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Abstract: This paper focuses on the iterative parameter estimation algorithms for dual-frequency
signal models that are disturbed by stochastic noise. The key of the work is to overcome the difficulty
that the signal model is a highly nonlinear function with respect to frequencies. A gradient-based
iterative (GI) algorithm is presented based on the gradient search. In order to improve the estimation
accuracy of the GI algorithm, a Newton iterative algorithm and a moving data window gradient-based
iterative algorithm are proposed based on the moving data window technique. Comparative
simulation results are provided to illustrate the effectiveness of the proposed approaches for
estimating the parameters of signal models.

Keywords: signal processing; parameter estimation; moving data window; gradient search; Newton
search

1. Introduction

Parameter estimation is used widely in system identification [1–3] and signal processing [4,5].
The existing parameter estimation methods for signal models can be classified into the following basic
categories: the frequency-domain methods and the time-domain methods. The frequency-domain
methods based on the fast Fourier transform (FFT) mainly include the Rife method, the phase difference
method, etc. The accuracy of the Rife method is high in the case of noiseless or higher signal-to-noise
ratio with adaptive sampling points; however, the error given by the Rife method is large if the signal
frequency is near the DFT quantization frequency point. Therefore, some improved methods were
proposed [6,7]. For example, Jacobsen and Kootsookos used three largest spectral lines of the FFT
spectrum to calibrate the frequency estimation [8]. Deng et al. proposed a modified Rife method for
the frequency shift of signals [9]. However, there is a risk that the shift direction of the frequency may
be error. The time-domain methods mainly include the maximum likelihood algorithm, the subspace
method and the self-correlation phase method. The maximum likelihood method is effective estimation
to minimize the average risk though imposing significant computational costs. The methods in [10–12]
used multiple autocorrelation coefficients or multi-steps autocorrelation functions to estimate the
frequency so the amount of computations increase.

In practice, actual signals are usually disturbed by various stochastic noise, and the time
series signals like vibration signals or biomedical signals are subjected to dynamic excitations,
including nonlinear and non-stationary properties. In order to solve the difficulties, time-frequency
representations (TFR) provide a powerful tool since a TFR can give information about the
frequencies contained in signal over time, such as short-time Fourier transform, wavelet transform,
and Hilbert–Huang transform [13]. Recently, Amezquita-Sanchez and Adeli presented an adaptive
multiple signal classification-empirical wavelet transform methodology for accurate time-frequency
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representation of noisy non-stationary and nonlinear signals [14]. Daubechies et al. used an empirical
mode decomposition-like tool to decompose into the blocks functions, with slowly varying amplitudes
and frequencies [15]. These existing approaches can obtain signal models indirectly, because they are
realized based on the transform techniques like the Fourier transform and wavelet transform. In this
paper, we propose the direct parameter estimation algorithms for signal modeling.

The iterative methods and/or the recursive methods play an important role not only in finding
the solutions of nonlinear matrix equations, but also in deriving parameter estimation algorithms
for signal models [16–22]. Furthermore, the iterative algorithms can give more accurate parameter
estimates because of making full use of the observed data. Yun utilized the iterative methods to find
the roots of nonlinear equations [23]. Dehghan and Hajarian presented an iterative algorithm for
solving the generalized coupled Sylvester matrix equations over the generalized centro-symmetric
matrices [24]. Wang et al. proposed an iterative method for a class of complex symmetric linear
systems [25]. Xu derived a Newton iterative algorithm to the parameter estimation for dynamical
systems [26]. Pei et al. used a monotone iterative technique to get the existence of positive solutions and
to seek the positive minimal and maximal solutions for a Hadamard type fractional integro-differential
equation [27].

As an optimization tool, the Newton method is useful for solving roots of nonlinear problems
or deriving parameter estimation algorithms from observed data [28–30]. For a long time, the
Newton method has been utilized in much literature, such as transcendental equations, minimization
and maximization problems, and numerical verification for solutions of nonlinear equations.
Simpson noted that the Newton method can be used to give the generalization to systems of
two equations and to solve optimization problems [31]. Dennis provided Newton’s method or
quasi-Newton methods for multidimensional unconstrained optimization and nonlinear equation
problems [32]. Jürgen studied the accelerated convergence of the Newton method by molding a given
function into a new one that the roots remain unchanged, but it looks nearly linear in a neighborhood
of the root [33]. Djoudi et al. presented a guided recursive Newton method involving inverse iteration
to solve the transcendental eigenproblems by reducing it to a generalised linear eigenproblem [34].
Benner described the numerical solution of large-scale Lyapunov equations, Riccati equations, and
linear-quadratic optimal control problems [35]. Seinfeld et al. used a quasi-Newton search technique
and a barrier modification to enfore closed-loop stability for the H-infinity control problem [36].
Liu et al. presented an iterative identification algorithm for Wiener nonlinear systems using the Newton
method [37]. The gradient method with the search directions defined by the gradient of the function at
the current point has been developed for optimization problems. For instance, Curry used the gradient
descent method for minimizing a nonlinear function of n real variables [38]. Vranhatis et al. studied
the development, convergence theory and numerical testing of a class of gradient unconstrained
minimization algorithms with adaptive step-size [39]. Hajarian proposed a gradient-based iterative
algorithm to find the solutions of the general Sylvester discrete-time periodic matrix equations.

The moving data window with a fixed length is moved as time, which is a first-in-first-out
sequence. When a new observation arrives, the data in this moving window are updated by including
the new observation and eliminating the oldest one. The length of the moving window remains fixed.
The algorithm computes parameter estimates using the observed data in the current window. Recently,
Wang et al. presented a moving-window second order blind identification for time-varying transient
operational modal parameter identification of linear time-varying structures [41]. Al-Matouq and
Vincent developed a multiple-window moving horizon estimation strategy that exploits constraint
inactivity to reduce the problem size in long horizon estimation problems [42]. This paper focuses on
the parameter estimation problems of dual-frequency signal models. The main contributions of this
paper are twofold. The basic idea is to present a gradient-based iterative (GI) algorithm and to estimate
the parameters for signal models. Several estimation errors obtained by the Newton iterative and the
moving data window based GI algorithms are compared to the errors given by the GI algorithm.
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To close this section, we give the outline of this paper. Section 2 derives a GI parameter estimation
algorithm. Sections 3 and 4 propose the Newton and moving data window gradient based iterative
parameter estimation algorithms. Section 5 provides an example to verify the effectiveness of the
proposed algorithms. Finally, some concluding remarks are given in Section 6.

2. The Gradient-Based Iterative Parameter Estimation Algorithm

Consider the following dual-frequency cosine signal model:

y(t) = a cos(ω1t) + b cos(ω2t) + v(t), (1)

where ω1 > 0 and ω2 > 0 are the angular frequencies, a > 0 and b > 0 are the amplitudes, t is
a continuous-time variable, y(t) is the observation, and v(t) is a stochastic disturbance with zero mean
and variance σ2. In actual engineering, we can only get discrete observed data. Suppose that the
sampling data are y(ti), i = 1, 2, 3, · · · , L, where L is the data length and ti is the sampling time.

As we all know, signals include the sine signal, cosine signal, Gaussian signal, exponential signal,
complex exponential signal, etc. Among them, the sine signal and the cosine signal are typical periodic
signals whose waveforms are sine and cosine curves in mathematics. Many periodic signals can
be decomposed into the sun of multiple sinusoidal signals with different frequencies and different
amplitudes by the Fourier series [43]. The cosine signal differs from the sine signal by π/2 in the
initial phase. This paper takes the double-frequency cosine signal model as an example and derives
the parameter estimation algorithms, which are also applicable to the sinusoidal signal models.

Use observed data y(ti) and the model output to construct the criterion function

J1(θ) :=
1
2

L

∑
i=1

[y(ti)− a cos(ω1ti)− b cos(ω2ti)]
2. (2)

The criterion function contains the parameters to be estimated, and it represents the error
between the observed data and the model output. We hope that this error is as small as
possible, which is equivalent to minimizing J1(θ) and obtaining the estimates of the parameter
vector θ := [a, b, ω1, ω2]

T ∈ R4.
Letting the partial derivative of J1(θ) with respect to θ be zero gives

grad[J1(θ)] :=
∂J1(θ)

∂θ
=

[
∂J1(θ)

∂a
,

∂J1(θ)

∂b
,

∂J1(θ)

∂ω1
,

∂J1(θ)

∂ω2

]T

∈ R4. (3)

Define the stacked output vector Y(L) and the stacked information matrix Φ(θ, L) as

Y(L) :=


y(1)
y(2)

...
y(L)

 ∈ RL, Φ(θ, L) :=


ϕT(θ, 1)
ϕT(θ, 2)

...
ϕT(θ, L)

 ∈ RL×4. (4)

Define the information vector

ϕ(θ, ti) := [− cos(ω1ti),− cos(ω2ti), ati sin(ω1ti), bti sin(ω2ti)]
T ∈ R4. (5)
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Let f (ti) := a cos(ω1ti) + b cos(ω2ti) ∈ R, and the model output stacked vector

F(θ, L) :=


f (θ, 1)
f (θ, 2)

...
f (θ, L)

 ∈ RL. (6)

Then, the gradient vector can be expressed as

grad[J1(θ)] := ΦT(θ, L)[Y(L)− F(θ, L)]. (7)

Let k = 1, 2, 3, · · · be an iterative variable and θ̂k−1 be the estimate of θ at iteration k − 1.
The gradient at θ = θ̂k−1 is given by

grad[J1(θ̂k−1)] =

[
∂J1(θ̂k−1)

∂a
,

∂J1(θ̂k−1)

∂b
,

∂J1(θ̂k−1)

∂ω1
,

∂J1(θ̂k−1)

∂ω2

]T
∈ R4,

∂J1(θ̂k−1)

∂a
=−

L

∑
i=1

cos(ω̂1,k−1ti)[y(ti)− âk−1 cos(ω̂1,k−1ti)− b̂k−1 cos(ω̂2,k−1ti)],

∂J1(θ̂k−1)

∂b
=−

L

∑
i=1

cos(ω̂2,k−1ti)[y(ti)− âk−1 cos(ω̂1,k−1ti)− b̂k−1 cos(ω̂2,k−1ti)], (8)

∂J1(θ̂k−1)

∂ω̂1
=

L

∑
i=1

âk−1ti sin(ω̂1,k−1ti)[y(ti)− âk−1 cos(ω̂1,k−1ti)− b̂k−1 cos(ω̂2,k−1ti)],

∂J1(θ̂k−1)

∂ω̂2
=

L

∑
i=1

b̂k−1ti sin(ω̂2,k−1ti)[y(ti)− âk−1 cos(ω̂1,k−1ti)− b̂k−1 cos(ω̂2,k−1ti)].

Using the negative gradient search and minimizing J1(θ), introducing an iterative step-size µk,
we can get the gradient-based iterative (GI) algorithm for dual-frequency signal models:

θ̂k = θ̂k−1 − µkgrad[J1(θ̂k−1)] (9)

= θ̂k−1 − µkΦT(θ̂k−1, L)[Y(L)− F(θ̂k−1, L)],

Y(L) = [y(1), y(2), · · · , y(L)]T, (10)

Φ̂k := Φ(θ̂k−1, L) = [ϕ(θ̂k−1, 1),ϕ(θ̂k−1, 2), · · · ,ϕ(θ̂k−1, L)]T, (11)

F̂k := F(θ̂k−1, L) = [ f (θ̂k−1, 1), f (θ̂k−1, 2), · · · , f (θ̂k−1, L)]T, (12)

ϕ̂k :=ϕ(θ̂k−1, ti)

= [− cos(ω̂1,k−1ti),− cos(ω̂2,k−1ti), âk−1ti sin(ω̂1,k−1ti), b̂k−1ti sin(ω̂2,k−1ti)]
T, (13)

f̂k := f (θ̂k−1, ti)

= âk−1 cos(ω̂1,k−1ti) + b̂k−1 cos(ω̂2,k−1ti), (14)

θ̂k = [âk, b̂k, ω̂1,k, ω̂2,k]
T, (15)

0 < µk 6 λ−1
max[Φ̂

T

kΦ̂k]. (16)

The steps of the GI algorithm to compute θ̂k are listed as follows:

1. Let k = 1, give a small number ε and set the initial value θ̂0 = 1n/p0, p0 is generally taken to be
a large positive number, e.g., p0 = 106.

2. Collect the observed data y(ti), i = 1, 2, · · · , L, where L is the data length, form Y(L) by
Equation (10).

3. Form ϕ̂k by Equation (13) and Φ̂k by Equation (11).
4. Form f̂k by Equation (14) and F̂k by Equation (12).
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5. Choose a larger µk satisfying Equation (16), and update the estimate θ̂k by Equation (15).
6. Compare θ̂k with θ̂k−1, if ‖θ̂k − θ̂k−1‖ 6 ε, then terminate this procedure and obtain the iteration

time k and the estimate θ̂k; otherwise, increase k by 1 and go to Step 3.

3. The Newton Iterative Parameter Estimation Algorithm

The gradient method uses the first derivative, and its convergence rate is slow. The Newton
method is discussed here, which requires the second derivative, with fast convergence speed.
The following derives the Newton iterative algorithm to estimate the parameters of dual-frequency
signal models.

According to the criterion function J1(θ) in Equation (2). Calculating the second partial derivative
of the criterion function J1(θ) with respect to the parameter θ gives the Hessian matrix

H(θ) :=
∂2 J1(θ)

∂θ∂θT =
∂grad[J1(θ)]

∂θT . (17)

Let k = 1, 2, 3, · · · be an iterative variable and θ̂k−1 be the estimate of θ at iteration k− 1. Based on
the Newton search, we can derive the Newton iterative (NI) parameter estimation algorithm of
dual-frequency signal models:

θ̂k = θ̂k−1 − H−1(θ̂k−1)grad[J1(θ̂k−1)], (18)

Y(L) = [y(1), y(2), · · · , y(L)]T, (19)

Φ̂k := Φ(θ̂k−1, L) = [ϕ(θ̂k−1, 1),ϕ(θ̂k−1, 2), · · · ,ϕ(θ̂k−1, L)]T, (20)

F̂k := F(θ̂k−1, L) = [ f (θ̂k−1, 1), f (θ̂k−1, 2), · · · , f (θ̂k−1, L)]T, (21)

ϕ̂k :=ϕ(θ̂k−1, ti)

= [− cos(ω̂1,k−1ti),− cos(ω̂2,k−1ti), âk−1ti sin(ω̂1,k−1ti), b̂k−1ti sin(ω̂2,k−1ti)]
T, (22)

f̂k := f (θ̂k−1, ti) = âk−1 cos(ω̂1,k−1ti) + b̂k−1 cos(ω̂2,k−1ti), (23)

H(θ̂k−1) =


h11(θ̂k−1) h12(θ̂k−1) h13(θ̂k−1) h14(θ̂k−1)

h21(θ̂k−1) h22(θ̂k−1) h23(θ̂k−1) h24(θ̂k−1)

h31(θ̂k−1) h32(θ̂k−1) h33(θ̂k−1) h34(θ̂k−1)

h41(θ̂k−1) h42(θ̂k−1) h43(θ̂k−1) h44(θ̂k−1)

 , (24)

h11(θ̂k−1) =
L

∑
i=1

cos2(ω̂1,k−1ti), (25)

h12(θ̂k−1) =
L

∑
i=1

cos(ω̂1,k−1ti) cos(ω̂2,k−1ti), (26)

h13(θ̂k−1) =
L

∑
i=1

ti sin(ω̂1,k−1ti)[y(ti)− b̂k−1 cos(ω̂2,k−1ti)]− âk−1ti sin(2ω̂1,k−1ti), (27)

h14(θ̂k−1) = −
L

∑
i=1

b̂k−1ti cos(ω̂1,k−1ti) sin(ω̂2,k−1ti), (28)

h22(θ̂k−1) =
L

∑
i=1

cos2(ω̂2,k−1ti), (29)

h23(θ̂k−1) = −
L

∑
i=1

âk−1ti cos(ω̂2,k−1ti) sin(ω̂1,k−1ti), (30)

h24(θ̂k−1) =
L

∑
i=1

ti sin(ω̂2,k−1ti)[y(ti)− âk−1 cos(ω̂1,k−1ti)]− b̂k−1ti sin(2ω̂2,k−1ti)], (31)

h33(θ̂k−1) =
L

∑
i=1

âk−1t2
i cos(ω̂1,k−1ti)[y(t)− b̂k−1 cos(ω̂2,k−1ti)]− â2

k−1t2
i cos(2ω̂1,k−1ti), (32)
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h34(θ̂k−1) =
L

∑
i=1

âk−1b̂k−1t2
i sin(ω̂1,k−1ti) sin(ω̂2,k−1ti), (33)

h44(θ̂k−1) =
L

∑
i=1

b̂k−1t2
i cos(ω̂2,k−1ti)[y(t)− âk−1 cos(ω̂1,k−1ti)]− b̂2

k−1t2
i cos(2ω̂2,k−1ti). (34)

θ̂k = [âk, b̂k, ω̂1,k, ω̂2,k]
T. (35)

The procedure for computing the parameter estimation vector θ̂k using the NI algorithm in
Equations (18)–(35) is listed as follows:

1. Let k = 1, give the parameter estimation accuracy ε, set the initial value θ̂0 = 1n/p0.
2. Collect the observed data y(ti), i = 1, 2, · · · , L, form Y(L) by Equation (19).
3. Form ϕ̂k by Equation (22), form Φ̂k by Equation (20).
4. Form f̂k by Equation (23), form F̂k by Equation (21).
5. Compute hmn(θ̂k−1) by Equations (25)–(34), m = 1, 2, 3, 4, n = 1, 2, 3, 4, and form H(θ̂k−1) by

Equation (24).
6. Update the estimate θ̂k by Equation (35).
7. Compare θ̂k with θ̂k−1, if ‖θ̂k− θ̂k−1‖ 6 ε, then terminate this procedure and obtain the estimate θ̂k;

otherwise, increase k by 1 and go to Step 3.

4. The Moving Data Window Gradient-Based Iterative Algorithm

The gradient method and the Newton method use a batch of data, which is the data from t = 1
to t = L. Here, the moving window data from y(ti−p+1) to y(ti), p used here is the length of the moving
data window. Let ti be the current sampling time. The moving window data can be represented
as y(ti), y(ti−1), · · · , y(ti−p+1). These sampling data change with the sampling time ti. With the
increasing of i, the data window moves forward constantly. New data are collected and old data are
removed from the window. The following derives the moving data window gradient-based iterative
algorithm of dual-frequency signal models.

Define the moving data window criterion function

J2(θ) :=
1
2

p−1

∑
j=0

[y(ti−j)− a cos(ω1ti−j)− b cos(ω2ti−j)]
2. (36)

Define the information vector

ϕ(θ, ti−j) := [− cos(ω1ti−j),− cos(ω2ti−j), ati−j sin(ω1ti−j), bti−j sin(ω2ti−j)]
T ∈ R4, (37)

and the stacked information matrix

Φ(p, θ, ti) := [ϕT(θ, ti),ϕT(θ, ti−1), · · · ,ϕT(θ, ti−p+1)]
T ∈ Rp×4. (38)

Define f (p, ti−j) := a cos(ω1ti−j) + b cos(ω2ti−j) ∈ R, the vector F(p, θ, ti) and Y(p, ti) as

F(p, θ, ti) :=


f (p, ti)

f (p, ti−1)
...

f (p, ti−P+1)

 ∈ Rp, Y(p, ti) :=


y(ti)

y(ti−1)
...

y(ti−p+1)

 ∈ Rp. (39)

Then, the gradient vector can be expressed as

grad[J2(θ)] := ΦT(p, θ, ti)[Y(p, ti)− F(p, θ, ti)]. (40)
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Let k = 1, 2, 3, · · · be an iterative variable, and θ̂k(ti) := [âk(ti), b̂k(ti), ω̂1,k(ti), ω̂2,k(ti)]
T ∈ R4 be

the estimate of θ at iteration k and the sampling time t = ti. Minimizing J2(θ) and using the negative
gradient search, we can obtain the moving data window gradient-based iterative (MDW-GI) algorithm:

θ̂k(ti) = θ̂k−1(ti)− µk(ti)grad[J2(θ̂k−1(ti))]

= θ̂k−1(ti)− µk(ti)Φ
T(p, θ̂k−1(ti), ti)[Y(p, ti)− F(p, θ̂k−1(ti), ti)], (41)

Φ̂k(p, ti) = Φ̂k(p, θ̂k−1(ti), ti)

= [ϕ(θ̂k−1(ti), ti),ϕ(θ̂k−1(ti), ti−1), · · · ,ϕ(θ̂k−1(ti), ti−p+1)]
T, (42)

Y(p, ti) = [y(ti), y(ti−1), · · · , y(ti−p+1)]
T, (43)

F̂k(p, ti) = F̂k(p, θ̂k−1(ti), ti)

= [ f (θ̂k−1(ti), ti), f (θ̂k−1(ti), ti−1), · · · , f (θ̂k−1(ti), ti−p+1)]
T, (44)

ϕ̂k(ti−j) :=ϕ(θ̂k−1(ti), ti−j)

= [− cos(ω̂1,k−1(ti)ti−j),− cos(ω̂2,k−1(ti)ti−j), âk−1(ti)ti−j sin(ω̂1,k−1(ti)ti−j),

b̂k−1(ti)ti−j sin(ω̂2,k−1(ti)ti−j)]
T, (45)

f̂k(ti−j) := f (θ̂k−1(ti), ti−j)

= âk−1(ti) cos(ω̂1,k−1(ti)ti−j) + b̂k−1(ti) cos(ω̂2,k−1(ti)ti−j), (46)

θ̂k(ti) = [âk(ti), b̂k(ti), ω̂1,k(ti), ω̂2,k(ti)]
T, (47)

0 < µk(ti) 6 λ−1
max[Φ̂

T

k(p, ti)Φ̂k(p, ti)]. (48)

The steps of the MDW-GI algorithm in Equations (41)–(48) to compute θ̂k are listed as follows.

1. Pre-set the length of p, let i = p, give the parameter estimation accuracy ε and the iterative length
kmax = 500.

2. To initialize, let k = 1, θ̂0(ti) = 1n/p0, p0 = 106.
3. Collect the observed data y(ti), form Y(p, ti) by Equation (43).
4. Form ϕ̂k(ti−j) by Equation (45), form Φ̂k(p, ti) by Equation (42).
5. Form f̂k(ti−j) by Equation (46), form F̂k(p, ti) by Equation (44).
6. Select a larger µk(ti) satisfying Equation (48), update the estimate θ̂k(ti) by Equation (47).
7. If k < kmax, increase k by 1 and go to Step 4; otherwise, go to the next step.
8. Compare θ̂k(ti) with θ̂k−1(ti), if ‖θ̂k(ti) − θ̂k−1(ti)‖ > ε, then let θ̂0(ti+1) := θ̂k(ti), i := i + 1,

go to Step 2; otherwise, obtain the parameter estimate θ̂k(ti), terminate this procedure.

5. Examples

Case 1: The numerical simulations of the three iterative algorithms.
Consider the following dual-frequency cosine signal model:

y(t) = 1.48 cos(0.06t) + 2.25 cos(0.55t) + v(t).

The parameter vector to be estimated is

θ = [a, b, ω1, ω2]
T = [1.48, 2.25, 0.06, 0.55]T.

In simulation, {v(t)} is taken as a white noise sequence (stationary stochastic noise) with zero
mean and variances σ2 = 0.502, σ2 = 1.502 and σ2 = 2.502, respectively. Let t = kT, the sampling
period T = 0.005, k = 2000, the data length L = 2000. Apply the proposed GI algorithm using the
observed data to estimate the parameters of this signal model. The parameter estimates and their
estimation errors δ := ‖θ̂k − θ‖/‖θ‖ × 100% versus k are as shown in Table 1 and Figure 1.
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Table 1. The GI parameter estimates and errors.

σ2 k a b ω1 ω2 δ (%)

2.502 10 0.55350 0.55350 0.00064 0.00148 73.11514
20 0.61211 0.61528 0.03325 0.14768 68.89718
50 1.06694 1.08276 0.00000 0.58116 45.10172

100 1.20074 1.56991 0.00002 0.56483 26.83480
200 1.28232 1.88059 0.00018 0.56030 15.39800
500 1.34925 2.12940 0.01473 0.55767 6.68183

1.502 10 0.55290 0.55290 0.00212 0.00487 73.10844
20 0.63483 0.63629 0.02549 0.17931 67.62638
50 1.10299 1.20478 0.00002 0.56478 40.47663

100 1.21921 1.60904 0.00014 0.55812 25.26461
200 1.29994 1.90343 0.00137 0.55428 14.36541
500 1.37665 2.14898 0.03582 0.55443 5.33204

0.502 10 0.55237 0.55240 0.00604 0.01387 73.04062
20 0.65958 0.65653 0.01624 0.21377 66.34478
50 1.09460 1.28918 0.00009 0.55852 37.71802

100 1.22332 1.64271 0.00026 0.55228 24.07888
200 1.31323 1.92538 0.00158 0.54864 13.44312
500 1.39090 2.17489 0.02450 0.54741 4.43172

True values 1.48000 2.25000 0.06000 0.55000
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Figure 1. The GI estimation errors δ versus k.

Apply the NI parameter estimation algorithm in Equations (18)–(35) with the finite observed data
to estimate the parameters. The data length and the variances are the same as the condition in the GI
algorithm. The parameter estimates and their estimation errors are given in Table 2 and the estimation
errors δ versus k are shown in Figure 2.

Apply the MDW-GI parameter estimation algorithm in Equations (41)–(48) to estimate the
parameters of signal models. The length p of the moving data window is 100, 200 and 300, and {v(t)} is
taken as a white noise sequence with zero mean and variance σ2 = 0.502, respectively. The simulation
results are shown in Table 3 and Figure 3.
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Table 2. The NI parameter estimates and errors.

σ2 k a b ω1 ω2 δ (%)

2.502 1 1.83060 1.78268 0.09923 0.52087 21.32333
2 1.84736 1.93621 0.13360 0.55852 17.77782
10 1.68078 2.16420 0.11020 0.56216 8.16074
20 1.65675 2.19656 0.10597 0.56159 6.93411

100 1.62036 2.23024 0.09748 0.55889 5.34256
200 1.60860 2.23778 0.09416 0.55763 4.86795

1.502 1 1.80786 1.79728 0.09883 0.52380 20.40210
2 1.78233 1.95654 0.12241 0.55564 15.49323
10 1.63563 2.16656 0.10287 0.56022 6.61985
20 1.61619 2.19588 0.09943 0.56005 5.53200

100 1.58796 2.22530 0.09256 0.55823 4.20939
200 1.57898 2.23150 0.08988 0.55730 3.82961

0.502 1 1.78529 1.81118 0.09845 0.52670 19.51195
2 1.73467 1.97038 0.11519 0.55453 13.90292
10 1.60314 2.16384 0.09847 0.55978 5.65377
20 1.58703 2.19039 0.09570 0.55991 4.65522

100 1.56461 2.21617 0.09023 0.55871 3.50636
200 1.55766 2.22129 0.08812 0.55803 3.19386

True values 1.48000 2.25000 0.06000 0.55000

Table 3. The MDW-GI parameter estimates and errors (σ2 = 0.502).

p k a b ω1 ω2 δ (%)

100 1 1.58254 1.64339 0.07785 0.57750 22.40827
2 1.87594 1.97597 0.11125 0.57907 17.64461
5 1.83227 2.00369 0.11020 0.57801 15.77345
10 1.77887 2.05136 0.10879 0.57605 13.20660
20 1.69892 2.12339 0.10526 0.57220 9.37923
50 1.57751 2.23398 0.09153 0.56174 3.79684

200 1 1.78604 1.85970 0.10256 0.57011 18.12068
2 1.81880 1.95055 0.10931 0.57243 16.56384
5 1.73791 2.01245 0.10997 0.57420 12.91251
10 1.64148 2.08926 0.10871 0.57449 8.52118
20 1.53916 2.17165 0.09906 0.56944 3.90746
50 1.47938 2.22055 0.08073 0.56051 1.36478

300 1 1.74606 1.85586 0.10881 0.56979 17.40188
2 1.78854 1.97309 0.11616 0.57303 15.23989
5 1.69704 2.05038 0.11528 0.57458 10.94891
10 1.59705 2.12840 0.10877 0.57251 6.44220
20 1.50943 2.19678 0.09034 0.56412 2.52463
50 1.46715 2.23197 0.07030 0.55621 0.91639

True values 1.48000 2.25000 0.06000 0.55000
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Figure 2. The NI estimation errors δ versus k.
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Figure 3. The MDW-GI estimation errors δ versus k (σ2 = 0.502).

In order to validate the obtained models, we use the MDW-GI parameter estimates from
next-to-last row in Table 3 with p = 300 to construct the MDW-GI estimated model

ŷ(t) = 1.46715 cos(0.07030t) + 2.23197 cos(0.55621t).

The estimated outputs ŷ(t) and the observed signal model y(t) are plotted in Figure 4, where the
solid-line denotes the actual signal y(t) and the dot-line denotes the estimated signal ŷ(t).

From the simulation results, we can draw the following conclusions:

• The parameter estimation errors obtained by the presented three algorithms gradually decreasing
trend as the iterative variable k increases.

• The parameter estimation errors given by three algorithms become smaller with the noise
variance decreasing.

• Tables 1 and 2 and Figures 1 and 2 show that the proposed NI algorithm has faster
convergence speed and more accurate parameter estimates than the GI algorithm under the
same simulation conditions.

• The larger the length p of the moving data window is, the faster the parameter estimation converge
speed is (see Figure 3). Moreover, the larger the length p, the higher the accuracy is (see Table 3).



Algorithms 2017, 10, 118 11 of 13

• In the simulation, these three algorithms are fulfilled in the same conditions (σ2 = 0.502), and
the estimated models obtained by the MDW-GI and NI algorithms have higher accuracy than the
GI algorithm.

• The outputs of estimated signal ŷ(t) are very close to the actual signal model y(t). In other words,
the estimated model can capture the dynamics of the signal.
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Figure 4. The estimated outputs ŷ(t) and the actual signal model y(t) versus t. Solid line: the actual
output y(t), dot-line: the estimated signal ŷ(t).

6. Conclusions

This paper studies the direct parameter estimation algorithms for signal models only using the
discrete observed data. By using the gradient search, we need to select a small step-size in order
to ensure the convergence, and this will increase the search time and decrease the convergence rate.
The proposed NI and MDW-GI algorithms have higher accuracy than the GI estimation algorithm for
estimating the unknown parameters. The MWD-GI is used to obtain the parameter estimates at the
current moment based on the estimates of previous data obtained at the moment time. Furthermore,
the MDW-GI algorithm based on the moving data window technique can estimate the parameters of
signal models in real time. The proposed algorithms can be extended to multi-frequency signal models.
In the next work, we will consider the estimation of the initial phase of the signal models, that is to say,
the signal model is a highly nonlinear function in regard to the frequencies and phases, and estimate all
the parameters of dual-frequency signals including the unknown amplitudes, frequencies and initial
phases simultaneously.
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