hermitian splitting (PSS) iteration method,
and in [31] Zhou et al. applied the modified Hermitian and skew-Hermitian splitting (MHSS) iteration
method to solve the continuous Sylvester equation. Zheng and Ma in [32] applied the idea of the
normal and skew-Hermitian splitting (NSS) iteration method to continuous Sylvester equations.

However, these iteration methods have the common difficulty that there is no accurate formula
to determine the positive value of the corresponding parameter in the iteration scheme. In many
articles, a large amount of work has been done to address this issue. Unfortunately this estimation
methodology is still not fully resolved in practical applications. In addition, their implementations
need to solve two continuous Sylvester equations, which results in great additional computational cost.

All of these brought about the need for the development and validation of an efficient parallel
algorithm. In this paper we have proposed a parallel algorithm of two-stage iteration for solving
large-scale continuous Sylvester equations with the combination of the HSS iteration method and
the SYMMLQ algorithm. The main idea is to split the coefficient matrices into a symmetric and an
anti-symmetric matrix, respectively. Then, the original equations are transferred into symmetric matrix
equations which are solved by the SYMMLQ algorithm. Furthermore, we focus on the improvement
of the parallel efficiency of the SYMMLQ algorithm by adjusting the calculation steps.

The remainder of this paper is organized as follows. In Section 2, a description of the two-stage
iteration method is presented based on a splitting method and the SYMMLQ algorithm for solving
the continuous Sylvester Equation (1). Then the parallel implementation of the algorithm is given
in Section 3 . Its convergence analysis and numerical examples are mentioned in Sections 4 and 5,
respectively. We end with conclusions.

Notation in this paper: AT denotes the transpose of matrix A; inner product using
[A, B] = tr(ATB); matrix norm of A induced by ‖A‖ =

√
[A, A] =

√
tr(AT A) and ρ(A) is the

spectral radius of the matrix A. For the matrix X = (x1, x2, · · · , xn)T ∈ Rn×n, vec(X) denotes the vec
operator defined as vec(X) = (xT

1 , xT
2 , · · · , xT

n)
T ∈ Rn2

.

2. Description of the Two-Stage Iteration Method

The two-stage iteration method consisting of the outer and inner iterations is discussed in this
section. The outer iteration is performed by splitting the coefficient matrices, while the inner iteration
is computed via the SYMMLQ algorithm.

2.1. Outer Iteration Scheme

We can split A and B into symmetric and antisymmetric parts:

A = M1 − N1, B = M2 − N2 (2)

where M1 and M2 are symmetric parts and N1 and N2 are antisymmetric parts. They can be rewritten as

M1 =
1
2
(A + AT), N1 =

1
2
(AT − A),

M2 =
1
2
(B + BT), N2 =

1
2
(BT − B).
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More details can be found in [24,28,29,31].
Then, the continuous Sylvester Equation (1) can be written as the following matrix equation:

M1X + XM2 = N1X + XN2 + F. (3)

Given an initial guess X(0) ∈ Rn×n, because the initial guess has an effect on the convergence
speed of the algorithm, it has little influence on the calculation results. For convenience, the initial
guess is taken as X(0) = O in the numerical examples. For k = 0, 1, 2, · · · , we use the following iteration
scheme until {X(k)} converges:

M1X(k+1) + X(k+1)M2 = N1X(k) + X(k)N2 + F. (4)

Let F̃(k) = N1X(k) + X(k)N2 + F. Then, the outer iteration can be expressed as

M1X(k+1) + X(k+1)M2 = F̃(k). (5)

We need to solve Equation (5) at each step of the iteration method so as to form the two-stage
iteration method. Equation (5) is computed by the SYMMLQ algorithm, since the new coefficient
matrices are symmetric.

2.2. Inner Iteration Scheme Based on the SYMMLQ Algorithm

Equation (5) is changed into the following linear system by using the vec operator

Hx(k+1) = f̃ (k), (6)

where H = A⊗ I + I ⊗ BT, the vectors x(k+1) and f̃ contain the concatenated columns of the matrices
X(k+1) and F̃(k), respectively, with ⊗ being the Kronecker product symbol.

Then, the SYMMLQ algorithm is proposed to solve the kth step iteration equation of the outer
iteration scheme. For more details, we can refer to [8,9]. The description of the corresponding SYMMLQ
algorithm is given roughly in the following manner.

Let y = x(k+1) and b = f̃ (k). Then, Equation (6) can be written equivalently as

Hy = b. (7)

Then, transform H into an i× i symmetric tridiagonal matrix Ti by the Lanczos orthogonalization
process. The coefficient matrix H is potentially unstable, and consequently Ti is not positive definite.
So, the LQ decomposition ( Triangular Orthogonal decomposition, where L is a lower triangular matrix,
Q is an orthogonal matrix ) is used to transform Ti into an i× i lower triangular matrix Li, seen in the
following flow chart: The SYMMLQ algorithm:

H Lanczos−−−−−−−−−→
orthogonalization

Ti
LQ−−−−−−−→

decomposition
LiPi. (8)

where Ti = LiPi, and

Ti =



a1 b1

b1 a2 b2

b2 a3
. . .

. . . . . . bi−1
bi−1 ai


, Li =


r1

δ2 r2

ε3 δ3 r3
. . . . . . . . .

εi δi ri

 ,
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Pi = Pi−1


1

1
. . .

ci−1 si−1
−si−1 ci−1

 .

According to the above observation, we can establish the following stationary fixed-point iteration
form for Equation (7):

y(i+1) = y(i) + Qizi (9)

where Q = (q1, q2, · · · , qi) is an n × i matrix and q1, q2, . . . , qi are orthonormal vectors which are
computed by the Lanczos orthogonalization process. Here zi satisfies the following equation:

Tizi = ‖r(0)‖2e1, (10)

where r(0) = b− Hy(0), y(0) is a given initial vector, and e1 = (1, 0, · · · , 0)T is an i-dimensional unit
vector. More details can be found in the literature [33].

3. Parallel Implementation of the Two-Stage Iteration Method

In this section we discuss the parallel implementation including data storage, and implementation
of outer iteration and inner iteration.

3.1. Data Storage

For convenience, let p be the number of processors, pi(i = 1, 2, . . . , p) represent ith processor,
and l is an integer in n = pl.

Mark

A = (AT
1 , AT

2 , · · · , AT
p)

T, B = (BT
1 , BT

2 , · · · , BT
p )

T, F = (FT
1 , FT

2 , · · · , FT
p )

T,

X(0) = ((X(0)
1 )T, (X(0)

2 )T, · · · , (X(0)
p )T)T, AT = (ÃT

1 , ÃT
2 , · · · , ÃT

p)
T,

BT = (B̃T
1 , B̃T

2 , · · · , B̃T
p )

T, F̃ = (F̃T
1 , F̃T

2 , · · · , F̃T
p )

T,

M1 = ((M1,1)
T, (M1,2)

T, · · · , (M1,p)
T)T, M2 = ((M2,1)

T, (M2,2)
T, · · · , (M2,p)

T)T,

N1 = ((N1,1)
T, (N1,2)

T, · · · , (N1,p)
T)T, N2 = ((N2,1)

T, (N2,2)
T, · · · , (N2,p)

T)T

where Ai, Bi, Fi, X(0)
i , Ãi, B̃i, F̃i, M1,i, M2,i, N1,i, N2,i (i = 1, 2, · · · , p) are l × n sub-block matrices.

These are saved in row storage. Then, store Ai, Bi, Fi, X(0)
i , Ãi, B̃i on the processor pi(i = 1, 2, · · · , p).

Note: Due to the storage method, we chose the way of matrix multiplication with block row–row
matrices in parallel computing process. Detailed descriptions of parallel computing Matrix
multiplication are found in References [5,23,34].

3.2. Parallel Implementation of Outer Iteration Method

(1) Splitting process: Processor pi(i = 1, 2, · · · , p) computes

M1,i = (Ai + Ãi)/2, N1,i = (Ãi − Ai)/2, M2,i = (Bi + B̃i)/2, N2,i = (B̃i − Bi)/2.

(2) Cycle processor:
Step 1. Processor pi(i = 1, 2, · · · , p) computes

∆X(k)
i = X(k)

i − X(k−1)
i and [∆X(k)

i , ∆X(k)
i ],

get [∆X(k)
i , ∆X(k)

i ] after all-reduce. If ‖∆X(k)‖ < ε stop; otherwise, turn to step 2.
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Step 2. Compute F̃i = N1,iX(k) + X(k)
i N2 + Fi in each processor.

Step 3. Use the improved parallel process of SYMMLQ algorithm to solve the new equation

M1X(k+1) + X(k+1)M2 = F̃. (11)

This step, which improves the parallel efficiency and reduces the parallel time by reducing the
frequency of communication, plays an important role in the whole parallel implementation of the
two-stage iteration method, and the detailed implementation can be seen in Sections 3.3 and 3.4.

Step 4. Let k := k + 1, turn to Step 1.

3.3. Parallel Implementation of Inner Iteration Scheme

(1) Compute process:
1© Processor pi(i = 1, 2, · · · , p) computes

R(0)
i = Fi − (AiX(0) + X(i)

i B) and [R(0)
i , R(0)

i ],

obtain [R(0)
i , R(0)

i ] after all-reduce, then compute

Q(1)
i = R(0)

i /‖R(0)‖.

2© Compute
G(1)

i = AiQ(1) + Q(1)
i B and [G(1)

i , Q(1)
i ],

obtain a1 = [G(1)
i , Q(1)

i ] after all-reduce. Compute

H(1)
i = G(1)

i − a1Q(1)
i and [H(1)

i , H(1)
i ],

get [H(1), H(1)] after all-reduce and b1 =
√
[H(1), H(1), then compute r̃1,ξ̃1,W̃(1)

i and X(1)
i = X(0)

i +

ξ̃1W̃(1)
i in each processor.

3© Processor pi(i = 1, 2, · · · , p) computes

Q(2)
i = H(1)

i /b1 and G(2)
i = AiQ(2) + Q(2)

i B,

and computes the inner product [G(2)
i , Q(2)

i ], get a2 = [G(2), Q(2)] after all-reduce. Compute

H(2)
i = G(2)

i − a2Q(2)
i − b1Q(1)

i and [H(2)
i , H(2)

i ],

get [H(2), H(2)] after all-reduce, compute b2 =
√
[H(2), H(2)].

4© Processor pi(i = 1, 2, · · · , p) computes

c1 =
a1

(a2
1 + b2

1)
1
2

, s1 =
b1

(a2
1 + b2

1)
1
2

, δ2 = b1c1 + a2s1, ε3 = b2s1,

r1 = (a2
1 + b2

1)
1
2 , ξ1 = ‖r0‖/r1, r̃2 = b1s1 − a2c1, r2 = (r̃2

2 + b2
2)

1
2 , δ̃3 = −b2c1,

if r̃2 < 10−15 stop, otherwise compute ξ̃2 = −δ2ξ1/r̃2.
5© Processor pi(i = 1, 2, · · · , p) computes

ξ2 = − δ2ξ1

r2
, W(1)

i = c1W̃(1)
i + s1Q(2)

i , W̃(2)
i = s1W̃(1)

i − c1Q(2)
i ,

Y(1)
i = X(0)

i + ξ1W(1)
i , X(2)

i = Y(1)
i + ξ̃2W̃(2)

i .
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(2) Cycle process:
Step 1. Processor pi(i = 1, 2, · · · , p) computes

‖R(k−1)‖ = |bk−1(sk−2ξk−2 − ck−2ξ̃k−1)|,

if ‖R(k−1)‖ < ε stop, otherwise, turn to Step 2.
Step 2. Processor pi(i = 1, 2, · · · , p) computes

Q(k)
i = H(k−1)

i /bk−1 and G(k)
i = AiQ(k) + Q(k)

i B,

then compute [G(k)
i , Q(k)

i ], obtain ak = [G(k), Q(k)], after all-reduce. Compute

H(k)
i = G(k)

i − akQ(k)
i − bk−1Q(k−1)

i and [H(k)
i , H(k)

i ],

Obtain [H(k), H(k)] after all-reduce, compute bk =
√
[H(k), H(k)].

Step 3. Processor pi(i = 1, 2, · · · , p) computes

ck−1 =
r̃k−1

(r̃2
k−1 + b2

k−1)
1
2

, sk−1 =
bk−1

(r̃2
k−1 + b2

k−1)
1
2

, εk+1 = bksk−1,

δk = δ̃kck−1 + aksk−1, r̃k = δ̃ksk−1 − akck−1, rk = (r̃2
k + b2

k)
1
2 , δ̃k+1 = −bkck−1,

if r̃k < 10−15 stop; otherwise, compute ξ̃k = (εkξk−2 + δkξk−1)/r̃k.
Step 4. Processor pi(i = 1, 2, · · · , p) computes

ξk = −(εkξk−2 + δkξk−1)/rk, Wk−1
i = ck−1W̃(k−1)

i + sk−1Q(k)
i ,

W̃(k)
i = sk−1W̃k−1

i − ck−1Qi(k), Y(k−1)
i = Y(k−2)

i + ξk−1W(k−1)
i ,

X(k)
i = Y(k−1)

i + ξ̃kW̃(k)
i .

Step 5 Let k := k + 1, turn to Step 1.

3.4. Improved Parallel Implementation of the SYMMLQ Algorithm

Clearly, when computing ak, bk in each step of the inner iteration, all processors need to apply
the reduce operator twice in the parallel implementation of the SYMMLQ algorithm in Section 3.3.
Therefore, we should rearrange Step 2 in the cycle process, while the remaining steps remain the same.
The detailed parallel process of the algorithm can be expressed as follows.

Processor pi(i = 1, 2, · · · , p) computes

Q(k)
i = (H(k−1)

i − ak−1Q(k−1)
i )/bk−1, G(k)

i = AiQ(k) + Q(k)
i B,

H(k)
i = G(k)

i − bk−1Q(k−1)
i and L(k)

i = H(k)
i − ak−1Q(k)

i ,

then compute [G(k)
i , Q(k)

i ] and [L(k)
i , L(k)

i ], get ak = [G(k), Q(k)] and ek = [L(k), L(k)] after one all-reduce,
compute bk =

√
ek − (ak − ak−1)2.

In this way, computing ak, ek only needs to all-reduce once, so as to reduce the frequency of
communication and thus reduce the parallel time. Eventually, we obtain an improved parallel
implementation of the SYMMLQ algorithm.

4. Convergence Analysis

The convergence property above two-stage iteration method is mentioned here.
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Lemma 1 (see [35]). Let H be a positive definite matrix, and H = M − N be a splitting, with M =

(H + HT)/2, and N = (HT − H)/2. Then, ρ(M−1N) < 1 if for all y ∈ Cn, it holds that yHMy > |yHNy|.

Based on the above lemma, we obtain the following conclusion.

Theorem 1. Assume the positive definite matrix H ∈ Rn×n is split according to Lemma 1. If for all y ∈ Cn,
we have that |Re(yHHy)| > |Im(yHHy)|, then ρ(M−1N) < 1 holds.

Proof of Theorem 1. For all y ∈ Cn, we can get

yHMy = (yHHy + yHHHy)/2 = Re(yHHy) (12)

and
yHNy = (−yHHy + yHHHy)/2 = Im(yHHy). (13)

According to the Lemma 1, we can obtain |Re(yHHy)| > |Im(yHHy)|. Therefore ρ(M−1N) < 1.

The above theorem is generalized to the continuous Sylvester equation. The convergence theorem of
the matrix equation can be obtained as follows:

Theorem 2. Let A, B ∈ Rn×n be positive definite matrices in the Sylvester Equation (1) and suppose that they
are split as in the two-stage iterative format (5). If for all Y ∈ Cn×n, we have

|Re[Y, AY +YB]| > |Im[Y, AY +YB]|, (14)

then
ρ((M1 ⊗ I + I ⊗MT

2 )
−1(N1 ⊗ I + I ⊗ NT

2 )) < 1 (15)

holds.

Proof of Theorem 2. By using the Kronecker product, we can transform Equation (1) into the
matrix-vector form:

(A⊗ I + I ⊗ BT)x = f , (16)

where x = vec(X), f = vec(F). When the coefficient matrices A and B are positive definite matrices,
we split them as in Section 2.1. Then, Equation (3) can be rewritten equivalently as

(M1 ⊗ I + I ⊗MT
2 )x = (N1 ⊗ I + I ⊗ NT

2 )x + f . (17)

According to Theorem 1, we yield

|Re(yH(A⊗ I + I ⊗ BT)y)| > |Im(yH(A⊗ I + I ⊗ BT)y)|. (18)

On the other hand, it holds that

yH(A⊗ I + I ⊗ BT)y = tr(YH(AY +YB)) = [Y, AY +YB]. (19)

Therefore,
|Re[Y, AY +YB]| > |Im[Y, AY +YB]|. (20)
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5. Numerical Examples

In order to illustrate the performance of the two-stage iteration (TS iteration) method, some
examples were performed in Matlab on an Intel dual core processor (1.00 GHz, 2 GB RAM) and the
parallel machine Lenovo Shen-teng 1800 cluster. All iterations were started from a zero matrix and
terminated when the current iterate satisfied ‖R(k)‖ < 10−6, where R(k) = F− (AX(k) + X(k)B) is the
residual of the kth iteration.

Here we compare the TS iteration method with the HSS iteration method proposed in [29].

Notation:
T the computational time in seconds
ITs the number of iteration steps
p the total number of processors
S speedup ratio
E1 parallel efficiency
∆ error ‖R(k)‖

Example 1. Consider the continuous Sylvester Equation (1) with m = n and the matrices

A = B = M + 2rN +
100

(n + 1)2 I,

where I is the identity matrix, and M, N ∈ Rn×n are the tridiagonal matrices given by

M = tridiag(−1,−2,−1) and N = tridiag(0.5, 0,−0.5).

The goal in this test is to compare the iteration steps and the computational time by using
TS iteration method, HSS iteration method, and MCG method with r = 0.01, r = 0.1, and
r = 1.0. The numerical results are listed in Tables 1–3, respectively. The optimal parameters
αexp (with βexp = αexp) for the HSS iteration method are given in Table 4 proposed in [29].

Table 1. Comparison of the the number of iteration steps (ITs) and the computational time in seconds
(T) when choosing r = 0.01. HSS: Hermitian and skew-Hermitian splitting; MCG: modified conjugate
gradient method; TS: two-stage iteration.

n TS HSS MCG

ITs T ITs T ITs T

32 4 0.030 41 0.053 237 0.036
64 20 0.070 111 0.378 943 0.356

128 130 1.411 270 5.995 4091 9.526

Table 2. Comparison of ITs and T when choosing r = 0.1.

n TS HSS MCG

ITs T ITs T ITs T

32 10 0.020 55 0.055 250 0.040
64 27 0.159 96 0.464 1006 0.399

128 149 2.593 205 7.996 3864 9.010
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Table 3. Comparison of ITs and T when choosing r = 1.0.

n TS HSS MCG

ITs T ITs T ITs T

32 31 0.043 48 0.061 183 0.059
64 54 0.395 125 0.443 254 0.415
128 158 5.796 247 8.872 458 8.236

Table 4. The optimal values αexp for HSS.

n HSS

r = 0.01 r = 0.1 r = 1.0

32 0.40 0.40 0.95
64 0.17 0.23 0.81
128 0.09 0.13 0.62

From the above tables, we see that both iteration steps and computational time by the TS method
are much less than those by the HSS and MCG in all cases. The comparison between MCG and HSS is
not straight-forward. Furthermore, for the above tables we observe that in some cases the number of
iteration steps of MCG is larger than that of HSS, while on the contrary, for the computational time it
mainly depends on the computational time of each iteration step.

Example 2. Consider the elliptic partial differential equation

∂2u
∂x2 +

∂2u
∂y2 + sin 2πx

∂u
∂x

+ sin 2πy
∂u
∂y

+ u = 0, 0 ≤ x, y ≤ 1

with boundary condition {
u|x=0 = u|x=1 = 10 + cos πy

u|y=0 = u|y=1 = 10 + cos πx
.

Let the step size be h = 1/101 and h = 1/1001. That means that the size of the linear system is
100× 100 and 1000× 1000, respectively. The equation is discretized by using five-point difference
format, and then is transformed into a Sylvester equation. The numerical results are shown in
Tables 5 and 6. This numerical experiment is performed on the parallel machine Lenovo Shen-teng
1800 cluster. Here we focus on comparing the parallel performance with the TS iteration method and
the MCG method.

Table 5. Numerical results of Example 2 with h = 1/101.

TS MCG

p 1 2 4 6 1 2 4 6
T 140.25 77.62 39.83 30.45 297.47 160.89 84.29 63.56

ITs 1067 1067 1067 1067 4992 4992 4992 4992
S 1.81 3.52 4.61 1.85 3.53 4.68
E1 1.00 0.90 0.88 0.77 0.47 0.44 0.42 0.37
∆ 9.66 × 10−7 9.66 × 10−7 9.66 × 10−7 9.14 × 10−7 9.01 × 10−7 9.13 × 10−7 9.11 × 10−7 9.80 × 10−7
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Table 6. Numerical results of Example 2 with h = 1/1001.

TS MCG

p 20 25 30 35 20 25 30 35
T 641.12 569.88 491.28 463.74 1563.70 1374.68 1184.62 1116.93

ITs 7194 7194 7194 7194 91,332 91,332 91,332 91,336
S 22.50 26.10 27.65 22.75 26.40 28.00
E1 1.00 0.90 0.87 0.79 0.16 0.37 0.36 0.33
∆ 9.72 × 10−7 9.72 × 10−7 9.72 × 10−7 9.72 × 10−7 9.83 × 10−7 9.83 × 10−7 9.93 × 10−7 9.54 × 10−7

From the results Tables 5 and 6, we observe that both iteration steps and computational time
using TS are much less than those with the MCG. Furthermore, parallel efficiency with the TS method
is higher than with the MCG. In addition, the advantages of the TS method increase over the MCG
method with increasing scale-size of equations from 104 (n = 100) to 106 (n = 1000).

Example 3. Let A = (aij)n×n and B = (bij)n×n where

aij =

{
−n + sin(i + j), i = j

i, others
, bij =


3 + 2 sin(i + j), i = j

cos(i + j), j− i = 1.

sin(i + j), i− j = 1

In the Sylvester matrix equation AX + XB = F, let n = 1000 and F is an any given matrix.
The numerical results are listed in Table 7.

Table 7. Numerical results of Example 3.

TS

p 16 20 24 28
T 2480.19 2351.59 2296.47 2241.46

ITs 509 509 509 509
S 16.87 17.28 17.92
E1 1.00 0.84 0.72 0.64
∆ 8.83 × 10−7 8.83 × 10−7 8.83 × 10−7 8.83 × 10−7

From Table 7 we observe that the two-stage iteration method is still efficient in the case that the
coefficient matrices are indefinite matrices. This indicates that the condition for the convergence is
only a sufficient condition in Theorem 1.

6. Conclusions

In this paper we have proposed a two-stage iteration parallel method for solving the continuous
Sylvester equations. The outer iteration scheme is based on the coefficient matrices’ splitting.
Furthermore, an inner iteration scheme is obtained using the SYMMLQ algorithm. Its parallel
implementation and its improved strategy have been explained in detail. Moreover, we have proved
the convergence of the proposed iteration method under certain conditions. Numerical results
show that the new proposed algorithm is better than both MCG and HSS methods with regard to
computational storage, computational time, and iteration steps. Crucially, these advantages become
more significant for large-scale systems of continuous Sylvester equations.
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