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Abstract: In this paper, a novel remote sensing image enhancement technique based on a non-local
means filter in a nonsubsampled contourlet transform (NSCT) domain is proposed. The overall
flow of the approach can be divided into the following steps: Firstly, the image is decomposed into
one low-frequency sub-band and several high-frequency sub-bands with NSCT. Secondly, contrast
stretching is adopted to deal with the low-frequency sub-band coefficients, and the non-local means
filter is applied to suppress the noise contained in the first high-frequency sub-band coefficients.
Thirdly, the processed coefficients are reconstructed with the inverse NSCT transform. Finally,
the unsharp filter is used to enhance the details of the image. The simulation results show that
the proposed algorithm has better performance in remote sensing image enhancement than the
existing approaches.
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1. Introduction

Due to the limitations of image acquisition devices and external factors, the resolution of remote
sensing images is not very satisfactory, so image enhancement techniques play a very important
role in image analysis [1,2]. The purpose of image enhancement is to highlight the useful features
of the image [3,4], and image enhancement methods are widely used in areas such as atmospheric
sciences [5], medical image processing [6,7], satellite image analysis [8,9], and remote sensing [10].

So far, image enhancement approaches can be divided into two categories: spatial domain
and frequency domain. In terms of spatial domain enhancement, Histogram equalization (HE) is
a widely used method to enhance images, but HE may result in the over-enhancement phenomenon of
image processing, and make the image too dark in some regions [1,11]. In order to make up for the
shortcomings of the HE method, some improved algorithms based on HE have been proposed, such
as contrast limited adaptive histogram equalization (CLAHE) [12], brightness preserving bi-histogram
equalization (BBHE) [13], dualistic sub-image histogram equalization (DSIHE) [14], exposure based
sub-image histogram equalization (ESIHE) [15], etc. Gamma correction [16] is also a useful method
to improve the contrast of digital images, and some improved techniques have been proposed based
on this, such as adaptive gamma correction with weighting distribution (AGCWD) [17] and adaptive
gamma correction for image enhancement [1]; these approaches have achieved good performance
in image enhancement. With the research of image enhancement algorithms, image enhancement
methods based on frequency domain transform came into being, with the most typical approach being
wavelet transform [18]. Due to the good time-frequency localization and multi-resolution of wavelets,
the wavelet has been widely used in texture analysis, image processing, and other fields. Arising
from wavelet theory, some new frequency domain enhancement techniques have been proposed,
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such as curvelet transform [19] and contourlet transform [20]. However, the contourlet transform
does not have translation invariance. Due to the existence of this shortcoming, the pseudo-Gibbs
phenomenon can easily appear around the singular points in the image restoration. In order to deal
with thise weakness, the nonsubsampled contourlet transform (NSCT) was proposed [21,22]. The
NSCT transform has many merits such as time-frequency locality, multi-resolution, multi-direction,
and anisotropy, which can sparsely represent the image. The NSCT has since been widely applied
in image fusion and image enhancement [23,24]. In this paper, a novel remote sensing enhancement
approach based on a non-local means filter in NSCT domain is proposed.

The reminder of this paper is expressed as follows: Section 2 introduces the theoretical methods
adopted in this article, including the nonsubsampled contourlet transform and non-local means filter
models; the implementation of the proposed approach is described in Section 3; the experimental
results and discussions are offered in Section 4; and the conclusions of the proposed remote sensing
image enhancement method are described in Section 5.

2. Theoretical Analysis

2.1. Nonsubsampled Contourlet Transform

Nonsubsampled contourlet transform (NSCT) is put forward on the basis of contourlet transform,
and it is an overcomplete transformation. Though the structure of the NSCT transformation is
similar to the contourlet transform, NSCT does not use the sampling link. NSCT is composed of
the Nonsubsampled pyramid filter bank (NSPFB) and the Nonsubsampled directional filter bank
(NSDFB) [25]; the corresponding structure is shown in Figure 1. NSCT is a transformation characterized
by multi-scale, good spatial and frequency domain, shift-invariance and higher redundancy. NSCT
transform first uses NSPFB to obtain the multi-scale decomposition of the input image, and then
NSDFB is applied to decompose the obtained sub-band images in order to achieve the sub-band
coefficients of different scales and different directions. Figure 2 is the flow chart of NSCT. The test
image (zoneplate) is decomposed by NSCT as shown in Figure 3.
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For the nonsubsampled pyramid (NSP) decomposition, the analytical filter {H0(z), H1(z)} and the
integrated filter {G0(z), G1(z)} satisfy the Bezout identity. The corresponding equation is expressed
as follows:

H0(z)G0(z) + H1(z)G1(z) = 1 (1)
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For the nonsubsampled directional filter bank, the analytical filter {U0(z), U1(z)} and the integrated
filter {V0(z), V1(z)} also satisfy the Bezout identity. The corresponding formula is described as follows:

U0(z)V0(z) + U1(z)V1(z) = 1 (2)

2.2. Non-Local Means Filter

Non-local means filter (NLM filter) is a very effective denoising method [26,27]. This algorithm
makes full use of the redundant information in the image. It can eliminate the noise in the image and
keep the details of the image to their maximum extent. In this paper, we assume that the input image
is y, and the estimated value of the denoised image is x; I is the image domain, and i is an arbitrary
pixel in the image domain. The gray value of i can be obtained by weighing the average of all pixels in
the image. The corresponding formula is expressed as follows:

x(i) =
∑
j∈I

w(i, j)y(j)

Z(i)
(3)

Z(i) = ∑
j∈I

w(i, j) (4)

where w presents the similar weight of the pixels i and j. The value of this weight depends on y(Ni)
and y(Nj). The formula for similar weight can be expressed as follows:

w(i, j) = exp
(
−d(i, j)

h2

)
(5)

d(i, j) = ‖y(Ni)− y
(

Nj
)
‖2 (6)

where y(Ni) is the gray vector value of the (2k + 1) × (2k + 1) window; h is a smoothing parameter;
Ni and Nj represent square neighborhoods of the fixed size, same size centered on pixels i and j,
respectively. In thise paper, we set h = 5, k = 2, w = 10.

3. Implementation of the Proposed Method

3.1. Contrast Stretching in Low-Frequency Sub-Band

The low-frequency component contains much of the background information of the image, and
the contrast of the image can be enhanced by adjusting the coefficients of the low-frequency sub-band.
In this paper, contrast stretching is applied to deal with the low-frequency component, and the
corresponding formula is defined as follows [28]:

f (y) = 255(y− ymin)/(ymax − ymin) (7)

where ymax and ymin are the maximum and minimum values of gray image, respectively.

3.2. NLM Filter Denoising in High-Frequency Sub-Bands

The coefficients of the high-frequency sub-bands contain detailed information from the remote
sensing images, but also contain a lot of noise. In this paper, the non-local means filter as described in
Section 2.2 is adopted to suppress the noise in the first high-frequency sub-band, because it has the
most noise. The other high-frequency sub-bands coefficients are not treated.

3.3. Steps of the Proposed Method

Step 1 The original image is decomposed into one low-frequency sub-band and several
high-frequency sub-bands by NSCT transform.
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Step 2 The low-frequency sub-band coefficients are processed with contrast stretching according to
equation 7, and the noise of the first high-frequency sub-band coefficients is suppressed by the
NLM filter according to equations 3–6.

Step 3 The adjusted coefficients are reconstructed with inverse NSCT transform.
Step 4 The reconstructed image is enhanced by the unsharp filter.

The flow chart of the proposed method is shown in Figure 4.
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4. Results and Discussions

In this section, in order to demonstrate that the proposed approach is effective, many remote
sensing images were tested using MATLAB 2016a. Four existing image enhancement methods were
selected to compare with the proposed method, namely histogram equalization (HE) [29], exposure
based sub-image histogram equalization (ESIHE) [15], feature-linking model for image enhancement
(FLM) [30], and linking synaptic computation for image enhancement (LSCN) [31]. We used subjective
and objective aspects to evaluate the image enhancement effects. In terms of the objective metrics, six
evaluation metrics were applied, namely information entropy (H) [32], mean square error (MSE) [33],
peak signal-to-noise ratio (PSNR) [34], gradient magnitude similarity deviation (GMSD) [35], mean
absolute error (MAE) [36], and multi-scale structural similarity (MSSSIM) [37]. For the indicators of H,
PSNR, and MSSSIM, larger values demonstrate a better enhancement of the image; for the other three
metrics MSE, GMSD, and MAE, lower values demonstrate a better enhancement of the image. The
data of the experimental results are shown in Tables 1–4. In this article, the decomposition level of
NSCT is 3, and the directions in the scales from coarser to finer are 8, 16, 16. We used the 9-7 filter and
dmaxflat7 as the NSPFB filter and NSDFB filter, respectively.
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4.1. Subjective Analysis

Figure 5 is the enhanced result of the five image enhancement techniques simulated on Image 1.
The size of the original image is 556 × 556. Figure 5a is the original image; Figure 5b is the result
enhanced using the HE method, and it displays the over-enhancement phenomenon; Figure 5c depicts
the enhancement result obtained by the ESIHE algorithm; Figure 5d presents the result achieved by
the FLM approach, and has relatively poor visual effects; Figure 5e represents the enhanced result
obtained using the LSCN technique; Figure 5f is the result achieved by the proposed approach. From
the enhanced images, we can see that the proposed method has better image enhancement effects in
terms of detail and edge preserving.
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Figure 6 is the result of the five approaches simulated on Image 2. The size of the original remote
sensing image is 548× 548. Figure 6a depicts the original image; Figure 6b is the image enhanced using
the HE technique, and also displays the over-enhancement phenomenon in some regions; Figure 6c is
the enhanced result obtained by the ESIHE method; Figure 6d is the result achieved by FLM; the result
obtained by LSCN is shown in Figure 6e; the enhanced result achieved by the proposed algorithm is
shown in Figure 6f. From the enhancement results, we can see that the proposed method has achieved
the goal of noise suppression and image details preserving.
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Figure 7 is the enhanced result of the five image enhancement methods simulated on Image 3.
The size of the original image is 256 × 256. Figure 7a is the original remote sensing image; Figure 7b,c
are the enhanced results achieved by the HE and ESIHE approaches, respectively; the enhancement
result obtained using the FLM approach is shown in Figure 7d, with an image transformation that is
too light and severely distorted; Figure 7e depicts the result enhanced by the LSCN algorithm, which
has achieved enhanced effects to some extent; Figure 7f presents the enhancement result obtained by
the proposed method. From the results, we notice that the proposed approach has better performance
due to the fact that it makes the enhanced image have moderate brightness, rich detail, and clear edges.
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4.2. Objective Analysis

The Entropy (H) shows the overall information of the image, and it can be calculated by the
following equation [15]:

H = −
M

∑
i=1

N

∑
j=1

p(i, j) log p(i, j) (8)

where M × N represents the size of the image. A higher H shows that the image contains more
effective information.

The Mean Square Error (MSE) is computed by:

MSE =
1

R× C ∑ C
x=1∑ R

y=1
(

fx,y − gx,y
)2 (9)

The MSE shows the difference between the estimated image and the reference image [33]. A lower
MSE demonstrates that the enhanced image is closer to the reference image.

The Peak Signal to Noise Ratio (PSNR) is computed by the following equation:

PSNR = 10× log
L2

1
R×C ∑ C

x=1∑ R
y=1
(

fx,y − gx,y
)2 (10)

where L presents the maximum intensity in the image [38]. The higher the PSNR, the better the
image quality.

The Gradient Magnitude Similarity Deviation (GMSD) reflects the range of distortion degree in
the image; a higher GMSD reflects larger distortion and lower image quality, and can be calculated
by [35]:

GMSD =

√√√√ 1
N

N

∑
i=1

(GMS(i)− GMSM)2 (11)

where N represents the number of pixels in the image, and GMSM is Gradient Magnitude Similarity
Mean. A higher GMSM represents higher image quality, and it is defined as:

GMSM =
1
N

N

∑
i=1

GMS(i) (12)
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where GMS is gradient magnitude similarity, and the corresponding formula is described as follows:

GMS(i) =
2mr(i)md(i) + c

m2
r (i) + m2

d(i) + c
(13)

where c is a positive constant, mr and md are the gradient magnitude images, and mr and md can be
calculated by:

mr(i) =
√
(r⊗ hx)

2(i) +
(
r⊗ hy

)2
(i) (14)

md(i) =
√
(d⊗ hx)

2(i) +
(
d⊗ hy

)2
(i) (15)

hx =

 1
3 0 − 1

3
1
3 0 − 1

3
1
3 0 − 1

3

hy =

 1
3

1
3

1
3

0 0 0
− 1

3 − 1
3 − 1

3

 (16)

where ”⊗“ is the convolution operation.
The Mean Absolute Error (MAE) can be defined as:

MAE =
1

M× N

M

∑
x=1

N

∑
y=1

∣∣gx,y − fx,y
∣∣ (17)

where gx,y and fx,y denote the original image pixel and the enhanced image pixel, respectively [36].
If the MAE is lower, then the image quality is better.

The Multi-scale structural similarity (MSSSIM) is an improved evaluation metric based on
structural similarity (SSIM). The higher the value of MSSSIM, the better the quality of the image.
It is defined as [39]:

MSSSIM = [lM(x, y)]σM
M

∏
j=1

[
cj(x, y)

]β j
[
sj(x, y)

]rj (18)

From Table 1, we notice that the H obtained by the proposed method is the best; for the metrics
MSE, PSNR, MAE, and MSSSIM, the values achieved by the ESIHE method are the best, but the values
obtained by the proposed algorithm in these four metrics are still second-best; for the index GMSD,
the ESIHE method is the best, and the LSCN and proposed methods are second and third, respectively.
From the data as shown in Table 2, the H, MSE, PSNR, and MAE values achieved by the proposed
technique are the best; for the GMSD, the value achieved by the ESIHE method is the best, but the
proposed approach is second; for the metric MSSSIM, the FLM method is the best, and the ESIHE and
proposed techniques are the second and third, respectively. From Table 3, the H value achieved by the
proposed method is the best; for the indicators of MSE, PSNR, MAE, and MSSSIM, the corresponding
values achieved by the ESIHE method are the best, but values obtained by the proposed technique
are still second-best in these metrics; for the indicator GMSD, the ESIHE method is the best, and the
values achieved by the LSCN and proposed methods are second and third, respectively.

Table 1. The evaluation metrics of the five methods on Image 1.

HE ESIHE FLM LSCN Proposed

H 5.8139 7.3840 5.4117 6.9739 7.7279
MSE 109.5441 52.9798 157.0788 133.5418 61.4857

PSNR 27.7349 30.8897 26.1696 26.8746 30.2431
GMSD 0.0916 0.0220 0.1275 0.0653 0.0831
MAE 9.0398 4.4681 22.2944 13.1778 7.5462

MSSSIM 0.9433 0.9604 0.8789 0.9546 0.9560

H, entropy; MSE, mean square error; PSNR, peak signal to noise ratio; GMSD, gradient magnitude similarity
deviation; MAE, mean absolute error; MSSSIM, multi-scale structural similarity.
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Table 2. The evaluation metrics of the five methods on Image 2.

HE ESIHE FLM LSCN Proposed

H 5.3680 5.7781 4.7970 6.2201 6.9939
MSE 55.3809 23.1740 10.9848 2.9688 0.9760

PSNR 30.6972 34.4808 37.7229 43.4050 48.2362
GMSD 0.2172 0.0929 0.1680 0.1257 0.1161
MAE 6.4192 2.1371 1.3861 0.2497 0.0923

MSSSIM 0.1495 0.6382 0.6634 0.5354 0.6043

Table 3. The evaluation metrics of the five methods on Image 3.

HE ESIHE FLM LSCN Proposed

H 5.9682 7.3231 5.7467 7.1225 7.4585
MSE 186.9627 36.1431 226.8316 186.8378 49.5929

PSNR 25.4133 32.5506 24.5738 25.4162 31.1766
GMSD 0.1136 0.0074 0.1655 0.1058 0.1070
MAE 43.4997 4.1402 56.8070 24.3111 6.4677

MSSSIM 0.6896 0.9869 0.6189 0.9034 0.9269

Table 4. The average evaluation metrics of the five methods on 20 remote sensing images.

HE ESIHE FLM LSCN Proposed

H 5.7086 6.6722 5.5638 6.5150 7.3452
MSE 145.9162 62.2076 204.3192 192.4159 81.1120

PSNR 27.0276 31.6272 25.5021 26.0704 30.6440
GMSD 0.1317 0.0407 0.1586 0.1041 0.1145
MAE 32.3724 7.1230 58.0083 34.2755 13.2823

MSSSIM 0.6031 0.8760 0.6018 0.8037 0.8415

In order to demonstrate that the proposed technique has a better universality than the existing
methods, we simulated 20 remote sensing images (as shown in Figure 8) and calculated the average
values of the metrics (as shown in Table 4). Figure 9 depicts the histogram of the experimental data
in Table 4. From these data, the proposed method shows advantages in terms of the six evaluation
metrics when compared to other methods.
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5. Conclusions

In this paper, a novel remote sensing image enhancement technique based on a non-local means
filter in NSCT domain is proposed. This method was tested on different remote sensing images.
After an image is decomposed by NSCT transform, there will be one low-frequency sub-band and
several high-frequency sub-bands. Contrast stretching is applied to enhance the contrast of the
low-frequency component, and the non-local means filter is used to suppress the noise contained in
the first high-frequency sub-band. The processed coefficients are then reconstructed using the inverse
nonsubsampled contourlet transform. Finally, the unsharp filter is adopted to enhance the details
of the reconstructed image. The performance of the proposed method was evaluated and compared
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using the H, MSE, PSNR, GMSD, MAE, and MSSSIM metrics. Experimental results demonstrate that
the proposed algorithm has better performance when compared with other existing techniques.
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