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Abstract:



In this paper, a new algorithm for sensitivity analysis of discrete hidden Markov models (HMMs) is proposed. Sensitivity analysis is a general technique for investigating the robustness of the output of a system model. Sensitivity analysis of probabilistic networks has recently been studied extensively. This has resulted in the development of mathematical relations between a parameter and an output probability of interest and also methods for establishing the effects of parameter variations on decisions. Sensitivity analysis in HMMs has usually been performed by taking small perturbations in parameter values and re-computing the output probability of interest. As recent studies show, the sensitivity analysis of an HMM can be performed using a functional relationship that describes how an output probability varies as the network’s parameters of interest change. To derive this sensitivity function, existing Bayesian network algorithms have been employed for HMMs. These algorithms are computationally inefficient as the length of the observation sequence and the number of parameters increases. In this study, a simplified efficient matrix-based algorithm for computing the coefficients of the sensitivity function for all hidden states and all time steps is proposed and an example is presented.
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1. Introduction


A Hidden Markov Model (HMM) is a stochastic model of the dynamic process of two related random processes that evolve over time. A set of stochastic processes that produces the sequence of observed symbols is used to infer an underlying stochastic process that is not observable (hidden states). HMMs have been widely utilized in many application areas including speech recognition [1], bioinformatics [2], finance [3], computer vision [4], and driver behavior modeling [5,6]. A comprehensive survey on the applications of HMMs is presented in [7]. A simple dynamic Bayesian network can be used to represent a stationary HMM with discrete variables [8,9]. Consequently, algorithms and theoretical results developed for dynamic Bayesian networks can be applied to HMMs as well.



Sensitivity analysis in HMMs has been done by perturbation analysis in which a brute-force computation of the effect of small changes on the output probability of interest is done [10,11]. Sensitivity analysis research has shown that a functional relationship can be established between a parameter variation and the output probability of interest. This function can represent the effect of any change in the parameter under consideration as compared to the perturbation analysis. Consequently, the goal of sensitivity analysis becomes developing techniques to create this function. This general function will also enable us to compute bounds on the output probabilities without sensitivity analysis [12,13,14,15].



The objective of this work is to develop an algorithm for sensitivity analysis in HMMs directly from the model’s representation. Our focus is on parameter sensitivity analysis where the variation of the output is studied as the model parameters vary. In this case, the parameters are the (conditional) probabilities of the HMM model (initial, transition, and observation parameters) and the output is some posterior probability of interest (filtering, smoothing, predicted future observations, and most probable path).



Parametric sensitivity analysis can be used for multiple purposes. The sensitivity analysis can be used to identify those parameters which have significant impact on the output probability of interest. Consequently, the result can be used as a basis for parameter tuning and studying the robustness of the model output to changes in the parameters [16,17,18].



Many researchers study the problem of sensitivity analysis in Bayesian Networks and HMMs. There are two approaches used to compute the constants of the sensitivity function in the standard Bayesian network inference algorithms. The first method is solving systems of linear equations [19] by evaluating the sensitivity function for different values of the varying parameter [image: there is no content]. The second is based on a differential approach [20] by which the coefficients of a multivariate sensitivity function can be computed from partial derivatives. The tailored version of the junction tree algorithm has been used to establish the sensitivity functions in Bayesian networks more efficiently [21,22]. In [23], sensitivity analysis of Bayesian networks for multiple parameter changes is presented. In [24], credal sets that are known to represent the probabilities of interest are used for sensitivity analysis of Markov chains. In [10,11], sensitivity analysis of HMMs based on small perturbations in the parameter values is presented. A tight perturbation bound is derived and it is shown that the distribution of the HMM tends to be more sensitive to perturbations in the emission probabilities than to the transition and initial distributions. A tailored approach for HMM sensitivity analysis, the Coefficient-Matrix-Fill procedure, is presented in [25,26]. It directly utilizes the recursive probability expressions in an HMM. Consequently, it improves the computational complexity of applying the existing approaches for sensitivity analysis in Bayesian networks to HMMs. In [27], imprecise HMMs are presented as a tool for performing sensitivity analysis of HMMs.



In this paper, we propose a sensitivity analysis algorithm for HMMs using a simplified matrix formulation directly from the model representation based on a recently proposed technique called the Coefficient-Matrix-Fill procedure [26]. Until recently, sensitivity analysis in HMMs has been performed using Bayesian network sensitivity analysis techniques. The HMM is represented as a dynamic Bayesian network unrolled for a fixed number of time slices, and the Bayesian sensitivity algorithms are used. However, these algorithms do not utilize the HMMs’ recursive probability formulations. In this work, a simple algorithm based on a simplified matrix formulation is proposed. In this algorithm, to calculate the coefficients of the sensitivity functions, a series of Forward matrices [image: there is no content] are used, where k represents the time slice in the observation sequence. The matrices (Initial, Transition, and Observation) where the corresponding model parameter [image: there is no content] varies are decomposed into the parts independent of and dependent on [image: there is no content] for mathematical convenience. This enables us to compute the coefficients of the sensitivity function at each iteration in the recursive probability expression and implement the algorithm in a computer program. These matrices are computed based on a proportional co-variation assumption. The Observation Matrix O is represented as [image: there is no content] diagonal matrices [image: there is no content] whose vth diagonal entry is [image: there is no content] for each state v and whose other entries are 0 at the time t of the observation sequence. The proposed algorithm is computationally efficient as the length of the observation sequence increases. It computes the coefficients of a polynomial sensitivity function by filling coefficient matrices for all hidden states and all time steps.



The paper is organized as follows. In Section 2, the background on HMM and Sensitivity Analysis in HMM is presented. The details of the proposed algorithm for the filtering probability sensitivity function are explained in Section 3. In Section 4, the sensitivity analysis of the smoothing probability using the proposed algorithm is discussed. Finally, the paper is concluded with a summary of the results achieved and recommendations for future research works.




2. Background


In this section, we present the background on HMMs and Sensitivity Analysis in HMMs. First, we will discuss HMMs, HMM inference tasks and their corresponding recursive probability expressions. Then sensitivity analysis in HMMs is explained based on the assumption of proportional co-variation, and a univariate polynomial sensitivity function whose coefficients the proposed algorithm computes is defined. Here, the variables are denoted by capital letters and their values by lower case letters.



2.1. Hidden Markov Models


An HMM is a stochastic statistical model of a discrete Markov chain of a finite number of hidden variables X that can be observed by a sequence of a set of output variables Y from a sensor or other sources. The probability of transitioning from one state to another in this Markov chain is time-invariant, which makes the model stationary. The observed variables Y are stochastic with the observation (emission) probabilities, which are also time invariant. The overall HMM consists of n distinct hidden states of the Markov chain and m corresponding observable symbols. In general, the observations can be discrete or continuous, however, in this work, we focus on the discrete observations. The variable X has [image: there is no content] hidden states, denoted by [image: there is no content], and the variable Y has [image: there is no content] observable symbols, denoted by [image: there is no content]. Formally, an HMM [image: there is no content] is specified by a set of parameters [image: there is no content] that are defined as follows:

	
The prior probability distribution (initial vector) [image: there is no content] has entries [image: there is no content], which are the probabilities of state [image: there is no content] being the first state in the Markov chain.



	
The transition matrix A has entries [image: there is no content], which are the probabilities of transit from state [image: there is no content] to state [image: there is no content] in the Markov chain.



	
The observation matrix O has entries [image: there is no content], which are the probabilities to observe [image: there is no content] if the current state is [image: there is no content].








An example of an HMM where X has two states and Y three symbols is shown in Figure 1a. The two states are [image: there is no content] and [image: there is no content] and based on them three symbols [image: there is no content], [image: there is no content] or [image: there is no content] are observed. The parameters of the HMM (including initial vector, transition matrix and observation matrix) are also shown in Figure 1a.


Figure 1. (a) An example of an HMM representation. (b) Its dynamic Bayesian network representation, unrolled for T time slices.



[image: Algorithms 10 00097 g001]






The dynamic Bayesian network representation of the HMM in Figure 1a is shown in Figure 1b, unrolled for T time slices [8,9]. The initial vector, transition matrix and observation matrix of the HMM are represented by the labels [image: there is no content], A and O respectively, attached to the nodes in the Bayesian network graph. The superscript for the variables X and Y and their values indicate the time slice under consideration.



In this paper, [image: there is no content] denotes the actual evidence for the variable Y in time slice t and [image: there is no content] represents a sequence of observations [image: there is no content] where [image: there is no content] is a sequence of observations from the set [image: there is no content]. The representation [image: there is no content] denotes the actual state [image: there is no content], for the variable X in time slice t.



2.1.1. Inference in HMMs


In temporal models, inference means computing the conditional probability distribution of X at time t, given the evidence up to and including time T, that is [image: there is no content]. The main inference tasks include filtering for [image: there is no content], prediction of a future state for [image: there is no content] and smoothing, that, is inferring the past for [image: there is no content]. In an HMM, the Forward-Backward algorithms are used for the inference tasks and training of the model using an iterative procedure called the Baum-Welch method (Expectation Maximization) [28,29,30]. The Forward-Backward algorithms computes the following probabilities for all hidden states i at time [image: there is no content]:

	
forward probability [image: there is no content], and



	
backward probability [image: there is no content]





resulting in


p(xit|ye1:T)=p(xit,ye1:T)p(ye1:T)=p(xit,ye1:T)∑j=1np(xjt,ye1:T)=p(xit,ye1:t)·p(yet+1:T|xit)∑j=1np(xjt,ye1:T)·p(yet+1:T|xjt)=F(i,t)·B(i,t)∑j=1nF(j,t)·B(j,t)



(1)







For [image: there is no content], the algorithm can be applied by taking [image: there is no content] and adopting the convention that the configuration of an empty set of observations is TRUE, i.e., [image: there is no content], giving


[image: there is no content]











As shown in Equation (1), any conditional probability [image: there is no content] can be calculated from the joint probabilities [image: there is no content] for all hidden states i using Bayes’ theorem. Since our objective is sensitivity analysis of the HMM output probability of interest for parameter variations, in the remainder of this paper our focus will be on the joint probabilities [image: there is no content] for all hidden states i.



The other important inference tasks are the prediction of future observations, i.e., [image: there is no content] for [image: there is no content], finding the most probable explanation, i.e., argmaxxi1:tp(xi1:t|ye1:t) using the Viterbi Algorithm and learning the HMM parameters as new observations come in using the Baum-Welch algorithm, which can be achieved by the Forward-Backward algorithms. The prediction of future observations can be computed as the fraction of the two probabilities [image: there is no content], [image: there is no content], and [image: there is no content], which are computed using forward probabilities.


[image: there is no content]











Note that if [image: there is no content], then [image: there is no content] can be computed by setting all in-between observations [image: there is no content], [image: there is no content], to [image: there is no content] as above.




2.1.2. Recursive Probability Expressions


In order to establish the sensitivity functions for HMMs directly from the model’s representation, the recursive probability expression for the Forward-Backward algorithm should be investigated. The repetitive character of the model parameters in the Forward-Backward algorithm is used to drive the sensitivity functions. Consequently, in this section the recursive expressions of the Forward-Backward algorithm [29,31] are reviewed briefly.



Filtering. The filter probability is [image: there is no content] for a specific state v of X. This probability is the same as the forward probability [image: there is no content] in the Forward-Backward algorithm. For time slice [image: there is no content], we simply have that


[image: there is no content]








where [image: there is no content] corresponds to the symbol of Y that is observed at time 1. For time slices [image: there is no content], we exploit the fact that [image: there is no content] is independent of [image: there is no content], given [image: there is no content], written [image: there is no content]. Then,


[image: there is no content]











The first factor in the above product corresponds to [image: there is no content]; conditioning the second factor on the n states of [image: there is no content], we find with [image: there is no content] that


[image: there is no content]











Taken together, we find for [image: there is no content] the recursive expression


F(v,t)=ov,e1·γvift=1ov,et·∑z=1naz,v·F(z,t−1)ift>1



(2)







Prediction. The prediction probability [image: there is no content] for [image: there is no content] can be handled by the the Forward-Backward algorithm by computing [image: there is no content] with an empty set of evidence for [image: there is no content]. It can be implemented by replacing the term [image: there is no content] by 1 for [image: there is no content] in Equation (2). As a result, for [image: there is no content], the prediction probability [image: there is no content] becomes the prior probability [image: there is no content]. The prediction task can be seen as a special case of the filtering task.



Smoothing. Finally, we consider a smoothing probability [image: there is no content] with [image: there is no content]. Using [image: there is no content] we find that


[image: there is no content]











The second term in this product is a filter probability; the first term is the same as the backward probability [image: there is no content] in the Forward-Backward algorithm. By conditioning the first term on [image: there is no content] and exploiting the independences [image: there is no content] and [image: there is no content] for [image: there is no content], we find that


p(yet+1:T|xvt)=∑z=1np(yet+1|xzt+1)·p(yet+2:T|xzt+1)·p(xzt+1|xvt)=∑z=1noz,et+1·av,z·p(yet+2:T|xzt+1)











For [image: there is no content], this results in


[image: there is no content]











Taken together, we find for [image: there is no content] the recursive expression


B(v,t)=∑z=1noz,eT·av,zift=1∑z=1noz,et+1·av,z·B(z,t+1)ift>1



(3)







In this work, we present the sensitivity of the HMM for filtering and smoothing probabilities for transition, initial and observation parameter variation. Therefore, the above discussion on the recursive probability expression for the filtering probability, Equation (2), and smoothing probability Equation (3), will be used to formulate our algorithm.





2.2. Sensitivity Analysis in HMM


As shown in recent studies [13,25,32,33], sensitivity analysis is establishing a functional relationship that describes how output probability varies as the network’s parameters change. A posterior marginal probabilities, [image: there is no content], where v is value of a variable V and e is the evidence available, is considered to represent the output probabilities of interest. The network parameter under consideration is represented as [image: there is no content] for a value [image: there is no content] of a variable V, and [image: there is no content] is an arbitrary combination of the values of the set of evidences of V. So [image: there is no content] represents the posterior marginal probabilities as a function of [image: there is no content].



Consequently, when the parameter [image: there is no content] varies, each of the other conditional probabilities [image: there is no content] from the same distribution co-vary accordingly by the ratio between the the remaining probabilities. That is, if a parameter [image: there is no content] for a variable V is varied, then


p(vi|π)(θ)=θifi=jp(vi|π)·1−θ1−p(vj|π)i≠j



(4)







The co-variation simplifies to [image: there is no content] for binary-valued V. The sensitivity function is defined based on the stated proportional co-variation assumption. The constants in the general form of the sensitivity function are generated from the network’s parameters that are neither varied nor co-varied, and their values depend on the output probability of interest. A sensitivity function for a posterior probability of interest is a quotient of two polynomial functions, since p(v|e)=p(ve)/p(e), and hence a rational function.



We have the following univariate polynomial sensitivity function to define the joint probability of a hidden state and a sequence of observations as a function of a model parameter [image: there is no content].


[image: there is no content]



(5)







The coefficients [image: there is no content] are derived from the network parameters that are not co-varied by assuming proportional co-variation of the parameters from the same conditional distribution. The coefficients [image: there is no content] depend on the hidden state v and time slice t under consideration (see for details [25,26]).





3. Sensitivity Analysis of Filtering Probability


In this section, the simplified matrix formulation for sensitivity of the filtering probability to the variation of the initial, transition and observation parameters is proposed. Let us consider the sensitivity functions [image: there is no content] for a filtering probability and the variation of one of the model parameters, viz., [image: there is no content]. From Equation (2), the forward recursive filtering probability expression, it follows that


p(xvt,ye1:t)(θ)=ov,e1(θ)·γv(θ)ift=1ov,et(θ)·∑z=1naz,v(θ)·p(xvt−1,ye1:t−1)(θ)ift>1



(6)




where


γv(θ)=γv(θγ)forinitialparametervariationθ=θγγvotherwise










az,v(θ)=az,v(θa)fortransitionparametervariationθ=θaaz,votherwise








and


ov,et(θ)=ov,et(θo)forobservationparametervariationθ=θoov,etotherwise











The sensitivity function [image: there is no content] coefficients are computed by the proposed method using a series of Forward matrices [image: there is no content]. The sensitivity of the filtering probability for transition, initial and observation parameter variations is formulated in the next subsections.



3.1. Transition Parameter Variation


In this subsection, the simplified matrix formulation (SMF) for sensitivity of the filtering probability to variation of the transition parameter is proposed. Let us consider the sensitivity functions [image: there is no content] for a filtering probability and transition parameter [image: there is no content]. From Equation (6), the recursive filtering probability sensitivity function, it follows that for [image: there is no content] we have the constant [image: there is no content], and for [image: there is no content],


[image: there is no content]



(7)







In the next sub-subsections, the formulation of the proposed method to compute the coefficients of the sensitivity function in Equation (5) is presented in detail. First, the decomposition of the transition matrix into the parts of A independent of and dependent on [image: there is no content] and the observation matrix representation for the simplified matrix formulation is presented. Then the SMF representation for the sensitivity of the filtering probability to transition parameter variation and its algorithm implementation are discussed.



3.1.1. Transition Matrix Decomposition and Observation Matrix Representation


In the proposed algorithm, to calculate the coefficients in a series of Forward matrices [image: there is no content], [image: there is no content] the Transition Matrix A is divided into [image: there is no content] and [image: there is no content] that are independent of and dependent on [image: there is no content], respectively, for mathematical convenience. The matrices [image: there is no content] and [image: there is no content] are computed based on the proportional co-variation assumption shown in Equation (4). Let us explain the decomposition considering an HMM with an [image: there is no content] Transition Matrix A with the transition parameter [image: there is no content]. This makes the transition matrix A a function of [image: there is no content], and, with the proportional co-variation assumption shown in Equation (4), it becomes


[image: there is no content]











This matrix is divided into [image: there is no content] and [image: there is no content] that are independent of and dependent on [image: there is no content], respectively, as follows, and such that [image: there is no content] = [image: there is no content] + [image: there is no content].


A¯=a1,1a1,2⋯a1,na2,1a2,2⋯a2,n⋮⋮⋱⋮0an,21−an,1⋯an,n1−an,1andA^(θa)=00⋯000⋯0⋮⋮⋱⋮1−an,21−an,1⋯−an,n1−an,1·θa











In short, this decomposition can be represented in the algorithm simply as [image: there is no content] and [image: there is no content] that are independent of and dependent on [image: there is no content], respectively.



In the simplified matrix representation, the Observation Matrix O is represented as an [image: there is no content] diagonal matrices [image: there is no content] whose [image: there is no content] diagonal entry is [image: there is no content] for each state v and whose other entries are 0 at the time t of the observation sequence [31]. Let us explain this representation by considering the HMM with an [image: there is no content] Observation Matrix O. Given the following sequence of observations: [image: there is no content] and [image: there is no content], the corresponding diagonal matrices become


O1=o1,20⋯00o2,2⋯0⋮⋮⋱⋮00⋯on,2=diag(O:,2),O2=diag(O:,1)andO3=diag(O:,3)












3.1.2. SMF for Sensitivity Analysis of the Filtering Probability to the Transition Parameter Variation


In the Simplified Matrix Representation (SMF), the sensitivity function [image: there is no content] shown in Equation (7) can be written as a simple matrix-vector multiplication. It follows that for [image: there is no content] we have the constant [image: there is no content], which becomes [image: there is no content] in the SMF. For [image: there is no content], we have


[image: there is no content]








which is represented in SMF as


[image: there is no content]











The overall procedure of computing the sensitivity coefficients of [image: there is no content] using the SMF is described in the following algorithm.




3.1.3. Algorithm Implementation


This algorithm summarizes the proposed technique, where e is the sequence of observations and [image: there is no content], and solves the recursive Equation (7). Once the Transition and Observation matrices are represented in SMF as explained above, the sensitivity coefficients are computed by filling the forward matrices [image: there is no content] for [image: there is no content]. The details of filling contents of the forward matrices in Algorithm 1 are explained as follows. [image: there is no content] is initialized by the matrix multiplications of [image: there is no content], which is a diagonal matrix whose [image: there is no content] diagonal entry is [image: there is no content], and the initial distribution vector [image: there is no content],


[image: there is no content]











The remaining matrices [image: there is no content] of size [image: there is no content] are initialized by filling them with zeros. Two temporary matrices [image: there is no content] and [image: there is no content] are used for computing the coefficients as explained previously. [image: there is no content] is computed as the matrix multiplication of [image: there is no content], [image: there is no content] (which is independent of [image: there is no content]) and [image: there is no content], and a zero vector of size n (= the number of states) is appended at its end. [image: there is no content] represents the recursion in the filtering probability. In the same way [image: there is no content] is computed as the matrix multiplication of [image: there is no content], [image: there is no content] (which is dependent on [image: there is no content]) and [image: there is no content], and a zero vector of size n is appended to the front. Then [image: there is no content] is set as the sum of [image: there is no content] and [image: there is no content]:


[image: there is no content]
















	Algorithm 1 Computes the coefficients of the forward (filtering) probability sensitivity function [image: there is no content] with [image: there is no content] in forward matrices [image: there is no content] for [image: there is no content] using SMF.



	Input: A,O,Γ,e,andθa



	Output: [image: there is no content]



	
	1:

	
[image: there is no content]




	2:

	
[image: there is no content]




	3:

	
[image: there is no content]




	4:

	
[image: there is no content]




	5:

	
[image: there is no content]




	6:

	
[image: there is no content]




	7:

	
[image: there is no content]




	8:

	
for k=2totdo




	9:

	
    [image: there is no content]




	10:

	
    [image: there is no content]




	11:

	
    [image: there is no content]




	12:

	
    [image: there is no content]




	13:

	
Return [image: there is no content]














3.2. Initial Parameter Variation


In this subsection, the sensitivity of the filtering probability to the initial parameter variation is derived based on SMF. Let us consider the sensitivity functions [image: there is no content] for a filtering probability and variation in the initial parameter [image: there is no content]. From Equation (6), the recursive filtering probability sensitivity expression, for [image: there is no content], we have [image: there is no content], and for [image: there is no content],


[image: there is no content]



(8)







3.2.1. Initial Vector Decomposition


In the proposed algorithm, to calculate the coefficients in a series of forward matrices [image: there is no content] the Initial Vector [image: there is no content] is divided into [image: there is no content] and [image: there is no content] that are independent of and dependent on [image: there is no content], respectively, for mathematical convenience. The matrices [image: there is no content] and [image: there is no content] are computed based on the proportional co-variation assumption shown in Equation (4).



Let us explain the Initial Vector [image: there is no content] decomposition considering the HMM presented in Section 3.1 where the Initial Vector [image: there is no content] is [image: there is no content] and the initial parameter variation [image: there is no content] is [image: there is no content]. This makes the Initial Vector [image: there is no content] a function of [image: there is no content], and, with the proportional co-variation assumption shown in Equation (4), it becomes


[image: there is no content]











This matrix is divided into [image: there is no content] and [image: there is no content] that are independent of and dependent on [image: there is no content], respectively, as follows, and such that [image: there is no content] = [image: there is no content] + [image: there is no content].


Γ¯=γ11−γ20⋯γn1−γ2andΓ^(θγ)=−γ11−γ21⋯−γn1−γ2·θγ











In short, this decomposition can be represented simply as [image: there is no content] and [image: there is no content] that are independent of and dependent on [image: there is no content], respectively.



Once the Initial Vector [image: there is no content] is decomposed as shown above, to compute the coefficients of the sensitivity function [image: there is no content] using the recursive Equation (8), the Observation Matrix O is represented as an [image: there is no content] diagonal matrices [image: there is no content].




3.2.2. SMF for Sensitivity Analysis of the Filtering Probability to the Initial Parameter Variation


In the simplified matrix representation, the sensitivity function [image: there is no content] shown in Equation (8) can be written as a simple matrix-vector multiplication. It follows that for [image: there is no content] we have the constant [image: there is no content], which becomes [image: there is no content] in the simplified matrix representation. For [image: there is no content], we have


[image: there is no content]








which is represented as


[image: there is no content]











To solve the forward (filtering) probability sensitivity function [image: there is no content], the following algorithm implementation is presented.




3.2.3. Algorithm Implementation


This procedure summarizes the proposed method, where e is the sequence of observations and [image: there is no content], and solves the recursive Equation (8).



As shown in Algorithm 2, once the Initial Vector is decomposed into the parts, [image: there is no content] independent of [image: there is no content] and [image: there is no content] dependent on [image: there is no content] and the Observation Matrix is represented in the diagonal matrices, the sensitivity coefficients are computed by filling the forward matrices [image: there is no content] for [image: there is no content]. The details of filling the forward matrices in Algorithm 2 are discussed as follows. [image: there is no content] is initialized as a sum of two temporary matrices [image: there is no content] and [image: there is no content] which are used to compute the coefficients for the parts independent of and dependent on [image: there is no content], respectively. [image: there is no content] is computed as the matrix multiplication of [image: there is no content] and [image: there is no content], and a zero vector of size n is appended at its end to represent the zero coefficients of degree 1. In the same way, [image: there is no content] is computed as the matrix multiplication of [image: there is no content] and [image: there is no content], and a zero vector of size n is appended in front of it to represent the zero coefficients of degree 0. Then








	Algorithm 2 This computes the coefficients of the forward (filtering) probability sensitivity function [image: there is no content] with [image: there is no content] in forward matrices [image: there is no content] for [image: there is no content] using SMF.



	Input: A,O,Γ,e,andθγ



	Output: [image: there is no content]



	
	1:

	
[image: there is no content]




	2:

	
[image: there is no content]




	3:

	
[image: there is no content]




	4:

	
[image: there is no content]




	5:

	
[image: there is no content]




	6:

	
[image: there is no content]




	7:

	
[image: there is no content]




	8:

	
[image: there is no content]




	9:

	
[image: there is no content]




	10:

	
for k=2totdo




	11:

	
    [image: there is no content]




	12:

	
    [image: there is no content]




	13:

	
Return [image: there is no content]













[image: there is no content]









The remaining matrices [image: there is no content] of size [image: there is no content] are computed using recursion. They are computed as the matrix multiplication of [image: there is no content], [image: there is no content] and [image: there is no content].





3.3. Observation Parameter Variation


In this subsection, the sensitivity of the filtering probability [image: there is no content] to the observation parameter variation is derived based on SMF. Let us consider the sensitivity functions [image: there is no content] for a filtering probability and variation in the observation parameter [image: there is no content]. From Equation (6), the recursive filtering probability sensitivity function, it follows that for [image: there is no content] we have [image: there is no content], and for [image: there is no content],


[image: there is no content]



(9)







3.3.1. Observation Matrix Decomposition


In the proposed algorithm, to calculate the coefficients in a series of forward matrices [image: there is no content] the Observation Matrix O is divided into [image: there is no content] and [image: there is no content] that are independent of and dependent on [image: there is no content], respectively, for mathematical convenience. The matrices [image: there is no content] and [image: there is no content] are computed based on the proportional co-variation assumed as shown in Equation (4). Let us explain the Observation Matrix O decomposition by considering the HMM presented in the previous section and let the observation parameter [image: there is no content] be [image: there is no content].



The observation matrix O becomes a function of [image: there is no content] based on the proportional co-variation assumption shown in Equation (4) as follows.


[image: there is no content]











This matrix is decomposed into [image: there is no content] and [image: there is no content] that are independent of and dependent on [image: there is no content], respectively, such that [image: there is no content], just as we decomposed [image: there is no content] in Section 3.1.1.



Once the Observation Matrix is decomposed into [image: there is no content] and [image: there is no content], in the SMF, they are represented as [image: there is no content] diagonal matrices. For example, the sequence of observations [image: there is no content] and [image: there is no content], the corresponding diagonal matrices become


O¯1=diag(O¯:,2),O¯2=diag(O¯:,1)andO¯3=diag(O¯:,3)










O^1=diag(O^:,2),O^2=diag(O^:,1)andO^3=diag(O^:,3)












3.3.2. SMF for Sensitivity Analysis of the Filtering Probability to the Observation Parameter Variation


In the simplified matrix representation, the sensitivity function [image: there is no content] can be written as a simple matrix-vector multiplication. From Equation (9), it follows that for [image: there is no content] we have the constant [image: there is no content], which becomes [image: there is no content] in the SMF. For [image: there is no content], we have


[image: there is no content]








which is represented as


[image: there is no content]











The derivation of the proposed technique for the sensitivity analysis of the forward (filtering) probability [image: there is no content] with observation parameter variation [image: there is no content] is formulated in Algorithm 3.








	Algorithm 3 This computes the coefficients of the forward (filtering) probability sensitivity function [image: there is no content] with [image: there is no content] in forward matrices [image: there is no content] for [image: there is no content] using SMF.



	Input: A,O,Γ,e,andθo



	Output: [image: there is no content]



	
	1:

	
[image: there is no content]




	2:

	
[image: there is no content]




	3:

	
[image: there is no content]




	4:

	
[image: there is no content]




	5:

	
[image: there is no content]




	6:

	
[image: there is no content]




	7:

	
[image: there is no content]




	8:

	
[image: there is no content]




	9:

	
[image: there is no content]




	10:

	
[image: there is no content]




	11:

	
for k=2totdo




	12:

	
    [image: there is no content]




	13:

	
    [image: there is no content]




	14:

	
    [image: there is no content]




	15:

	
    [image: there is no content]




	16:

	
    [image: there is no content]




	17:

	
Return [image: there is no content]













3.3.3. Algorithm Implementation


In this algorithm, e is the sequence of observation and [image: there is no content]. It solves the recursive sensitivity function Equation (9) in forward matrices [image: there is no content] for [image: there is no content]. The observation matrix is decomposed into the independent [image: there is no content] and dependent [image: there is no content] observation matrices on [image: there is no content]. Then, these observation matrices are represented as diagonal matrices in the SMF computation. The detailed steps of filling the contents of the forward matrices [image: there is no content] are explained as follows. [image: there is no content] is initialized as a sum of two temporary matrices [image: there is no content] and [image: there is no content], which are used to compute the coefficients for the independent and dependent parts on [image: there is no content]. [image: there is no content] is computed as the matrix multiplication of [image: there is no content] and [image: there is no content], and a zero vector of size n states is appended at its end to represent the zero coefficients of degree 1. In the same way, [image: there is no content] is computed as the matrix multiplication of [image: there is no content] and [image: there is no content], and a zero vector of size n states is appended in front of it to represent the zero coefficients of degree 0.


[image: there is no content]











The remaining matrices [image: there is no content] of size [image: there is no content] are computed using recursion. Again, two temporary matrices [image: there is no content] and [image: there is no content] are used for computing the coefficients as it is explained above. Here, [image: there is no content] is computed as the matrix multiplication of the diagonal matrix [image: there is no content] that is independent of [image: there is no content], [image: there is no content] and [image: there is no content], and a zero vector of size n states is appended at its end. [image: there is no content] represents the recursion in the filtering probability. Likewise, [image: there is no content] is computed as the matrix multiplication of the diagonal matrix [image: there is no content] that is dependent on [image: there is no content], [image: there is no content] and [image: there is no content], and a zero vector of size n states is appended in front of it. Then, [image: there is no content] is set as the sum of [image: there is no content] and [image: there is no content]:


[image: there is no content]













3.4. Filtering Sensitivity Function Example


The proposed algorithm is illustrated by the following example. The example is also used to illustrate the computations in the Coefficient-Matrix-Fill procedure in [26]. The computed coefficients using the proposed algorithm are the same as those computed using the Coefficient-Matrix-Fill procedure. However, the proposed algorithm is simplified and works for any number of hidden states and evidence (observation) variables. It is also efficient in terms of computational time as the length of the observation sequence increases.



Example 1.

Consider an HMM with binary-valued hidden state X and binary-valued evidence variable Y. Let [image: there is no content] be the initial vector for [image: there is no content]. The transition matrix A and observation matrix O be as follows:


A=0.950.050.150.85andO=0.750.250.900.10











Let us compute the sensitivity functions for the filtering probability using Algorithm 1 for the two states of [image: there is no content] as a function of transition parameter [image: there is no content] given the following sequence of observations: [image: there is no content] and [image: there is no content].



The simplified matrix formulation procedure divides the Transition Matrix A into [image: there is no content] and [image: there is no content]:


A=0.950.05θa1−θa,A¯=0.950.0501andA^=001−1











For the observation sequence given, [image: there is no content] and [image: there is no content], the diagonal matrices become


O1=0.25000.10,O2=0.75000.90andO3=0.75000.90











The coefficients for the sensitivity functions are computed by the proposed procedure using the forward matrices that are constructed as follows:


[image: there is no content]











Then, [image: there is no content], where the temporary matrices [image: there is no content] and [image: there is no content] are computed as follows:


Ftmp1=[O2*A¯′*F1,zeros(2,1)]=0.75000.90×0.9500.051×0.050.08,00=0.035600.07430










Ftmp2=[zeros(2,1),O2*A^′*F1]=00,0.75000.90×010−1×0.050.08=00.0600−0.072










F2=Ftmp1+Ftmp2=0.03560.0600.0743−0.072,








and finally, for [image: there is no content]:


Ftmp1=[O3*A¯′*F2,zeros(2,1)]=0.75000.90×0.9500.051×0.03560.0600.0743−0.072,00=0.02540.042800.0684−0.06210










Ftmp2=[zeros(2,1),O3*A^′*F2]=00,0.75000.90×010−1×0.03560.0600.0743−0.072=00.0557−0.05400−0.06680.0648










[image: there is no content]











From [image: there is no content], we have the sensitivity function


[image: there is no content]








and from [image: there is no content],


[image: there is no content]













The sensitivity functions for probability of evidence by summing column entries of the forward matrices become:


[image: there is no content]








and


[image: there is no content]











The sensitivity functions for the two filtering tasks become:


[image: there is no content]








and


[image: there is no content]








these sensitivity functions are displayed in Figure 2.


Figure 2. Sensitivity functions: (a) [image: there is no content] for both states of [image: there is no content]. (b) [image: there is no content] for both states of [image: there is no content].



[image: Algorithms 10 00097 g002]






The derivative of these sensitivity functions can be used to analyze the sensitive of the filtering tasks for the change in parameter [image: there is no content].


[image: there is no content]








and


[image: there is no content]












3.5. Run-time Analysis


The time for computing the coefficients of the filtering probabilities for transition parameter variation is recorded for the Coefficient-Matrix-Fill procedure and our method (SMF) using the HMM shown in Example (1). It is shown in Figure 3, where the Coefficient-Matrix-Fill procedure is labled as CMFP. In [26], the algorithm for the Coefficient-Matrix-Fill procedure is presented. It is shown for an HMM model with [image: there is no content] hidden states and [image: there is no content] observable symbols. The proposed SMF algorithm has shown a significant improvement in computational time compared to the Coefficient-Matrix-Fill procedure as the length of the observation sequence increases. For example, for an observation sequence length of 1000, the proposed technique takes a mean time of 0.048 s. In comparison, it takes the Coefficient-Matrix-Fill procedure 2.183 seconds. This is an improvement of 98%. The algorithms are implemented in MATLAB on a 64-bit Windows 7 Professional Workstation (Dell Precision T7600 with Intel(R) Xeon CPU E5-2680 0 @ 2.70 GHz dual core processors and 64GB RAM).


Figure 3. Time in seconds to compute the sensitivity coefficients for an observation sequence length from 1 to 1000 with a step size of 10.



[image: Algorithms 10 00097 g003]






The computational complexity of our method is linear time, [image: there is no content], where l is the length of the observation sequence, whereas the Coefficient-Matrix-Fill procedure is quadratic time, [image: there is no content]. In our method, the sensitivity function coefficients are computed in one for loop that runs for the length of the observation sequence, as shown in Algorithms 1–6, whereas in the Coefficient-Matrix-Fill procedure two nested for loops are used. It computes the sensitivity coefficients in the forward matrices element-by-element in the inner loop, which runs in increasing time up to the maximum of the length of the observation sequence, and the outer loop runs for the length of the observation sequence.





4. Sensitivity Analysis of Smoothing Probability


In this section, the sensitivity analysis of smoothing probability for variation of the transition, initial and observation parameters are presented using simplified matrix formulation. The sensitivity function [image: there is no content] where [image: there is no content] and [image: there is no content] is one of the model parameters, can be computed using the recursive probability expression shown in Equation (2) and (3).


[image: there is no content]











The first term in this product can be computed using the backward procedure as shown in Equation (3); the second term is the filtering probability that is computed using the forward procedure. Consequently, the sensitivity function for the smoothing probability [image: there is no content] is the product of the polynomial sensitivity functions computed using the forward and backward procedures. The sensitivity function for the filtering probability [image: there is no content] is discussed in Section 3. From Equation (3), the backward recursive probability expression, it follows that


p(yet+1:T|xvt)(θ)=∑z=1noz,eT(θ)·av,z(θ)ift=T−1∑z=1noz,et+1(θ)·av,z(θ)·p(yet+2:T|xzt+1)(θ)ift<T−1,



(10)




where


av,z(θ)=av,z(θa)fortransitionparametervariationθ=θaav,zotherwise,








and


oz,et(θ)=oz,et(θo)forobservationparametervariationθ=θooz,etotherwise











To compute the coefficients of the sensitivity function [image: there is no content], a series of Backward matrices [image: there is no content] based on the simplified matrix formulation as presented in Section 3 are used. In the next subsections, the sensitivity functions for the smoothing probability [image: there is no content] for transition, initial and observation parameter variations are discussed.



4.1. Transition Parameter Variation


In the simplified matrix formulation, the sensitivity function [image: there is no content] for transition parameter [image: there is no content] can be represented as follows:


[image: there is no content]











For [image: there is no content], [image: there is no content], the recursive probability expression reduces to the following:


[image: there is no content]











The proposed technique for the sensitivity analysis of the backward probability sensitivity function [image: there is no content] for the transition parameter is formulated in Algorithm 4.








	Algorithm 4 This computes the coefficients of the backward probability sensitivity function [image: there is no content] in backward matrices [image: there is no content] for [image: there is no content] using SMF.



	Input: A,O,Γ,e,andθa



	Output: [image: there is no content]



	
	1:

	
[image: there is no content]




	2:

	
[image: there is no content]




	3:

	
[image: there is no content]




	4:

	
[image: there is no content]




	5:

	
[image: there is no content]




	6:

	
[image: there is no content]




	7:

	
for k=T−1totdo




	8:

	
    [image: there is no content]




	9:

	
    [image: there is no content]




	10:

	
    [image: there is no content]




	11:

	
    [image: there is no content]




	12:

	
Return [image: there is no content]












4.1.1. Algorithm Implementation


In this algorithm, e is the sequence of observation and [image: there is no content]. It solves the recursive backward probability sensitivity function Equation (10) using the backward matrices [image: there is no content] for [image: there is no content]. Once the transition matrix is decomposed into the transition matrices [image: there is no content] independent of [image: there is no content] and [image: there is no content] dependent on [image: there is no content], the coefficients of the sensitivity function are computed by filling the backward matrices [image: there is no content] as follows. First, [image: there is no content] is initialized as a vector of ones for n hidden states.


[image: there is no content]











The remaining matrices [image: there is no content] of size [image: there is no content] are computed by filling them as follows: Once the observation matrix [image: there is no content] is represented as a diagonal matrix, two temporary matrices [image: there is no content] and [image: there is no content] are used for computing the coefficients as previously explained. [image: there is no content] is computed as the matrix multiplication of [image: there is no content] that is independent of [image: there is no content], [image: there is no content] and [image: there is no content] and a zero vector of size n is appended at its end. [image: there is no content] represents the recursion in the backward probability. The same way [image: there is no content] is computed as the matrix multiplication of [image: there is no content] that is dependent on [image: there is no content], [image: there is no content] and [image: there is no content] and a zero vector of size n is appended to the front. Then [image: there is no content] is set as the sum of [image: there is no content] and [image: there is no content],


[image: there is no content]













4.2. Initial Parameter Variation


In this subsection, the sensitivity of the backward probability to initial parameter variation is derived based on SMF. The sensitivity function [image: there is no content] for initial parameter variation [image: there is no content], as shown in the recursive backward probability sensitivity function in Equation (10), can be represented in SMF as


[image: there is no content]











For [image: there is no content], [image: there is no content] and the recursive probability expression reduces to


[image: there is no content]











The procedure to compute the coefficients of the function [image: there is no content] in backward matrices [image: there is no content] for [image: there is no content] using SMF is summarized in Algorithm 5.








	Algorithm 5 This computes the coefficients of the backward probability sensitivity function [image: there is no content] with [image: there is no content] in backward matrices [image: there is no content] for [image: there is no content] using SMF.



	Input: A,O,Γ,e,andθγ



	Output: [image: there is no content]



	
	1:

	
[image: there is no content]




	2:

	
for k=T−1totdo




	3:

	
    [image: there is no content]




	4:

	
    [image: there is no content]




	5:

	
Return [image: there is no content]












4.2.1. Algorithm Implementation


As discussed above, the sensitivity function for the backward probability [image: there is no content] with [image: there is no content] is a polynomial of degree zero. The contents of the backward matrices [image: there is no content] are filled as follows. [image: there is no content] is initialized as a vector of ones for n hidden states.


[image: there is no content]











The remaining matrices [image: there is no content] of size [image: there is no content] are computed by filling them as follows. Once the observation matrix [image: there is no content] is represented as a diagonal matrix, [image: there is no content] is set as the matrix multiplication of A, [image: there is no content] and [image: there is no content]. [image: there is no content] represents the recursion in the backward probability.





4.3. Observation Parameter Variation


The sensitivity function for the backward probability [image: there is no content] for the observation parameter variation [image: there is no content] can be represented as follows:


[image: there is no content]











For [image: there is no content], [image: there is no content], the recursive probability expression reduces to the following


[image: there is no content]











The sensitivity analysis of the backward probability sensitivity function [image: there is no content] for observation parameter variation [image: there is no content] is summarized in Algorithm 6.








	Algorithm 6 This computes the coefficients of the backward probability sensitivity function [image: there is no content] with [image: there is no content] in backward matrices [image: there is no content] for [image: there is no content] using SMF.



	Input: A,O,Γ,e,andθo



	Output: [image: there is no content]



	
	1:

	
[image: there is no content]




	2:

	
[image: there is no content]




	3:

	
[image: there is no content]




	4:

	
[image: there is no content]




	5:

	
[image: there is no content]




	6:

	
[image: there is no content]




	7:

	
for k=T−1totdo




	8:

	
    [image: there is no content]




	9:

	
    [image: there is no content]




	10:

	
    [image: there is no content]




	11:

	
    [image: there is no content]




	12:

	
    [image: there is no content]




	13:

	
Return [image: there is no content]












4.3.1. Algorithm Implementation


In this algorithm, e is the sequence of observation and [image: there is no content] and it solves the recursive backward probability sensitivity function Equation (10) in the backward matrices [image: there is no content] for [image: there is no content] using SMF. Once the observation matrix is decomposed into the independent [image: there is no content] and dependent [image: there is no content] observation matrices on [image: there is no content], the coefficients of the sensitivity function [image: there is no content] are computed by filling the backward matrices [image: there is no content] as follows: [image: there is no content] is initialized as a vector of ones for n hidden states.


[image: there is no content]











The remaining matrices [image: there is no content] of size [image: there is no content] are computed by filling them as follows: Once the independent [image: there is no content] and dependent [image: there is no content] observation matrices on [image: there is no content] is represented as a diagonal matrix, two temporary matrices [image: there is no content] and [image: there is no content] are used for computing the coefficients of the sensitivity function as previously explained. [image: there is no content] is computed as the matrix multiplication of A, [image: there is no content] and [image: there is no content]. A zero vector of size n is appended at its end. [image: there is no content] represents the recursion in the backward probability. In the same way [image: there is no content] is computed as the matrix multiplication of A, [image: there is no content] and [image: there is no content] and a zero vector of size n is appended to the front. Then [image: there is no content] is set as the sum of [image: there is no content] and [image: there is no content],


[image: there is no content]














5. Conclusions and Future Research


This research has shown that it is more efficient to compute the coefficients for the HMM sensitivity function directly from the HMM representation. The proposed method exploits the simplified matrix formulation for HMMs. A simple algorithm is presented which computes the coefficients for the sensitivity function of filtering and smoothing probabilities for transition, initial and observation parameter variation for all hidden states, as well as all time steps. This method differs from the other approaches in that it neither depends on a specific computational architecture nor requires a Bayesian network representation of the HMM.



The future extension of this work will include sensitivity analysis of predicted future observations [image: there is no content], and the most probable explanation for the corresponding parameter variations. Future research on the sensitivity analysis of HMM, where different types of model parameters are varied simultaneously, as well as the case of continuous observations will be considered.
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