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Abstract: In this paper, a new algorithm for sensitivity analysis of discrete hidden Markov models
(HMMs) is proposed. Sensitivity analysis is a general technique for investigating the robustness of
the output of a system model. Sensitivity analysis of probabilistic networks has recently been studied
extensively. This has resulted in the development of mathematical relations between a parameter
and an output probability of interest and also methods for establishing the effects of parameter
variations on decisions. Sensitivity analysis in HMMs has usually been performed by taking small
perturbations in parameter values and re-computing the output probability of interest. As recent
studies show, the sensitivity analysis of an HMM can be performed using a functional relationship
that describes how an output probability varies as the network’s parameters of interest change.
To derive this sensitivity function, existing Bayesian network algorithms have been employed for
HMMs. These algorithms are computationally inefficient as the length of the observation sequence
and the number of parameters increases. In this study, a simplified efficient matrix-based algorithm
for computing the coefficients of the sensitivity function for all hidden states and all time steps is
proposed and an example is presented.
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1. Introduction

A Hidden Markov Model (HMM) is a stochastic model of the dynamic process of two related
random processes that evolve over time. A set of stochastic processes that produces the sequence
of observed symbols is used to infer an underlying stochastic process that is not observable
(hidden states). HMMs have been widely utilized in many application areas including speech
recognition [1], bioinformatics [2], finance [3], computer vision [4], and driver behavior modeling [5,6].
A comprehensive survey on the applications of HMMs is presented in [7]. A simple dynamic Bayesian
network can be used to represent a stationary HMM with discrete variables [8,9]. Consequently,
algorithms and theoretical results developed for dynamic Bayesian networks can be applied to HMMs
as well.

Sensitivity analysis in HMMs has been done by perturbation analysis in which a brute-force
computation of the effect of small changes on the output probability of interest is done [10,11].
Sensitivity analysis research has shown that a functional relationship can be established between
a parameter variation and the output probability of interest. This function can represent the effect
of any change in the parameter under consideration as compared to the perturbation analysis.
Consequently, the goal of sensitivity analysis becomes developing techniques to create this function.
This general function will also enable us to compute bounds on the output probabilities without
sensitivity analysis [12–15].
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The objective of this work is to develop an algorithm for sensitivity analysis in HMMs directly
from the model’s representation. Our focus is on parameter sensitivity analysis where the variation of
the output is studied as the model parameters vary. In this case, the parameters are the (conditional)
probabilities of the HMM model (initial, transition, and observation parameters) and the output is
some posterior probability of interest (filtering, smoothing, predicted future observations, and most
probable path).

Parametric sensitivity analysis can be used for multiple purposes. The sensitivity analysis can be
used to identify those parameters which have significant impact on the output probability of interest.
Consequently, the result can be used as a basis for parameter tuning and studying the robustness of
the model output to changes in the parameters [16–18].

Many researchers study the problem of sensitivity analysis in Bayesian Networks and HMMs.
There are two approaches used to compute the constants of the sensitivity function in the standard
Bayesian network inference algorithms. The first method is solving systems of linear equations [19]
by evaluating the sensitivity function for different values of the varying parameter θ. The second is
based on a differential approach [20] by which the coefficients of a multivariate sensitivity function
can be computed from partial derivatives. The tailored version of the junction tree algorithm has
been used to establish the sensitivity functions in Bayesian networks more efficiently [21,22]. In [23],
sensitivity analysis of Bayesian networks for multiple parameter changes is presented. In [24], credal
sets that are known to represent the probabilities of interest are used for sensitivity analysis of Markov
chains. In [10,11], sensitivity analysis of HMMs based on small perturbations in the parameter values
is presented. A tight perturbation bound is derived and it is shown that the distribution of the HMM
tends to be more sensitive to perturbations in the emission probabilities than to the transition and
initial distributions. A tailored approach for HMM sensitivity analysis, the Coefficient-Matrix-Fill
procedure, is presented in [25,26]. It directly utilizes the recursive probability expressions in an HMM.
Consequently, it improves the computational complexity of applying the existing approaches for
sensitivity analysis in Bayesian networks to HMMs. In [27], imprecise HMMs are presented as a tool
for performing sensitivity analysis of HMMs.

In this paper, we propose a sensitivity analysis algorithm for HMMs using a simplified matrix
formulation directly from the model representation based on a recently proposed technique called the
Coefficient-Matrix-Fill procedure [26]. Until recently, sensitivity analysis in HMMs has been performed
using Bayesian network sensitivity analysis techniques. The HMM is represented as a dynamic
Bayesian network unrolled for a fixed number of time slices, and the Bayesian sensitivity algorithms
are used. However, these algorithms do not utilize the HMMs’ recursive probability formulations.
In this work, a simple algorithm based on a simplified matrix formulation is proposed. In this algorithm,
to calculate the coefficients of the sensitivity functions, a series of Forward matrices Fk, k = 1, ..., t are
used, where k represents the time slice in the observation sequence. The matrices (Initial, Transition,
and Observation) where the corresponding model parameter θ varies are decomposed into the parts
independent of and dependent on θ for mathematical convenience. This enables us to compute the
coefficients of the sensitivity function at each iteration in the recursive probability expression and
implement the algorithm in a computer program. These matrices are computed based on a proportional
co-variation assumption. The Observation Matrix O is represented as n × n diagonal matrices Ot

whose vth diagonal entry is P(yt
e|xt

v) for each state v and whose other entries are 0 at the time t of
the observation sequence. The proposed algorithm is computationally efficient as the length of the
observation sequence increases. It computes the coefficients of a polynomial sensitivity function by
filling coefficient matrices for all hidden states and all time steps.

The paper is organized as follows. In Section 2, the background on HMM and Sensitivity Analysis
in HMM is presented. The details of the proposed algorithm for the filtering probability sensitivity
function are explained in Section 3. In Section 4, the sensitivity analysis of the smoothing probability
using the proposed algorithm is discussed. Finally, the paper is concluded with a summary of the
results achieved and recommendations for future research works.
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2. Background

In this section, we present the background on HMMs and Sensitivity Analysis in HMMs. First,
we will discuss HMMs, HMM inference tasks and their corresponding recursive probability expressions.
Then sensitivity analysis in HMMs is explained based on the assumption of proportional co-variation,
and a univariate polynomial sensitivity function whose coefficients the proposed algorithm computes
is defined. Here, the variables are denoted by capital letters and their values by lower case letters.

2.1. Hidden Markov Models

An HMM is a stochastic statistical model of a discrete Markov chain of a finite number of
hidden variables X that can be observed by a sequence of a set of output variables Y from a sensor
or other sources. The probability of transitioning from one state to another in this Markov chain is
time-invariant, which makes the model stationary. The observed variables Y are stochastic with the
observation (emission) probabilities, which are also time invariant. The overall HMM consists of
n distinct hidden states of the Markov chain and m corresponding observable symbols. In general,
the observations can be discrete or continuous, however, in this work, we focus on the discrete
observations. The variable X has n ≥ 2 hidden states, denoted by xi, 1 ≤ i ≤ n, and the variable Y
has m ≥ 2 observable symbols, denoted by yj, 1 ≤ j ≤ m. Formally, an HMM Λ is specified by a set of
parameters (A, O, Γ) that are defined as follows:

1. The prior probability distribution (initial vector) Γ has entries γi = p(xi), 1 ≤ i ≤ n, which are the
probabilities of state xi being the first state in the Markov chain.

2. The transition matrix A has entries ai,j = p(xj|xi), 1 ≤ i, j ≤ n, which are the probabilities of
transit from state xi to state xj in the Markov chain.

3. The observation matrix O has entries oi,j = p(yj|xi), 1 ≤ i ≤ n, 1 ≤ j ≤ m, which are the
probabilities to observe yj if the current state is xi.

An example of an HMM where X has two states and Y three symbols is shown in Figure 1a.
The two states are x1 and x2 and based on them three symbols y1, y2 or y3 are observed. The parameters
of the HMM (including initial vector, transition matrix and observation matrix) are also shown in
Figure 1a.

The dynamic Bayesian network representation of the HMM in Figure 1a is shown in Figure 1b,
unrolled for T time slices [8,9]. The initial vector, transition matrix and observation matrix of the
HMM are represented by the labels Γ, A and O respectively, attached to the nodes in the Bayesian
network graph. The superscript for the variables X and Y and their values indicate the time slice under
consideration.

In this paper, yt
e denotes the actual evidence for the variable Y in time slice t and y

ti :tj
e represents

a sequence of observations yti
e , ..., y

tj
e where e is a sequence of observations from the set yj, 1 ≤ j ≤ m.

The representation xt
i denotes the actual state xi, 1 ≤ i ≤ n, for the variable X in time slice t.

2.1.1. Inference in HMMs

In temporal models, inference means computing the conditional probability distribution of X
at time t, given the evidence up to and including time T, that is p(Xt|y1:T

e ). The main inference
tasks include filtering for T = t, prediction of a future state for t > T and smoothing, that, is inferring
the past for t < T. In an HMM, the Forward-Backward algorithms are used for the inference tasks
and training of the model using an iterative procedure called the Baum-Welch method (Expectation
Maximization) [28–30]. The Forward-Backward algorithms computes the following probabilities for all
hidden states i at time t ≤ T:
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Figure 1. (a) An example of an HMM representation. (b) Its dynamic Bayesian network representation,
unrolled for T time slices.

• forward probability F(i, t) = p(xt
i , y1:t

e ), and
• backward probability B(i, t) = p(yt+1:T

e |xt
i )

resulting in

p(xt
i |y1:T

e ) =
p(xt

i , y1:T
e )

p(y1:T
e )

=
p(xt

i , y1:T
e )

∑n
j=1 p(xt

j , y1:T
e )

=
p(xt

i , y1:t
e ) · p(yt+1:T

e |xt
i )

∑n
j=1 p(xt

j , y1:T
e ) · p(yt+1:T

e |xt
j)

=
F(i, t) · B(i, t)

∑n
j=1 F(j, t) · B(j, t)

(1)

For T < t, the algorithm can be applied by taking B(i, t) = 1 and adopting the convention that
the configuration of an empty set of observations is TRUE, i.e., yT+1:t

e ≡ TRUE, giving

F(i, t) = p(xt
i , y1:t

e ) = p(xt
i , y1:T

e , TRUE) = p(xt
i , y1:T

e )

As shown in Equation (1), any conditional probability p(xt
i |y1:T

e ) can be calculated from the joint
probabilities p(xt

i , y1:T
e ) for all hidden states i using Bayes’ theorem. Since our objective is sensitivity

analysis of the HMM output probability of interest for parameter variations, in the remainder of this
paper our focus will be on the joint probabilities p(xt

i , y1:T
e ) for all hidden states i.

The other important inference tasks are the prediction of future observations, i.e., p(yt
e|y1:T

e ) for
t > T, finding the most probable explanation, i.e., arg maxx1:t

i
p(x1:t

i |y1:t
e ) using the Viterbi Algorithm and

learning the HMM parameters as new observations come in using the Baum-Welch algorithm, which can
be achieved by the Forward-Backward algorithms. The prediction of future observations can be computed
as the fraction of the two probabilities p(yt

e, y1:T
e ), t > T, and p(y1:T

e ), which are computed using
forward probabilities.

p(y1:t
e ) =

n

∑
i=1

p(xt
i , y1:t

e ) =
n

∑
i=1

F(i, t)

Note that if t > T + 1, then p(yt
e, y1:T

e ) can be computed by setting all in-between observations yk
e,

t > k > T, to TRUE as above.
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2.1.2. Recursive Probability Expressions

In order to establish the sensitivity functions for HMMs directly from the model’s representation,
the recursive probability expression for the Forward-Backward algorithm should be investigated.
The repetitive character of the model parameters in the Forward-Backward algorithm is used
to drive the sensitivity functions. Consequently, in this section the recursive expressions of the
Forward-Backward algorithm [29,31] are reviewed briefly.

Filtering. The filter probability is p(xt
v, yt

e) for a specific state v of X. This probability is the same as
the forward probability F(v, t) in the Forward-Backward algorithm. For time slice t = 1, we simply
have that

p(x1
v, y1

e) = p(y1
e|x1

v).p(x1
v) = ov,e1 .γv,

where e1 corresponds to the symbol of Y that is observed at time 1. For time slices t > 1, we exploit
the fact that Yt is independent of Y1, ..., Yt−1, given Xt, written Yt ⊥ Y1:t−1|Xt. Then,

p(xt
v, y1:t

e ) = p(xt
v, y1:t−1

e , yt
e) = p(yt

e|xt
v).p(xt

v, y1:t−1
e )

The first factor in the above product corresponds to ov,et ; conditioning the second factor on the n
states of Xt−1, we find with Xt ⊥ Y1:t−1|Xt−1 that

p(xt
v, y1:t−1

e ) =
n

∑
z=1

p(xt
v|xt−1

z ).p(xt−1
z , y1:t−1

e ) =
n

∑
z=1

az,v.p(xt−1
z , y1:t−1

e )

Taken together, we find for F(v, t) = p(xt
v, y1:t

e ) the recursive expression

F(v, t) =

ov,e1 .γv if t = 1

ov,et . ∑n
z=1 az,v.F(z, t− 1) if t > 1

(2)

Prediction. The prediction probability p(xt
v, y1:T

e ) for t > T can be handled by the the
Forward-Backward algorithm by computing F(v, t) with an empty set of evidence for YT+1:t. It can
be implemented by replacing the term ov,et by 1 for t > T in Equation (2). As a result, for T = 0, the
prediction probability p(xt

v, y1:T
e ) becomes the prior probability p(xt

v). The prediction task can be seen as
a special case of the filtering task.

Smoothing. Finally, we consider a smoothing probability p(xt
v, y1:T

e ) with t < T. Using Yt+1:T ⊥
Y1:t|Xt we find that

p(xt
v, y1:T

e ) = p(xt
v, y1:t

e , yt+1:T
e ) = p(yt+1:T

e |xt
v).p(xt

v, y1:t
e )

The second term in this product is a filter probability; the first term is the same as the backward
probability B(v, t) in the Forward-Backward algorithm. By conditioning the first term on Xt+1 and
exploiting the independences Xt ⊥ Yt+1:T |Xt+1 and Yt+1 ⊥ Yt+2:T |Xt+1 for T > t + 1, we find that

p(yt+1:T
e |xt

v) =
n

∑
z=1

p(yt+1
e |xt+1

z ).p(yt+2:T
e |xt+1

z ).p(xt+1
z |xt

v)

=
n

∑
z=1

oz,et+1 .av,z.p(yt+2:T
e |xt+1

z )

For t + 1 = T, this results in

p(yT:T
e |xT−1

v ) =
n

∑
z=1

p(yT
e |xT

z ).p(xT
z |xT−1

v ) =
n

∑
z=1

oz,eT .av,z
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Taken together, we find for B(v, t) = p(yt+1:T
e |xt

v) the recursive expression

B(v, t) =

∑n
z=1 oz,eT .av,z if t = 1

∑n
z=1 oz,et+1 .av,z.B(z, t + 1) if t > 1

(3)

In this work, we present the sensitivity of the HMM for filtering and smoothing probabilities
for transition, initial and observation parameter variation. Therefore, the above discussion on the
recursive probability expression for the filtering probability, Equation (2), and smoothing probability
Equation (3), will be used to formulate our algorithm.

2.2. Sensitivity Analysis in HMM

As shown in recent studies [13,25,32,33], sensitivity analysis is establishing a functional
relationship that describes how output probability varies as the network’s parameters change.
A posterior marginal probabilities, y = p(v|e), where v is value of a variable V and e is the evidence
available, is considered to represent the output probabilities of interest. The network parameter
under consideration is represented as θ = p(vj|π) for a value vj of a variable V, and π is an arbitrary
combination of the values of the set of evidences of V. So p(v|e)(θ) represents the posterior marginal
probabilities as a function of θ.

Consequently, when the parameter θ = p(vj|π) varies, each of the other conditional probabilities
θ = p(vi|π) from the same distribution co-vary accordingly by the ratio between the the remaining
probabilities. That is, if a parameter θ = p(vj|π) for a variable V is varied, then

p(vi|π)(θ) =

θ if i = j

p(vi|π). 1−θ
1−p(vj |π)

i 6= j
(4)

The co-variation simplifies to p(vi|π)(θ) = 1− θ for binary-valued V. The sensitivity function is
defined based on the stated proportional co-variation assumption. The constants in the general form
of the sensitivity function are generated from the network’s parameters that are neither varied nor
co-varied, and their values depend on the output probability of interest. A sensitivity function for
a posterior probability of interest is a quotient of two polynomial functions, since p(v|e) = p(v e)/p(e),
and hence a rational function.

We have the following univariate polynomial sensitivity function to define the joint probability of
a hidden state and a sequence of observations as a function of a model parameter θ.

p(xt
v, y1:T

e ) =
N

∑
i=0

ct
v,i · θi (5)

The coefficients ct
v,i are derived from the network parameters that are not co-varied by assuming

proportional co-variation of the parameters from the same conditional distribution. The coefficients
ct

v,i depend on the hidden state v and time slice t under consideration (see for details [25,26]).

3. Sensitivity Analysis of Filtering Probability

In this section, the simplified matrix formulation for sensitivity of the filtering probability to
the variation of the initial, transition and observation parameters is proposed. Let us consider
the sensitivity functions p(xt

v, y1:t
e )(θ) for a filtering probability and the variation of one of the

model parameters, viz., θ. From Equation (2), the forward recursive filtering probability expression,
it follows that

p(xt
v, y1:t

e )(θ) =

ov,e1(θ) · γv(θ) if t = 1

ov,et(θ) ·∑n
z=1 az,v(θ) · p(xt−1

v , y1:t−1
e )(θ) if t > 1

(6)
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where

γv(θ) =

γv(θγ) for initial parameter variation θ = θγ

γv otherwise

az,v(θ) =

az,v(θa) for transition parameter variation θ = θa

az,v otherwise

and

ov,et(θ) =

ov,et(θo) for observation parameter variation θ = θo

ov,et otherwise

The sensitivity function p(xt
v, y1:t

e )(θ) coefficients are computed by the proposed method using
a series of Forward matrices Fk, k = 1, ..., t. The sensitivity of the filtering probability for transition,
initial and observation parameter variations is formulated in the next subsections.

3.1. Transition Parameter Variation

In this subsection, the simplified matrix formulation (SMF) for sensitivity of the filtering
probability to variation of the transition parameter is proposed. Let us consider the sensitivity functions
p(xt

v, y1:t
e )(θa) for a filtering probability and transition parameter θa = ar,s. From Equation (6), the

recursive filtering probability sensitivity function, it follows that for t = 1 we have the constant
p(x1

v, y1
e)(θa) = ov,e1 · γv, and for t > 1,

p(xt
v, y1:t

e )(θa) = ov,et ·
n

∑
z=1

az,v(θa) · p(xt−1
v , y1:t−1

e )(θa) (7)

In the next sub-subsections, the formulation of the proposed method to compute the coefficients
of the sensitivity function in Equation (5) is presented in detail. First, the decomposition of the
transition matrix into the parts of A independent of and dependent on θa and the observation matrix
representation for the simplified matrix formulation is presented. Then the SMF representation
for the sensitivity of the filtering probability to transition parameter variation and its algorithm
implementation are discussed.

3.1.1. Transition Matrix Decomposition and Observation Matrix Representation

In the proposed algorithm, to calculate the coefficients in a series of Forward matrices
Fk, k = 1, ..., t, the Transition Matrix A is divided into Ā and Â that are independent of and
dependent on θa, respectively, for mathematical convenience. The matrices Ā and Â are computed
based on the proportional co-variation assumption shown in Equation (4). Let us explain the
decomposition considering an HMM with an n× n Transition Matrix A with the transition parameter
θa = ar,s = an,1 = p(xt

1|xt−1
n ). This makes the transition matrix A a function of θa, and, with the

proportional co-variation assumption shown in Equation (4), it becomes

A(θa) =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

θa an,2. 1−θa
1−an,1

· · · an,n. 1−θa
1−an,1


This matrix is divided into Ā and Â that are independent of and dependent on θa, respectively,

as follows, and such that A(θa) = Ā + Â(θa).
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Ā =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

0 an,2
1−an,1

· · · an,n
1−an,1

 and Â(θa) =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
1 −an,2

1−an,1
· · · −an,n

1−an,1

 · θa

In short, this decomposition can be represented in the algorithm simply as Ā and Â that are
independent of and dependent on θa, respectively.

In the simplified matrix representation, the Observation Matrix O is represented as an n × n
diagonal matrices Ot whose vth diagonal entry is P(yt

e|xt
v) for each state v and whose other entries are

0 at the time t of the observation sequence [31]. Let us explain this representation by considering the
HMM with an n×m Observation Matrix O. Given the following sequence of observations: y1

2, y2
1 and

y3
3, the corresponding diagonal matrices become

O1 =


o1,2 0 · · · 0
0 o2,2 · · · 0
...

...
. . .

...
0 0 · · · on,2

 = diag(O:,2), O2 = diag(O:,1) and O3 = diag(O:,3)

3.1.2. SMF for Sensitivity Analysis of the Filtering Probability to the Transition Parameter Variation

In the Simplified Matrix Representation (SMF), the sensitivity function p(xt
v, y1:t

e )(θa) shown in
Equation (7) can be written as a simple matrix-vector multiplication. It follows that for t = 1 we have
the constant p(x1

v, y1
e)(θa) = ov,e1 · γv, which becomes p(X1, y1

e)(θa) = O1Γᵀ in the SMF. For t > 1,
we have

p(xt
v, y1:t

e )(θa) = ov,et ·
n

∑
z=1

az,v(θa) · p(xt−1
v , y1:t−1

e )(θa)

which is represented in SMF as

p(Xt, yt
e)(θa) = Ot A(θa)

ᵀp(Xt−1, y1:t−1
e )(θa)

The overall procedure of computing the sensitivity coefficients of p(Xt, yt
e)(θa) using the SMF is

described in the following algorithm.

3.1.3. Algorithm Implementation

This algorithm summarizes the proposed technique, where e is the sequence of observations and
θ = ar,s, and solves the recursive Equation (7). Once the Transition and Observation matrices are
represented in SMF as explained above, the sensitivity coefficients are computed by filling the forward
matrices Fk for k = 1 · · · t. The details of filling contents of the forward matrices in Algorithm 1 are
explained as follows. F1 is initialized by the matrix multiplications of O1, which is a diagonal matrix
whose vth diagonal entry is P(y1

e |x1
v), and the initial distribution vector Γᵀ,

F1 = O1 ∗ Γᵀ

The remaining matrices Fk of size n × k, 2 ≤ k ≤ t, are initialized by filling them with zeros.
Two temporary matrices Ftmp1 and Ftmp2 are used for computing the coefficients as explained
previously. Ftmp1 is computed as the matrix multiplication of Ok, Āᵀ (which is independent of θa) and
Fk−1, and a zero vector of size n ( = the number of states) is appended at its end. Fk−1 represents the
recursion in the filtering probability. In the same way Ftmp2 is computed as the matrix multiplication
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of Ok, Âᵀ (which is dependent on θa) and Fk−1, and a zero vector of size n is appended to the front.
Then Fk is set as the sum of Ftmp1 and Ftmp2:

Fk = Ftmp1 + Ftmp2

Algorithm 1 Computes the coefficients of the forward (filtering) probability sensitivity function
p(xt

v, y1:t
e )(θa) with θa = ar,s in forward matrices Fk for k = 1, · · · , t using SMF.

Input: A, O, Γ, e, and θa
Output: F1, · · · , Ft

1: Ā← A
2: Ār,s ← 0
3: Ār,: ← Ār,:./(1− ar,s)
4: Â← A− Ā
5: Âr,: ← Âr,:./ar,s
6: O1 ← diag(O:,e1)
7: F1 ← O1 ∗ Γᵀ

8: for k = 2 to t do
9: Ok ← diag(O:,ek)

10: Ftmp1 ← [Ok ∗ Āᵀ ∗ Fk−1, zeros(n, 1)]
11: Ftmp2 ← [zeros(n, 1), Ok ∗ Âᵀ ∗ Fk−1]
12: Fk ← Ftmp1 + Ftmp2
13: Return F1, · · · , Ft

3.2. Initial Parameter Variation

In this subsection, the sensitivity of the filtering probability to the initial parameter variation is
derived based on SMF. Let us consider the sensitivity functions p(xt

v, y1:t
e )(θγ) for a filtering probability

and variation in the initial parameter θγ = γr. From Equation (6), the recursive filtering probability
sensitivity expression, for t = 1, we have p(x1

v, y1
e)(θγ) = ov,e1 · γv(θγ), and for t > 1,

p(xt
v, y1:t

e )(θγ) = ov,et ·
n

∑
z=1

az,v · p(xt−1
v , y1:t−1

e )(θγ) (8)

3.2.1. Initial Vector Decomposition

In the proposed algorithm, to calculate the coefficients in a series of forward matrices Fk, k = 1, ..., t,
the Initial Vector Γ is divided into Γ̄ and Γ̂ that are independent of and dependent on θγ, respectively,
for mathematical convenience. The matrices Γ̄ and Γ̂ are computed based on the proportional
co-variation assumption shown in Equation (4).

Let us explain the Initial Vector Γ decomposition considering the HMM presented in Section 3.1
where the Initial Vector Γ is [γ1, γ2, · · · , γn] and the initial parameter variation θγ is γ2 = p(x1

2).
This makes the Initial Vector Γ a function of θγ, and, with the proportional co-variation assumption
shown in Equation (4), it becomes

Γ(θγ) =
[

γ1(1−θγ)
1−γ2

θγ · · · γn(1−θγ)
1−γ2

]
This matrix is divided into Γ̄ and Γ̂ that are independent of and dependent on θγ, respectively,

as follows, and such that Γ(θγ) = Γ̄ + Γ̂(θγ).

Γ̄ =
[

γ1
1−γ2

0 · · · γn
1−γ2

]
and Γ̂(θγ) =

[
−γ1

1−γ2
1 · · · −γn

1−γ2

]
· θγ
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In short, this decomposition can be represented simply as Γ̄ and Γ̂ that are independent of and
dependent on θγ, respectively.

Once the Initial Vector Γ is decomposed as shown above, to compute the coefficients of the
sensitivity function p(xt

v, y1:t
e )(θγ) using the recursive Equation (8), the Observation Matrix O is

represented as an n× n diagonal matrices Ot.

3.2.2. SMF for Sensitivity Analysis of the Filtering Probability to the Initial Parameter Variation

In the simplified matrix representation, the sensitivity function p(xt
v, y1:t

e )(θγ) shown in
Equation (8) can be written as a simple matrix-vector multiplication. It follows that for t = 1 we have
the constant p(x1

v, y1
e)(θγ) = ov,e1 · γv(θγ), which becomes p(X1, y1

e)(θγ) = O1Γᵀ(θγ) in the simplified
matrix representation. For t > 1, we have

p(xt
v, y1:t

e )(θγ) = ov,et ·
n

∑
z=1

az,v · p(xt−1
v , y1:t−1

e )(θγ)

which is represented as
p(Xt, y1:t

e )(θγ) = Ot Aᵀp(Xt−1, y1:t−1
e )(θγ)

To solve the forward (filtering) probability sensitivity function p(xt
v, y1:t

e )(θγ), the following
algorithm implementation is presented.

3.2.3. Algorithm Implementation

This procedure summarizes the proposed method, where e is the sequence of observations and
θ = θγ, and solves the recursive Equation (8).

As shown in Algorithm 2, once the Initial Vector is decomposed into the parts, Γ̄ independent
of θγ and Γ̂ dependent on θγ and the Observation Matrix is represented in the diagonal matrices, the
sensitivity coefficients are computed by filling the forward matrices Fk for k = 1 · · · t. The details
of filling the forward matrices in Algorithm 2 are discussed as follows. F1 is initialized as a sum of
two temporary matrices Ftmp1 and Ftmp2 which are used to compute the coefficients for the parts
independent of and dependent on θγ, respectively. Ftmp1 is computed as the matrix multiplication
of O1 and Γ̄′, and a zero vector of size n is appended at its end to represent the zero coefficients of
degree 1. In the same way, Ftmp2 is computed as the matrix multiplication of O1 and Γ̂′, and a zero
vector of size n is appended in front of it to represent the zero coefficients of degree 0. Then

Algorithm 2 This computes the coefficients of the forward (filtering) probability sensitivity function
p(xt

v, y1:t
e )(θγ) with θγ = γr in forward matrices Fk for k = 1, · · · , t using SMF.

Input: A, O, Γ, e, and θγ

Output: F1, · · · , Ft

1: Γ̄← Γ
2: Γ̄r ← 0
3: Γ̄: ← Γ̄:./(1− γr)
4: Γ̂← Γ− Γ̄
5: Γ̂: ← Γ̂:./γr
6: O1 ← diag(O:,e1)
7: Ftmp1 ← [O1 ∗ Γ̄′, zeros(n, 1)]
8: Ftmp2 ← [zeros(n, 1), O1 ∗ Γ̂′]
9: F1 ← Ftmp1 + Ftmp2

10: for k = 2 to t do
11: Ok ← diag(O:,ek)
12: Fk ← [Ok ∗ A′ ∗ Fk−1]
13: Return F1, · · · , Ft
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F1 = Ftmp1 + Ftmp2

The remaining matrices Fk of size n × k, 2 ≤ k ≤ t, are computed using recursion. They are
computed as the matrix multiplication of Ok, A′ and Fk−1.

3.3. Observation Parameter Variation

In this subsection, the sensitivity of the filtering probability p(xt
v, y1:t

e ) to the observation parameter
variation is derived based on SMF. Let us consider the sensitivity functions p(xt

v, y1:t
e )(θo) for a filtering

probability and variation in the observation parameter θo = or,s. From Equation (6), the recursive
filtering probability sensitivity function, it follows that for t = 1 we have p(x1

v, y1
e)(θ0) = ov,e1(θo) · γv,

and for t > 1,

p(xt
v, y1:t

e )(θo) = ov,et(θo) ·
n

∑
z=1

az,v · p(xt−1
v , y1:t−1

e )(θo) (9)

3.3.1. Observation Matrix Decomposition

In the proposed algorithm, to calculate the coefficients in a series of forward matrices Fk, k = 1, ..., t,
the Observation Matrix O is divided into Ō and Ô that are independent of and dependent on θo,
respectively, for mathematical convenience. The matrices Ō and Ô are computed based on the
proportional co-variation assumed as shown in Equation (4). Let us explain the Observation Matrix
O decomposition by considering the HMM presented in the previous section and let the observation
parameter θo be o2,1 = p(yt

1|xt
2).

The observation matrix O becomes a function of θo based on the proportional co-variation
assumption shown in Equation (4) as follows.

O(θo) =


o1,1 o1,2 · · · o1,m

θo
o2,2(1−θo)

1−o2,1
· · · o2,m(1−θo)

1−o2,1
...

...
. . .

...
on,1 on,2 · · · on,m


This matrix is decomposed into Ō and Ô that are independent of and dependent on θo, respectively,

such that O(θo) = Ō + Ô(θo), just as we decomposed A(θa) = Ā + Â(θa) in Section 3.1.1.
Once the Observation Matrix is decomposed into Ō and Ô, in the SMF, they are represented as

n× n diagonal matrices. For example, the sequence of observations y1
2, y2

1 and y3
3, the corresponding

diagonal matrices become

Ō1 = diag(Ō:,2), Ō2 = diag(Ō:,1) and Ō3 = diag(Ō:,3)

Ô1 = diag(Ô:,2), Ô2 = diag(Ô:,1) and Ô3 = diag(Ô:,3)

3.3.2. SMF for Sensitivity Analysis of the Filtering Probability to the Observation Parameter Variation

In the simplified matrix representation, the sensitivity function p(xt
v, y1:t

e )(θo) can be written as
a simple matrix-vector multiplication. From Equation (9), it follows that for t = 1 we have the constant
p(x1

v, y1
e)(θo) = ov,e1(θo) · γv, which becomes p(x1

v, y1
e)(θo) = O1(θo)Γᵀ in the SMF. For t > 1, we have

p(xt
v, y1:t

e )(θo) = ov,et(θo) ·
n

∑
z=1

az,v · p(xt−1
v , y1:t−1

e )(θo),

which is represented as

p(Xt, y1:t
e )(θo) = Ot(θo)Aᵀp(Xt−1, y1:t−1

e )(θo)
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The derivation of the proposed technique for the sensitivity analysis of the forward (filtering)
probability p(xt

v, y1:t
e )(θo) with observation parameter variation θo = or,s is formulated in Algorithm 3.

Algorithm 3 This computes the coefficients of the forward (filtering) probability sensitivity function
p(xt

v, y1:t
e )(θo) with θo = or,s in forward matrices Fk for k = 1, · · · , t using SMF.

Input: A, O, Γ, e, and θo
Output: F1, · · · , Ft

1: Ō← O
2: Ōr,s ← 0
3: Ōr,: ← Ōr,:./(1− or,s)
4: Ô← O− Ō
5: Ôr,: ← Ôr,:./or,s
6: Ō1 ← diag(Ō:,e1)
7: Ô1 ← diag(Ô:,e1)
8: Ftmp1 ← [Ō1 ∗ Γ′, zeros(n, 1)]
9: Ftmp2 ← [zeros(n, 1), Ô1 ∗ Γ′]

10: F1 ← Ftmp1 + Ftmp2
11: for k = 2 to t do
12: Ōk ← diag(Ō:,ek)
13: Ôk ← diag(Ô:,ek)
14: Ftmp1 ← [Ōk ∗ A′ ∗ Fk−1, zeros(n, 1)]
15: Ftmp2 ← [zeros(n, 1), Ôk ∗ A′ ∗ Fk−1]
16: Fk ← Ftmp1 + Ftmp2
17: Return F1, · · · , Ft

3.3.3. Algorithm Implementation

In this algorithm, e is the sequence of observation and θ = θo. It solves the recursive sensitivity
function Equation (9) in forward matrices Fk for k = 1, · · · , t. The observation matrix is decomposed
into the independent Ō and dependent Ô observation matrices on θo. Then, these observation matrices
are represented as diagonal matrices in the SMF computation. The detailed steps of filling the contents
of the forward matrices Fk are explained as follows. F1 is initialized as a sum of two temporary matrices
Ftmp1 and Ftmp2, which are used to compute the coefficients for the independent and dependent
parts on θo. Ftmp1 is computed as the matrix multiplication of Ō1 and Γ′, and a zero vector of size n
states is appended at its end to represent the zero coefficients of degree 1. In the same way, Ftmp2 is
computed as the matrix multiplication of Ô1 and Γ′, and a zero vector of size n states is appended in
front of it to represent the zero coefficients of degree 0.

F1 = Ftmp1 + Ftmp2

The remaining matrices Fk of size n × k, 2 ≤ k ≤ t, are computed using recursion. Again,
two temporary matrices Ftmp1 and Ftmp2 are used for computing the coefficients as it is explained
above. Here, Ftmp1 is computed as the matrix multiplication of the diagonal matrix Ōk that is
independent of θo, A′ and Fk−1, and a zero vector of size n states is appended at its end. Fk−1 represents
the recursion in the filtering probability. Likewise, Ftmp2 is computed as the matrix multiplication
of the diagonal matrix Ok that is dependent on θo, A′ and Fk−1, and a zero vector of size n states is
appended in front of it. Then, Fk is set as the sum of Ftmp1 and Ftmp2:

Fk = Ftmp1 + Ftmp2
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3.4. Filtering Sensitivity Function Example

The proposed algorithm is illustrated by the following example. The example is also used to
illustrate the computations in the Coefficient-Matrix-Fill procedure in [26]. The computed coefficients
using the proposed algorithm are the same as those computed using the Coefficient-Matrix-Fill
procedure. However, the proposed algorithm is simplified and works for any number of hidden states
and evidence (observation) variables. It is also efficient in terms of computational time as the length of
the observation sequence increases.

Example 1. Consider an HMM with binary-valued hidden state X and binary-valued evidence variable Y. Let
Γ = [0.20, 0.80] be the initial vector for X1. The transition matrix A and observation matrix O be as follows:

A =

[
0.95 0.05
0.15 0.85

]
and O =

[
0.75 0.25
0.90 0.10

]
Let us compute the sensitivity functions for the filtering probability using Algorithm 1 for the two states

of Xt as a function of transition parameter θa = a2,1 = p(xt
1|x

t−1
2 ) = 0.15 given the following sequence of

observations: y1
2, y2

1 and y3
1.

The simplified matrix formulation procedure divides the Transition Matrix A into Ā and Â :

A =

[
0.95 0.05
θa 1− θa

]
, Ā =

[
0.95 0.05

0 1

]
and Â =

[
0 0
1 −1

]

For the observation sequence given, y1
2, y2

1 and y3
1, the diagonal matrices become

O1 =

[
0.25 0

0 0.10

]
, O2 =

[
0.75 0

0 0.90

]
and O3 =

[
0.75 0

0 0.90

]

The coefficients for the sensitivity functions are computed by the proposed procedure using the forward
matrices that are constructed as follows:

F1 = O1 ∗ Γ′ =

[
0.25 0

0 0.10

]
×

[
0.20
0.80

]
=

[
0.05
0.08

]

Then, F2 = Ftmp1 + Ftmp2, where the temporary matrices Ftmp1 and Ftmp2 are computed as follows:

Ftmp1 = [O2 ∗ Ā′ ∗ F1, zeros(2, 1)]

=

[ 0.75 0
0 0.90

]
×

[
0.95 0
0.05 1

]
×

[
0.05
0.08

]
,

[
0
0

]
=

[
0.0356 0
0.0743 0

]

Ftmp2 = [zeros(2, 1), O2 ∗ Â′ ∗ F1]

=

[ 0
0

]
,

[
0.75 0

0 0.90

]
×

[
0 1
0 −1

]
×

[
0.05
0.08

]
=

[
0 0.060
0 −0.072

]
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F2 = Ftmp1 + Ftmp2 =

[
0.0356 0.060
0.0743 −0.072

]
,

and finally, for F3:

Ftmp1 = [O3 ∗ Ā′ ∗ F2, zeros(2, 1)]

=

[ 0.75 0
0 0.90

]
×

[
0.95 0
0.05 1

]
×

[
0.0356 0.060
0.0743 −0.072

]
,

[
0
0

]
=

[
0.0254 0.0428 0
0.0684 −0.0621 0

]

Ftmp2 = [zeros(2, 1), O3 ∗ Â′ ∗ F2]

=

[ 0
0

]
,

[
0.75 0

0 0.90

]
×

[
0 1
0 −1

]
×

[
0.0356 0.060
0.0743 −0.072

]
=

[
0 0.0557 −0.0540
0 −0.0668 0.0648

]

F3 = Ftmp1 + Ftmp2 =

[
0.0254 0.0984 −0.0540
0.0684 −0.1289 0.0648

]
From F3, we have the sensitivity function

p(x3
1, y1:3

e )(θa) = 0.0254 + 0.0984 · θa − 0.054 · θ2
a ,

and from F2,
p(x2

2, y1:2
e )(θa) = 0.0743− 0.072 · θa

The sensitivity functions for probability of evidence by summing column entries of the forward
matrices become:

p(y1:3
e )(θa) = (F3

1,1 + F3
2,1) + (F3

1,2 + F3
2,2) · θa + (F3

1,3 + F3
2,3) · θ2

a ,

and
p(y1:2

e )(θa) = (F2
1,1 + F2

2,1) + (F2
1,2 + F2

2,2) · θa

The sensitivity functions for the two filtering tasks become:

p(x3
1|y1:3

e )(θa) =
−0.054 · θ2

a + 0.0984 · θa + 0.0254
0.0108 · θ2

a − 0.0305 · θa + 0.0938
,

and
p(x2

2|y1:2
e )(θa) =

−0.072 · θa + 0.0743
−0.012 · θa + 0.1099

,

these sensitivity functions are displayed in Figure 2.
The derivative of these sensitivity functions can be used to analyze the sensitive of the filtering

tasks for the change in parameter θa.

dp(x3
1|y1:3

e )(θa)

dθa
=
−0.006 · θ2

a − 0.0107 · θa − 0.0094
(0.0108 · θ2

a − 0.0305 · θa + 0.0938)2 ,
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and
dp(x2

2|y1:2
e )(θa)

dθa
=

−0.0070
(−0.012 · θa + 0.1099)2

(a) (b)

Figure 2. Sensitivity functions: (a) p(X2|y1:2
e )(θa) for both states of X2. (b) p(X3|y1:3

e )(θa) for both
states of X3.

3.5. Run-time Analysis

The time for computing the coefficients of the filtering probabilities for transition parameter
variation is recorded for the Coefficient-Matrix-Fill procedure and our method (SMF) using the HMM
shown in Example (1). It is shown in Figure 3, where the Coefficient-Matrix-Fill procedure is labled as
CMFP. In [26], the algorithm for the Coefficient-Matrix-Fill procedure is presented. It is shown for an
HMM model with n = 2 hidden states and m = 2 observable symbols. The proposed SMF algorithm
has shown a significant improvement in computational time compared to the Coefficient-Matrix-Fill
procedure as the length of the observation sequence increases. For example, for an observation
sequence length of 1000, the proposed technique takes a mean time of 0.048 s. In comparison, it takes
the Coefficient-Matrix-Fill procedure 2.183 seconds. This is an improvement of 98%. The algorithms
are implemented in MATLAB on a 64-bit Windows 7 Professional Workstation (Dell Precision T7600
with Intel(R) Xeon CPU E5-2680 0 @ 2.70 GHz dual core processors and 64GB RAM).

The computational complexity of our method is linear time, O(l), where l is the length of the
observation sequence, whereas the Coefficient-Matrix-Fill procedure is quadratic time, O(l2). In our
method, the sensitivity function coefficients are computed in one for loop that runs for the length
of the observation sequence, as shown in Algorithms 1–6, whereas in the Coefficient-Matrix-Fill
procedure two nested for loops are used. It computes the sensitivity coefficients in the forward matrices
element-by-element in the inner loop, which runs in increasing time up to the maximum of the length
of the observation sequence, and the outer loop runs for the length of the observation sequence.
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Figure 3. Time in seconds to compute the sensitivity coefficients for an observation sequence length
from 1 to 1000 with a step size of 10.

4. Sensitivity Analysis of Smoothing Probability

In this section, the sensitivity analysis of smoothing probability for variation of the transition,
initial and observation parameters are presented using simplified matrix formulation. The sensitivity
function p(xt

v, y1:T
e )(θ) where t < T and θ is one of the model parameters, can be computed using the

recursive probability expression shown in Equation (2) and (3).

p(xt
v, y1:T

e )(θ) = p(xt
v, y1:t

e , yt+1:T
e )(θ) = p(yt+1:T

e |xt
v)(θ) · p(xt

v, y1:t
e )(θ)

The first term in this product can be computed using the backward procedure as shown in
Equation (3); the second term is the filtering probability that is computed using the forward procedure.
Consequently, the sensitivity function for the smoothing probability p(xt

v, y1:T
e )(θ) is the product

of the polynomial sensitivity functions computed using the forward and backward procedures.
The sensitivity function for the filtering probability p(xt

v, y1:t
e )(θ) is discussed in Section 3. From

Equation (3), the backward recursive probability expression, it follows that

p(yt+1:T
e |xt

v)(θ) =

∑n
z=1 oz,eT(θ) · av,z(θ) if t = T − 1

∑n
z=1 oz,et+1(θ) · av,z(θ) · p(yt+2:T

e |xt+1
z )(θ) if t < T − 1,

(10)

where

av,z(θ) =

av,z(θa) for transition parameter variation θ = θa

av,z otherwise,
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and

oz,et(θ) =

oz,et(θo) for observation parameter variation θ = θo

oz,et otherwise

To compute the coefficients of the sensitivity function p(yt+1:T
e |xt

v)(θ), a series of Backward
matrices Bk, k = t, ..., T − 1, based on the simplified matrix formulation as presented in Section 3 are
used. In the next subsections, the sensitivity functions for the smoothing probability p(xt

v, y1:T
e )(θ) for

transition, initial and observation parameter variations are discussed.

4.1. Transition Parameter Variation

In the simplified matrix formulation, the sensitivity function p(yt+1:T
e |xt

v)(θa) for transition
parameter θa = ar,s can be represented as follows:

p(yt+1:T
e |xt

v)(θa) = A(θa)Ot+1 p(yt+2:T
e |xt+1

z )(θa)

For t = T− 1, p(yT+1:T
e |xT

z )(θa) = 1, the recursive probability expression reduces to the following:

p(yT:T
e |xT−1

v )(θa) = A(θa)Ot+1

The proposed technique for the sensitivity analysis of the backward probability sensitivity function
p(yt+1:T

e |xt
v)(θa) for the transition parameter is formulated in Algorithm 4.

Algorithm 4 This computes the coefficients of the backward probability sensitivity function
p(yt+1:T

e |xt
v)(θa) in backward matrices Bk for k = T, · · · , t using SMF.

Input: A, O, Γ, e, and θa
Output: BT , · · · , Bt

1: Ā← A
2: Ār,s ← 0
3: Ār,: ← Ār,:./(1− ar,s)
4: Â← A− Ā
5: Âr,: ← Âr,:./ar,s
6: BT ← ones(n, 1)
7: for k = T − 1 to t do
8: Ok+1 ← diag(O:,ek+1)
9: Btmp1 ← [Ā ∗Ok+1 ∗ Bk+1, zeros(n, 1)]

10: Btmp2 ← [zeros(n, 1), Â ∗Ok+1 ∗ Bk+1]
11: Bk ← Btmp1 + Btmp2
12: Return BT , · · · , Bt

4.1.1. Algorithm Implementation

In this algorithm, e is the sequence of observation and θ = θa. It solves the recursive backward
probability sensitivity function Equation (10) using the backward matrices Bk for k = T, · · · , t. Once
the transition matrix is decomposed into the transition matrices Ā independent of θa and Â dependent
on θa, the coefficients of the sensitivity function are computed by filling the backward matrices Bk as
follows. First, BT is initialized as a vector of ones for n hidden states.

BT = ones(n, 1)

The remaining matrices Bk of size n × k, k = T − 1 ≤ k ≤ t are computed by filling them as
follows: Once the observation matrix Ok+1 is represented as a diagonal matrix, two temporary matrices
Btmp1 and Btmp2 are used for computing the coefficients as previously explained. Btmp1 is computed
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as the matrix multiplication of Ā that is independent of θa, Ok+1 and Bk+1 and a zero vector of size n is
appended at its end. Bk+1 represents the recursion in the backward probability. The same way Btmp2

is computed as the matrix multiplication of Â that is dependent on θa, Ok+1 and Bk+1 and a zero vector
of size n is appended to the front. Then Bk is set as the sum of Btmp1 and Btmp2,

Bk = Btmp1 + Btmp2

4.2. Initial Parameter Variation

In this subsection, the sensitivity of the backward probability to initial parameter variation is
derived based on SMF. The sensitivity function p(yt+1:T

e |xt
v)(θγ) for initial parameter variation θγ = γr,

as shown in the recursive backward probability sensitivity function in Equation (10), can be represented
in SMF as

p(yt+1:T
e |xt

v)(θγ) = AOt+1 p(yt+2:T
e |xt+1

z )(θγ)

For t = T − 1, p(yT+1:T
e |xT

z )(θγ) = 1 and the recursive probability expression reduces to

p(yT:T
e |xT−1

v )(θγ) = AOt+1

The procedure to compute the coefficients of the function p(yt+1:T
e |xt

v)(θγ) in backward matrices
Bk for k = T, · · · , t using SMF is summarized in Algorithm 5.

Algorithm 5 This computes the coefficients of the backward probability sensitivity function
p(yt+1:T

e |xt
v)(θγ) with θγ = γr in backward matrices Bk for k = T, · · · , t using SMF.

Input: A, O, Γ, e, and θγ

Output: BT , · · · , Bt

1: BT ← ones(n, 1)
2: for k = T − 1 to t do
3: Ok+1 ← diag(O:,ek+1)
4: Bk ← A ∗Ok+1 ∗ Bk+1

5: Return BT , · · · , Bt

4.2.1. Algorithm Implementation

As discussed above, the sensitivity function for the backward probability p(yt+1:T
e |xt

v)(θγ) with
θγ = γr is a polynomial of degree zero. The contents of the backward matrices Bk are filled as follows.
BT is initialized as a vector of ones for n hidden states.

BT = ones(n, 1)

The remaining matrices Bk of size n× k, k = T − 1 ≤ k ≤ t, are computed by filling them as
follows. Once the observation matrix Ok+1 is represented as a diagonal matrix, Bk is set as the matrix
multiplication of A, Ok+1 and Bk+1. Bk+1 represents the recursion in the backward probability.

4.3. Observation Parameter Variation

The sensitivity function for the backward probability p(yt+1:T
e |xt

v)(θo) for the observation
parameter variation θo = or,s can be represented as follows:

p(yt+1:T
e |xt

v)(θo) = AOt+1(θo)p(yt+2:T
e |xt+1

z )(θo)

For t = T− 1, p(yT+1:T
e |xT

z )(θo) = 1, the recursive probability expression reduces to the following

p(yT:T
e |xT−1

v )(θo) = AOt+1(θo)
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The sensitivity analysis of the backward probability sensitivity function p(yt+1:T
e |xt

v)(θo) for
observation parameter variation θo = or,s is summarized in Algorithm 6.

Algorithm 6 This computes the coefficients of the backward probability sensitivity function
p(yt+1:T

e |xt
v)(θo) with θo = or,s in backward matrices Bk for k = T, · · · , t using SMF.

Input: A, O, Γ, e, and θo
Output: BT , · · · , Bt

1: Ō← O
2: Ōr,s ← 0
3: Ōr,: ← Ōr,:./(1− or,s)
4: Ô← O− Ō
5: Ôr,: ← Ôr,:./or,s
6: BT ← ones(n, 1)
7: for k = T − 1 to t do
8: Ōk+1 ← diag(Ō:,ek+1)
9: Ôk+1 ← diag(Ô:,ek+1)

10: Btmp1 ← [A ∗ Ōk+1 ∗ Bk+1, zeros(n, 1)]
11: Btmp2 ← [zeros(n, 1), A ∗ Ôk+1 ∗ Bk+1]
12: Bk ← Btmp1 + Btmp2
13: Return BT , · · · , Bt

4.3.1. Algorithm Implementation

In this algorithm, e is the sequence of observation and θ = θo and it solves the recursive backward
probability sensitivity function Equation (10) in the backward matrices Bk for k = T, · · · , t using SMF.
Once the observation matrix is decomposed into the independent Ō and dependent Ô observation
matrices on θo, the coefficients of the sensitivity function p(yt+1:T

e |xt
v)(θo) are computed by filling the

backward matrices Bk as follows: BT is initialized as a vector of ones for n hidden states.

BT = ones(n, 1)

The remaining matrices Bk of size n× k, k = T − 1 ≤ k ≤ t, are computed by filling them as
follows: Once the independent Ōk+1 and dependent Ôk+1 observation matrices on θo is represented as
a diagonal matrix, two temporary matrices Btmp1 and Btmp2 are used for computing the coefficients
of the sensitivity function as previously explained. Btmp1 is computed as the matrix multiplication
of A, Ōk+1 and Bk+1. A zero vector of size n is appended at its end. Bk+1 represents the recursion
in the backward probability. In the same way Btmp2 is computed as the matrix multiplication of A,
Ôk+1 and Bk+1 and a zero vector of size n is appended to the front. Then Bk is set as the sum of Btmp1

and Btmp2,
Bk = Btmp1 + Btmp2

5. Conclusions and Future Research

This research has shown that it is more efficient to compute the coefficients for the HMM sensitivity
function directly from the HMM representation. The proposed method exploits the simplified matrix
formulation for HMMs. A simple algorithm is presented which computes the coefficients for the
sensitivity function of filtering and smoothing probabilities for transition, initial and observation
parameter variation for all hidden states, as well as all time steps. This method differs from the other
approaches in that it neither depends on a specific computational architecture nor requires a Bayesian
network representation of the HMM.

The future extension of this work will include sensitivity analysis of predicted future observations
p(yt

e|y1:T
e )(θ), t > T, and the most probable explanation for the corresponding parameter variations.
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Future research on the sensitivity analysis of HMM, where different types of model parameters are
varied simultaneously, as well as the case of continuous observations will be considered.
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