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Abstract: Usually, a fabric weave pattern is recognized using methods which identify the warp floats
and weft floats. Although these methods perform well for uniform or repetitive weave patterns,
in the case of complex weave patterns, these methods become computationally complex and the
classification error rates are comparatively higher. Furthermore, the fault-tolerance (invariance)
and stability (selectivity) of the existing methods are still to be enhanced. We present a novel
biologically-inspired method to invariantly recognize the fabric weave pattern (fabric texture) and
yarn color from the color image input. We proposed a model in which the fabric weave pattern
descriptor is based on the HMAX model for computer vision inspired by the hierarchy in the visual
cortex, the color descriptor is based on the opponent color channel inspired by the classical opponent
color theory of human vision, and the classification stage is composed of a multi-layer (deep) extreme
learning machine. Since the weave pattern descriptor, yarn color descriptor, and the classification
stage are all biologically inspired, we propose a method which is completely biologically plausible.
The classification performance of the proposed algorithm indicates that the biologically-inspired
computer-aided-vision models might provide accurate, fast, reliable and cost-effective solution to
industrial automation.

Keywords: biologically-inspired; deep neural network; extreme learning machine; color opponent
channels; object recognition

1. Introduction

The woven fabric weave pattern is a distinguishable feature for fabric texture recognition, as the
fabric weave pattern represents different textures. The fabric weave pattern can be defined statistically,
such as using the average value, variance, co-occurrence matrix, and histogram [1]. Haralick used the
gray-level features to propose a method for texture identification [1]. In some earlier studies, Fourier
transformation technology was used to identify the fabric, and the identification accuracy was found
to be 90%, but fabrics with similar weave patterns were not identified successfully [2,3]. In some
recent studies, the identification of the warp floats and weft floats from the fabric image were used
to determine the fabric texture [4–7]. Xin et al. used the active-grid-model (AGM) to recognize the
weave pattern of fabrics, but the error rate was high [8]. In recent years, the co-occurrence matrix was
utilized extensively [9,10]. Alvarenga et al. employed the gray-level co-occurrence matrix method
for the identification of textures in images [11]. Hu et al. applied the gray level co-occurrence matrix
method for the analysis of the fabric textures [12]. However, poor judgment of warp floats and weft
floats leads to an inability to identify fabric texture or, in other words, it leads to high errors. Although,
these methods perform well over uniform (simple) or repetitive weave pattern fabric images, in the
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case of complex weave patterns, the use of these methods for the fabric texture recognition involves
more complex computations and also leads to higher classification error. The challenging difficulty of
recognizing fabric textures in images is due to the changes in view-points, light intensity, shift and
scale transforms, and occlusions. Meanwhile, the difficulty of pattern recognition lies in capturing the
variance of shape and appearance of different fabric weave patterns that belongs to the same class label,
while avoiding confusing weave patterns from different class labels. The trade-off between selectivity
and invariance is a major challenge. Therefore, it is vital to develop a fabric texture recognition system
with improved texture (complex patterns) recognition.

Color is also an important property, yet remained unutilized to recognize patterns in most of the
approaches. Recently, the use of color images has become a hot research topic. A number of researchers
have made different attempts to extract color features in different ways, and the combination of
color features with the object shape or texture features (in gray scale) has significantly improved the
recognition performance in many recent studies [13–15]. The extensive use of the color information in
the primary visual cortex is well known [16]. Although the extraction and utilization of color features
for pattern recognition has become a hot research topic, yet most of the developed algorithms for fabric
weave pattern recognition are still based on black and white images or gray scale images. The prime
focus of our study is to perform fabric color feature extraction inspired by the primate visual cortex [17].
Biologically-plausible algorithms may prove to be a good alternative method for the classification
of the fabric texture and yarn color features. The main reason behind this motivation is that the
human vision system is the most powerful, intelligent, and flexible system to date, which out-performs
machine vision in terms of learning capability, as well as recognition and classification performance,
in most cases. Therefore, it is quite obvious that human-like intelligence can only be achieved in
machine vision by imitating the neurological findings which explain the mechanism of the processing
of pattern and color features inside human brain. Furthermore, biologically-inspired algorithms can
be further improved in the future by mimicking the newest neurological findings. Recent studies
developed [18,19] several neural network algorithms to mimic the computation performed inside the
human brain as described by the neurological findings [20].

The Extreme Learning Machine (ELM) is an emerging algorithm in machine learning [21–25],
which is biologically-inspired and which performs with accuracy similar to Support Vector Machines
(SVM) [26] and is also relatively fast to train as compared to iterative training methods. Although
ELM is getting popular, ELM-based classifiers have not been used for fabric texture classifications.
Numerous implementations of multi-layered extreme learning machines have been developed [27–29],
and it was found that the multi-layer implementation of extreme learning machine performed better
than the conventional ELM in term of the recognition and classification performance. Recent works
that were intended to develop neuromorphic implementations of Extreme Learning Machines [30–32]
motivated this current work. Further details of neuromorphic implementations are described
elsewhere [33]. One of the potential limitations is the simultaneous activation of the several hidden
layers. The main focus of our study is to develop a deep machine learning algorithm based on extreme
learning machine architecture, which requires fewer hidden layers needed for simultaneous activation,
offering good classification accuracy, and trains relatively faster.

In this paper, we have taken inspiration from the advances in the architectures of deep
learning [34–36] and from neurological findings of deep learning architecture in the primate visual
cortex. In order to improve the recognition accuracy of fabric weave pattern and yarn color recognition
and classification, this paper bring together two biologically-inspired algorithms, namely, color HMAX
and deep ELM (a multi-layer variant of the conventional Extreme Learning Machine), and insights to
develop a novel biologically-inspired model for robust pattern recognition and classification. In the
following section, first we describe the outline of the proposed method with a flowchart. Then
we propose a novel approach to deep ELM (D-ELM) implementation as a weave pattern classifier,
and describe the method briefly. In the later sub-sections we describe the weave pattern and yarn
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color feature descriptor in detail, followed by the brief description about the integration of the pattern
feature descriptor with the weave pattern classifier.

2. Method

The overall flow of the proposed algorithm is summarized in Figure 1. A fabric texture image is
fed to the proposed fabric weave pattern recognition and classification system in RGB (red-green-blue)
color format. Three color filters are applied over each input image to separate each color channel from
the input fabric image. These three color channels, namely, red, green, and blue, are then combined
into three opponent color channels, namely, red-green (RG), yellow-blue (YB), and white-black (WB).
These three opponent color channels are inspired by human vision as proposed by the classical
opponent color channel theory [16]. These opponent color channel features are then fed to the feature
descriptor, where they are processed further for the fabric weave pattern and yarn color feature
extraction. The two main parts of our model are the feature descriptor and the weave pattern classifier,
which will be described in detail in the following sub-sections of the method.
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Figure 1. Flowchart of the proposed algorithm.

We combined the two biologically inspired algorithms in cascade, feed-forward hierarchy.
The input fabric pattern image (RGB color image) is fed to the feature descriptor for the weave
pattern and color features extraction. The output matrix of the feature descriptor with feature values
corresponding to different patterns in the color images, acts as an input to the featureclassifier
(deep Extreme Learning Machine). The class label prediction for the pattern in an image under
examination is then made by the classifier stage of our model (see Figure 1).

2.1. Biologically-Inspired Deep ELM-Based Pattern Recognition Network Design (D-ELM)

In most conventional multi-layer implementations of extreme learning machine, the computational
complexity, memory capacity requirement, and the hidden layers that are required to be activated
simultaneously are very high. To reduce the computational complexity, computation time, memory
capacity requirement, and the simultaneously activated hidden layers, while maintaining good
classification accuracy, we proposed a different approach. In conventional deep ELM structures,
initially the ELM is trained with the training dataset as the desired target without the use of class
labels. The input weights of the ELM are calculated by taking the transpose of the resultant trained
output weights. Then the activation functions for the hidden layers are also trained in the similar way
repeatedly, prior to finally training the large hidden layer as the classifier output [26]. The deep ELM
network we propose in this paper significantly differs with a conventional one in the following three
ways. Firstly, the input weights are untrained in multiple ELM modules which are combined to create
a deep ELM network. Secondly, each module’s input layer is auto-encoded with the input, rather than
auto-encoding the hidden-layer responses. Thirdly, each module’s output weights are trained using
labeled data. We further describe the proposed method in detail below.
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In our model, we create a multi-layered Deep ELM network by adding a cascade of standard ELM
modules (three layer model, namely, the input layer, single hidden layer, and output layer), with each
following ELM module receiving its input from the preceding module, as shown in Figure 2. Therefore,
the output of each ELM module acts as an input of the following ELM module, and vice versa. Thus,
a D-module deep ELM can be implemented by repeatedly adding identical ELM modules D times.
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We describe the proposed network with the help of the functional flow of the N-dimensional
vector input throughout the proposed network. As described earlier, the vector input to the deep ELM
based classifier will be the feature representation output matrix of the training and testing images in
the dataset from the color HMAX-based feature descriptor. Our deep ELM network is a multi-layer
variant of the conventional ELM model, with multiple hidden layers. The training vector or test vector
X ∈ RN × 1 is fed as an input to the input layer. This input layer and the ELM module’s hidden layers
(of size M) are connected with each other (as shown in Figure 3) by an n weight matrix Wp1X ∈ RM × 1.
The ith hidden layer’s output is obtained by the logical sigmoid function:

f[H1,i] =
1

1 + exp(−H1,i)
. (1)
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The approximation of the input, X ∈ RN × 1 is produced by the product (multiplication) of WO1,

the output weight with the hidden-layer responses. The autoencoding is performed by the training
the output weight vectors using the K training vector, a matrix is defined as A ∈ RM × K where each
column holds the hidden layer output f[H1] at one training point. Then, in order to minimize the
square mean error, we solve for WO1 ∈ RN ×M using the training data Y ∈ RN × 1 where each column
holds training vectors:

Ypredicted: = WO1A (2)



Algorithms 2017, 10, 117 5 of 13

The original training set images, Y, like the supervised training of an extreme learning machine has
been conducted elsewhere [23,28,37], we find the solution of the following set of NM linear equations
in NM unknown variables comprised from the elements of WO1:

YAT = WO1(AAT + cI), (3)

where c is the regularization parameter that can be optimized as a hyperparameter, and I is an identity
matrix of order (M).

An input instance X is converted into a new vector X̂1 using this trained weight matrix WO1

as follows:
X̂1 = WO1f[H1] (4)

which is the auto-encoded form of the input data.
The weight matrix Wp2 ∈ RQ × N is used to construct the next module of the proposed network,

the second hidden layer input is with input H2 ∈ RQ × 1 is connected to X, where Q may not be the
same as the size of the first hidden layer, M. Then the fashion in which the output weight vectors of
the first module were trained, is repeated again to train the output weights of the second module to
produce a new auto-encoded response:

X̂2 = WO2f[H2]. (5)

A D-module deep ELM network can be formed by repeating the process explained above,
several times.

The sequential steps involved in the training procedure is explained above. After completing the
training process, the two weight matrices WO1, WO2 are combined to form one single weight matrix
Wh12 ∈ RQ ×M, that connects the first two hidden layers:

Wh12 = WO2WO1, (6)

Similarly the entire process explained above can be repeated for the subsequent modules because
the input layers and the output layers of an ELM module are linear.

We used an approach for the classification of the dataset images by embedding the class labels
as integers in the first column of the image vector for training, where each row represents the class
label for that respective feature vectors (to which it belongs). The addition of label pixels is shown
in Table 1, where each image contains “N” unique features are represented as attribute 1, attribute 2
through attribute N. Furthermore, the corresponding class category of the particular image can be
represented as the “target” class in Table 1. The first column in the Table 1 represents the class to which
the features of that row (particular input image) belong. Each row represents several features from
an image, attribute1 through attributeN are the several features for an input image. The resulting
training vector dataset is used as the target vector matrix, Y, to train every auto-encoding ELM module.
The first module receives the image only as input. Hence, the labeled training image sets are contained
in matrix Y, but the network’s first module’s input, X, are only the images. In the classification step,
the elements of the prediction vector corresponds to the class labels.

Table 1. Training labels embedded in the first column of the training vector.

Target Input Attribute 1 Input Attribute 2 . . . . . . Input Attribute N − 1 Input Attribute N

3 –0.3846 –0.3454 . . . . . . –0.5937 –0.2812
1 0.6307 0.5454 . . . . . . 0.0468 0.75
2 –0.1384 –0.1272 . . . . . . –0.1562 0.2187
3 0.3538 0.2363 . . . . . . –0.1562 0.3437
1 0.2615 0.0545 . . . . . . –0.3281 0
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The deep extreme learning machine (ELM) algorithm proposed in our study improves the training
time of the network relative to a single ELM using a similar size of hidden layers and can also improve
the classification accuracy relative to the other single-module ELM methods.

2.2. Parameter Selection of the Deep ELM Network

The input and output dimension (N) for the deep ELM network was 1000 features per image.
We chose the number of non-linear neurons (M) in a hidden layer as 12,800 and the number of ELM
modules in cascade (D) equal to 3 (see [17,20] for a detailed explanation for the selection of values for
optimum results).

The input weights of the standard extreme learning machine network are initialized randomly.
Although this performs well, but explicit computation of the input weights based on the use
(supervised) of the training dataset was shown to be advantageous [38].

Moreover, the classification performance can be enhanced when using ELMs by the restriction of
the input pixels or features that acts as an input to the ELM hidden layer [37]. In other words, it is
advantageous to ensure the input weights vector is sparse. It is also found that keeping the non-zero
weights to every hidden layer unit to a random size and locating as rectangular patches, as analogous
to the RF (receptive fields) in the biological vision system, achieves improved performance than the
random selection of the zero weights.

2.3. Brief Description of Color HMAX Based Feature Descriptor (Opponent Color Channels)

The biologically-inspired HMAX model [39] was extended to include color cues for recognition
from color images and significantly improved performance was reported on different color datasets
images [40–42]. We implemented the extension of HMAX model for pattern recognition to recognize
and classify fabric weave patterns and yarn’s color [17]. The main difference in the extension was
the incorporation of the pattern’s color information in the feature descriptor using opponent color
channels. The two main parts of this model are the feature descriptor and the classifier. The feature
descriptor was based on the fusion of opponent color channel and HMAX model, and the classifier is
implemented using deep ELM. The descriptor performs the extraction of the object texture and object
color information from the image. While the classifier in the later stage uses this information from the
preceding descriptor stage to perform the regression and to perform the classification. To improve the
recognition accurateness of the previously developed algorithm [17], we replaced the SVM classifier in
the previously proposed algorithm with the ELM-based classifier in this paper.

Processing starts with an input RGB image (see Figure 1). The processing architecture comprises
two stages, namely, the feature descriptor stage and the classification stage. In stage I, individual
red, green, and blue color channels are combined in three pairs of opponent color channels, namely,
red-green, yellow-blue, and white-black opponent color channels using a Gabor filter. The opponent
color channels were integrated with the HMAX model, so that the pattern features and color features
be processed simultaneously. The extracted features which correspond to the pattern and color are
then fed to the deep neural network-based classification stage. In the classification stage (stage II),
we first train the classifier over features of the training image set, and then test the trained classifier
with the testing image set.

The process of filtering the RGB image into individual color channels and then combining
individual color channels into opponent color channels and its integration with the HMAX model is
explained in detail in [17], as the feature descriptor stage is the same as the implementation in [17].
We further improved the earlier proposed model by replacing the classifier stage with a neural network
based classifier. Next, we describe the method used to construct our proposed deep extreme learning
network briefly as a weave pattern and yarn color classifier.

The architecture and hierarchy of the layers of HMAX model and their functionality is discussed
in detail elsewhere [39,43–47]. The color HMAX implementation for the fabric texture recognition and
classification was also achieved in our earlier study [17].
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3. Experiments

Three groups of experiments were performed on the entire datasets, to show the novelty and
advantage of our proposed model over existing algorithms. The dataset images used for all our
experiments were customly built according to the experimental design; in other words, there is
no standard benchmark dataset for our problem. The first experiment is to test the algorithm for
recognizing changes in fabric texture type, we used four classes of texture types in our experiment,
namely, plain, horizontal stripes, vertical stripes, and check textures. We gathered images for different
texture types and arranged them in different class categories, with each class category representing
a unique texture type (shown in Figure 4 as Experiment 1). As a second test, we performed a test to
determine the recognition accuracy of the algorithm for recognizing different yarn colors. We arranged
the fabric images in different class categories, with each class category representing a unique yarn
color (shown in Figure 4 as Experiment 2). As a final test, we evaluated the recognition accuracy of the
proposed algorithm for a change in fabric texture type and yarn color simultaneously. Therefore, for
this test, we created different class categories such that each class represents a unique fabric texture
type and yarn color (shown in Figure 4 as Experiment 3). It is very important to understand the
arrangement of the different classes in the dataset for the three experiments (see Figure 4 for details).
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The images in our dataset with several color and texture features of different fabrics were
re-organized to form classes in different arrangements to perform different experiments, as explained
earlier, with the help of Figure 4. Moreover, the images in every class category consist of several fabric
images with similar features belonging to the same class to capture “feature invariance”. This can be
seen in Figure 5, where four class categories are shown for an experiment (see Experiment 3 shown in
Figure 4) to test the algorithm for fabric recognition. In this image, class I represents fabric images with
horizontal stripes and different colors, class II represents fabric images with check patterns, whereas
class III represents plain fabric images with different colors. A set of images similar to those shown
in Figure 5 are used to create a collection of images arranged in different classes to capture feature
invariance and to perform a recognition test of the algorithm for different weave patterns and different
yarn colors.

The method is applied to 400 images, divided into four class categories. In each class category,
there were a total of 100 images. The training images and the testing images were selected from the
dataset images using k-fold cross-validation method (for k = 10, 20, and 25), in order to train and test
the developed algorithm over the entire image set. The entire dataset is divided into N/k segments,
where N is the number of images in the dataset. Each segment is used for testing turn by turn, and the
remaining segments are used for training in each turn. Finally the results are averaged together to
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calculate the average performance of the proposed method over entire dataset. The results obtained by
the experiments performed are summarized in Tables 2–4.
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Table 2. A comparison of recognition & classification accuracy for different types of textures between
our model (deep ELM based classifier) and the HMAX model with an SVM-based classifier (shirt fabric;
different texture type), with standard deviation in parenthesis.

K
Recognition and Classification Accuracy for Different Number of Classes (%)

Precision/Recall
Two Classes Three Classes Four Classes

Our
Model

Previous
Model

Our
Model

Previous
Model

Our
Model

Previous
Model

Our
Model

Previous
Model

10 95 (2.2) 85 (5.5) 93 (2.4) 80 (5.5) 90 (2.2) 85 (4.8) 90/60 80/50
20 95.5 (2.5) 85 (5) 93 (2.2) 80 (5) 90 (2.5) 85 (4.5) 90/60 80/50
25 95 (2.3) 85 (5.5) 93 (2.7) 80 (5.5) 90.5 (2.5) 85 (5) 90/60 80/50

Table 3. A comparison of recognition and classification accuracy for different yarn colors between our
model and the HMAX model with and SVM-based classifier (shirt fabric; color type), with standard
deviation in parenthesis.

K
Recognition and Classification Accuracy for Different Number of Classes (%)

Precision/Recall
Two Classes Three Classes Four Classes

Our
Model

Previous
Model

Our
Model

Previous
Model

Our
Model

Previous
Model

Our
Model

Previous
Model

10 95 (2.5) 85 (6) 98 (2.7) 85 (5.2) 98 (2) 85 (4.5) 95/65 83/53
20 95.5 (2.8) 85 (5.2) 98 (2) 85.5 (5.5) 98.5 (2) 85.5 (4.2) 95/65 83/53
25 95 (2) 85.5 (5.4) 98 (2.5) 85 (5.5) 98 (2.5) 85 (5) 95/65 83/53
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Table 4. A comparison of recognition and classification accuracy for different fabric textures and yarn
colors between our model (deep ELM-based classifier) and the HMAX model with an SVM-based
classifier (shirt fabric; inter-texture changes), with standard deviation in parenthesis.

K
Recognition and Classification Accuracy for Different Number of Classes (%)

Precision/Recall
Two Classes Three Classes Four Classes

Our
Model

Previous
Model

Our
Model

Previous
Model

Our
Model

Previous
Model

Our
Model

Previous
Model

10 97 (2.5) 78 (5.3) 95 (2.4) 82 (5.2) 97 (2.3) 85 (4.8) 93/63 80/50
20 97.5 (2.2) 78.5 (5) 95.5 (2) 82.5 (5.5) 97.5 (2.5) 85.5 (4.5) 93/63 80/50
25 97 (2.8) 78 (5.5) 95 (2.5) 82.5 (5.2) 97.5 (2.3) 85 (5.8) 93/63 80/50

The software package used for the implementation of the feature extraction and classification
modules was MATLAB 2014a developed by Mathworks (Natick, MA, USA) used on Microsoft
Windows 7 operating system. The images used for all the experiments, were of a moderate resolution
of up to 500 × 500 px, in JPEG format.

The recognition performance of the algorithm was evaluated according to the statistical criteria
as follows:

classification accuracy =
number of correct classifications
total number of testing images

(7)

4. Results and Discussion

The fabric’s texture and yarn color features are extracted using the biologically-inspired proposed
algorithm and then recognized successfully and classified automatically to the respective class category
using deep (multiple hidden layers) ELM. The automatic recognition and classification accuracy of the
proposed improved model is calculated and compared with the earlier proposed model [17] for all
three experiments stated in the previous section (see Tables 2–4).

Cumulatively, there are a total of four classes in the dataset, but in order to analyze the impact
of the usage of the increase in number of classes on the recognition performance of the proposed
algorithm, we have repeated our experiment for two, three, and four classes turn by turn. For example,
in order to test the proposed algorithm for two classes, we used two out of four classes of the dataset
by creating six subsets where each subset contains two classes, such as subset 1 with Class I and Class
II, subset 2 with Class I and Class III, subset 3 with Class I and Class IV, subset 4 with Class II and Class
III, subset 5 with Class II and Class IV, and subset 6 with Class III and Class IV. Finally, the resulting
accuracy was obtained by taking the average of all six subsets. Similarly, three subsets were created for
three classes, such as subset1 with Class I, Class II and Class III, subset 2 with Class I, Class II and Class
IV, and subset3 with Class II, Class III, and Class IV. Finally, the resulting accuracy for three classes was
obtained by taking the average over all three subsets. Likewise, the accuracy was evaluated for four
classes using only one subset. The recognition accuracy of the proposed algorithm was evaluated over
the entire dataset (several subsets incase of recognition performance between two and three classes,
as described above) using k-folds cross-validation over each subset (with k = 10, 20, and 25) to validate
and assess the performance of our model.

It is evident from Tables 2–4 that use of the deep ELM as a classifier achieved better recognition
accuracy. Although the dataset images contain illumination variance and wrinkles (see Figure 4),
the developed algorithm is capable of providing successful recognition and accurate classification.
Hence, we conclude that the developed algorithm performs fabric weave pattern and yarn color
recognition and classification invariantly and efficiently.

As we claimed that our algorithm may provide a fast alternative to pattern or color recognition
and classification, the results in Table 5 present a comparison of the computation speed of the proposed
algorithm as compared to the SVM counterpart and standard ELM classifier. It is evident that
the standard ELM and deep ELM classifiers are faster as compared to the SVM-based classifier;
furthermore, it is important to note that deep ELM classifier networks achieve better accuracy as
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compared to the standard ELM at the cost of speed. Apart from the computation speed, there are
several other benefits of using ELM classifiers as well. The SVM classifiers need to be trained and are
computationally more extensive, whereas ELM classifiers use random weight initialization followed
by fine tuning and is computationally less extensive. Additionally, the ELM-based classifiers have
strong generalizing capability, hence, improving specificity.

Table 5. Speed comparison of the proposed method with others. (Recognition accuracy is taken from
quoted references [17]).

Method Accuracy (%) Training Time (s) Testing Time (s)

SVM 80 0.3502 0.0516
ELM 84 0.0532 0.030

D-ELM 97.5 0.1803 0.035

Earlier, we proposed a model for fabric weave pattern and yarns color recognition from color
images using a support vector machine as a classifier [17]. We have shown a comparison of the
proposed algorithm with our previous implementation [17] in Table 5. A confusion matrix is also
presented as Table 6, for all four fabric patterns used in the experiment. Unlike existing computer
vision models for fabric texture recognition and classification, our study not only analyzes the texture
of the fabric, but the yarn color (fabric color) is also recognized and classified. It can be seen clearly
that the biologically-plausible fabric texture analysis method is much efficient and accurate than other
existing computer vision models in woven fabric pattern and color recognition and classification. It is
evident from Table 5 that the ELM is a good alternative to the Support Vector Machine classifier, and
is biologically plausible as well. Furthermore, we noticed that a multi-hidden layer variant of ELM
further improves the recognition and classification performance. Hence, we believe that use of the
extreme learning machine as a classifier to construct a biologically-inspired network to imitate human
vision and human intelligence is a great leap forward to achieve human-like efficient intelligence.

Table 6. Confusion matrix for the four fabric patterns used in the experiment.

Predicted Class

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Actual Class

Pattern1 390 3 2 5
Pattern2 2 390 7 1
Pattern3 0 0 390 10
Pattern4 2 2 6 390

5. Conclusions

We have proposed a biologically-inspired model of joint processing for the extraction of fabric
texture and yarn color information based on known properties of the primate visual cortex, which
is capable of recognizing and classifying woven fabric textures (weave pattern) invariantly from the
color image. Once the algorithm is trained for all the fabric weave patterns (textures) and yarn colors
manufactured by a fabric manufacturer, the algorithm will provide an automated recognition and
classification of the texture to facilitate the process of sorting the fabric with respect to color and pattern.

We have tested the algorithm to recognize three different types of changes in the fabric texture,
and have shown that the proposed descriptor performs on par, or better than the existing algorithms.
We found that the recognition accuracy is significant with an average accuracy rate of 97.5%. It should
be noted that although we used shirt fabrics to test our algorithm, the algorithm can also be used on
other apparel or clothes, like towels or bed sheets.

We further found that the algorithm can also be used to recognize a particular texture woven
over a fabric. The developed algorithm may also be trained to recognize and correctly classifying
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complex textures efficiently. The proposed model was shown to yield higher accuracy for automated
classification of woven fabric texture and yarn color, the recognition accuracy is also improved. Unlike
other existing models, the proposed model is also capable of automatically recognizing the fabric and
yarn color and classifying it to the respective color and texture class category. Overall, the relative
success of the proposed biologically-inspired approach suggests that neuroscience may contribute
new ideas and superior algorithms for automatic recognition and classification applications using
color images.
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