
algorithms

Article

A Comparative Study on Recently-Introduced
Nature-Based Global Optimization Methods in
Complex Mechanical System Design

Abdulbaset El Hadi Saad *, Zuomin Dong and Meysam Karimi

Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada;
zdong@uvic.ca (Z.D.); karimim@uvic.ca (M.K.)
* Correspondence: asaad@uvic.ca; Tel.: +1-778-433-9991

Received: 9 September 2017; Accepted: 13 October 2017; Published: 17 October 2017

Abstract: Advanced global optimization algorithms have been continuously introduced and
improved to solve various complex design optimization problems for which the objective and
constraint functions can only be evaluated through computation intensive numerical analyses or
simulations with a large number of design variables. The often implicit, multimodal, and ill-shaped
objective and constraint functions in high-dimensional and “black-box” forms demand the search
to be carried out using low number of function evaluations with high search efficiency and good
robustness. This work investigates the performance of six recently introduced, nature-inspired
global optimization methods: Artificial Bee Colony (ABC), Firefly Algorithm (FFA), Cuckoo
Search (CS), Bat Algorithm (BA), Flower Pollination Algorithm (FPA) and Grey Wolf Optimizer
(GWO). These approaches are compared in terms of search efficiency and robustness in solving
a set of representative benchmark problems in smooth-unimodal, non-smooth unimodal, smooth
multimodal, and non-smooth multimodal function forms. In addition, four classic engineering
optimization examples and a real-life complex mechanical system design optimization problem,
floating offshore wind turbines design optimization, are used as additional test cases representing
computationally-expensive black-box global optimization problems. Results from this comparative
study show that the ability of these global optimization methods to obtain a good solution diminishes
as the dimension of the problem, or number of design variables increases. Although none of these
methods is universally capable, the study finds that GWO and ABC are more efficient on average
than the other four in obtaining high quality solutions efficiently and consistently, solving 86% and
80% of the tested benchmark problems, respectively. The research contributes to future improvements
of global optimization methods.

Keywords: nature based optimization; artificial bee colony; firefly algorithm; cuckoo search;
bat algorithm; flower pollination algorithm; grey wolf optimizer

1. Introduction

Advanced optimization methods are used in engineering design to obtain the best functional
performance and/or minimum production cost of a complex product or system in the increasingly
competitive international market. Nature-inspired global optimization algorithms with superior search
efficiency and robustness have been continuously introduced and improved to solve various complex,
nonlinear optimization problems, which most traditional gradient-based optimization methods are
incapable to deal with. Moreover, these nature-inspired global optimization (GO) algorithms become
more useful when the objective function of the problem of interest is in implicit, black-box form
and/or its derivative information of is unavailable, unreliable, or expensive to obtain. Development
of the nature-inspired global optimization algorithm dated back to the introductions of the Genetic

Algorithms 2017, 10, 120; doi:10.3390/a10040120 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a10040120
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 120 2 of 30

Algorithm (GA) based on Darwin’s principle of biological systems by Holland et al. [1] Since then,
Ant Colony Optimization (ACO) [2], Simulated Annealing (SA) [3], and Particle Swarm Optimization
(PSO) [4], as the most recognized nature-inspired global optimization algorithms have been introduced.
Due to their general applicability, ease of implantation, and relatively fast convergence, GA, PSO, ABC
and SA have attracted much attention in the past, and have been applied successfully for a wide range
of global optimization applications. For instance, Brenna et al. [5] employed GA optimizer to carry out
multi-objective optimization for train schedules with minimum energy consumption and travel time;
Zhao et al. [6] proposed an improved ant colony optimization (ACO) method for the route planning of
the omnidirectional mobile vehicle; and Herish et al. [4,7] applied PSO in multi-objective optimization
for reliability-redundancy assignments in design.

Over the years, significant efforts have been devoted to the further developments of various
global optimization methods of both deterministic and stochastic types. The deterministic approach
solves an optimization problem through a predetermined sequence of searches and search points,
converging to the same or very close global optimum. Direct search [8], branch and bound [9],
clustering [10], and tunneling methods [11] are typical examples of this approach. Stochastic methods,
including nature-inspired techniques, are based on randomly sampled search points. Therefore,
their different runs may result in different optimization results due to the random nature of the search
steps. These stochastic search algorithms have the capability to identify the global optimum efficiently
for many optimization problems, simply using the evaluated values of the objective function without
the need of its gradient information.

With the advance of computation hardware and software, computational intensive, numerical
analysis and simulation tools, such as Finite Element Analysis (FEA) and Computational Fluid
Dynamics (CFD), became commonly used means for evaluating the performance of a new design
with many design parameters. Global optimization can be used to search through the design space of
these implicit and multimodal objective functions to identify the optimal design solution in principle.
However, these types of computationally expensive, black-box function optimization problems require
extensive computation during each evaluation of its objective function. Conventional nature-inspired
optimization algorithms, such as GA and SA, which require very large number of objective function
evaluations with lengthy computation time, particularly for high-dimensional problems with many
design variables, become impractical and infeasible to use.

To address this issue, a number of recently introduced nature-inspired optimization methods,
such as the Artificial Bee Colony (ABC) [12], Firefly Algorithm (FFA) [13], Cuckoo Search (CS) [14,15],
Bat Algorithm (BA) [16], Flower Pollination Algorithm (FPA) [17], and Grey Wolf Optimizer
(GWO) [18], have been introduced with improved ability to deal with complex and high-dimensional
global optimization problems [19].

This study tests and compares the performance of the aforementioned six nature-inspired
GO search methods, BA, CSA, FFA, FPA, ABC and GWO, in terms of their capability of locating
the true global optimum, search efficiency, and robustness in dealing with high-dimensional and
computationally expensive black-box GO problems. These advanced GO methods are closely examined
using a variety of test problems, ranging from benchmark test functions to real-life design optimization
of complex mechanical systems. The paper begins with an overview on these relatively new algorithms,
followed by a discussion on the evaluation criteria. The convergence process and results are discussed
comprehensively to rank their search efficiency and robustness.

2. Notations and Symbols

Before presenting the recently introduced nature-based global optimization methods in detail,
we include the definition of the symbols and notations that have been used throughout the paper in
Table 1 below.

Algorithms 2017, 10, 120 3 of 30

Table 1. Symbols and Notations.

Symbol Description

NFE Number of Function Evolution
D Dimensional

CPU Computation time
GO Global Optimization
TSP Travelling Salesman problem

α Step size in CSA
γ Scaling factor to control the step size in FFA
β Attractiveness of firefly in FFA
λ Wavelengths in BA
p Switch probability
N population size

3. Nature-Inspired Global Optimization Methods

Nature-inspired Global Optimization approaches are a class of population-based methods
commonly used for solving many practical global optimization problems including: GA, PSO,
SA and ACO. However, these traditional GO algorithms need an enormous number of function
evaluations during the search process in order to recognize the solution, and the number of search
evaluations dramatically increases when the optimization problem becomes a high-dimensional
problem. Hence, new effective and capable GO search methods become necessary. In recent years,
a number of new search methods have been presented including the Artificial Bee Colony (ABC),
the Firefly Algorithm (FFA), the Cuckoo Search (CS), the Bat Algorithm (BA), the Flower Pollination
Algorithm (FPA), and the Grey Wolf Optimizer (GWO). In this section, the selected nature-inspired
global optimization methods are discussed and explored in more detail. The pros and cons, as well as
the applications of the six methods are also highlighted in this section. The methods have been chosen
based on:

• They have been introduced in the last decade.
• They are frequently and widely used in solving many engineering globe optimization problems.
• They share many similarities in general. For instance, all these methods begin with a randomly

population group and operate a fitness value to evaluate this population. They all update
the population and randomly search for the optimum. They use a sharing information mechanism
wherein the evolution only looks for the best solution.

• They have the potential to solve high-dimensional complex design problems especially when
the number of iterations are limited.

3.1. Artificial Bee Colony Method

The Artificial Bee Colony (ABC) method, presented by Dervis Karaboga in 2005 [19], was inspired
by the search behaviour of bee colonies. Honeybees use several mechanisms, such as a waggle dance,
to locate food sources. The waggle dance technique is used by scout bees to share information about
the source of food. Bees can quickly and precisely modify their search pattern and search space
in accordance to the updated information received from other bees. In the ABC method, artificial
bees are classified into three different groups: employed bees, onlooker bees, and lastly, scout bees.
Each of these groups is assigned different tasks in the ABC procedure. The employed bee’s task is
to visit and collect information about a source of nectar and then share it with other bees in the hive.
In the ABC algorithm, the number of employed bees and the number of food sources are equal since
each employed bee is linked with only one source of nectar. The onlooker bees receive the data
regarding the sources of nectar from the employed bees, and then the onlooker bees select one of
the sources and start to transfer the food to the hive. The scout bees fly in random directions and
have the responsibility of finding new sources of nectar. In the ABC method, the possible solution
corresponds to the nectar source location in which the fitness of the solution mainly depends on

Algorithms 2017, 10, 120 4 of 30

the related nectar amount. Furthermore, the total number of best obtained solutions is also identical to
the number of employed bees or equivalent onlooker bees.

In the ABC method, a number of parameters including population size N, number of cycles
(iterations), and the exploration parameter limit should be set prior to running the optimization.
The number of cycles (iterations) and the parameter limits are equally important, and, to obtain the best
results, should be set to their optimal values. It must be noted that in the ABC method, employed
bees apply a local search to each nectar source, whereas the onlooker bees will likely update better
food sources. Therefore, in the ABC algorithm, the employed bees are responsible for diversification
whereas the onlooker bees are used for condensation. By implementing these three groups of bees
(employed, onlooker and scout), the ABC algorithm easily escapes from minimums and improves
its search efficiency. The ABC algorithm is competitive with other nature-inspired algorithms [20];
its implementation is relatively easy, and it requires only a few tuning control parameters to be set.

Due to the high efficiency of the ABC method, many researchers have used their own points of
view to utilize ABC for different purposes. For instance, Gao and Liu [21], inspired by differential
evolution (DE), developed a search strategy ABC/best/1 with a new chaotic initialization method with
a subsequent improvement of the exploitation ability of ABC. Zhu and Kwong [22] developed a global
best- (gbest-) guided ABC algorithm (GABC) to improve the search ability as well as the efficiency by
using the gbest solution with the original search formula of the ABC algorithm. Li et al. [23] presented
a modified ABC method (I-ABC) using the best-so-far solution, inertia weight, and coefficients to
improve the search efficiency. Banharnsakun et al. [24] presented an improved search equation that
causes the solution to directly converge towards the best-so-far solution rather than through a randomly
selected path. Xiang and An [25] developed an efficient and robust ABC algorithm (ERABC), in which
a combined solution search equation is used to accelerate the search process. Xianneng and Yang [26]
introduced a new ABC method with memory (ABCM) to guide the further foraging of the artificial
bees by combining other search equations to select the best solution. Garg [27] used ABC to handle
reliability-redundancy allocation optimization problem. The core steps of the ABC approach can be
found in the given reference [28].

3.2. Firefly Algorithm Method

Xin-She Yang proposed the Firefly Algorithm (FFA) [29] which was inspired by the flashing lights
of fireflies. Almost all of the firefly species use flashing lights as an attraction communication signal
between females and males. The recurring flash, the flashing rate, and the time delay between flashes
are the key concepts used among fireflies to share information. Although the mechanism of flashing
lights in fireflies is still largely unclear, it is obvious that this signaling system helps fireflies find food,
protect themselves, and attract their prey.

FFA has become one of the most efficient global optimization algorithms and has been used in
many real-life problems [29]. In FFA, the objective function is connected to the flashing light. In other
words, the brightness is proportional to the best solution of an optimization problem. Brightness will
assist fireflies to travel to shinier and more attractive positions in order to find the global best solution.
There are three important rules in the FFA procedure:

• Fireflies are socially oriented insects, and regardless of their sex, all of them move towards more
attractive and brighter fireflies.

• The amount of attraction of a firefly is proportionate to its brightness; hence, a firefly that has
less brightness will travel toward one that has higher brightness. The attractiveness decreases
as the space from the other firefly rises since air absorbs light. If there is no brighter firefly in
the vicinity, fireflies will travel randomly in the design space.

• The brightness (light intensity) of a firefly is specified by the objective function value of
the optimization problem.

Algorithms 2017, 10, 120 5 of 30

In the firefly method, there are two essential keys: the variation of the light density and
the formulation of the attractiveness. FFA assumes that the attraction of a firefly is determined by its
shine, which is always connected with the value of the objective function: I(x) ∝ f (x), where I(x)
is the brightness of a firefly at position x and f (x) is the value of the objective function. β is defined
as the attractiveness of a firefly i to firefly j, which is affected by the distance between them. β0 is
the attractiveness at r = 0, where r is the space between two fireflies. Coefficient γ is the fixed light
absorption value. Over the iterations, fireflies converge to the local optimal solutions. The global
solution can then be obtained by comparing the local solutions. Implementation of FFA is often easier
than other nature-based GO algorithms such as PSO, BA and ACO. FFA is reasonably efficient in
solving many continuous complex optimization problems that are challenging to other powerful GO
algorithms such as GA and PSO [30].

The Firefly algorithm has gained much attention, and, due to its simplicity, many modifications
on the FFA have been achieved. Some instances of the attention that the Firefly algorithm has received
are: Bhushan and Pillai [31] compared the performance and the effectiveness of FFA in dealing with
nonlinear optimization problems against GA. Farahani et al. [32] employed FFA in solving continuous
practical global optimization problems in dynamic environments. Younes et al. [33] implemented
a hybrid FFA for solving multi-objective continuous/discrete GO problems. Talatahari et al. [34]
used FFA to find the optimum design of structure design problems. Hassanzadeh et al. [35] modified
FFA to deal with image processing optimization problems. Jati [36] employed FFA to solve many
complicated GO problems such as TSP. Arora and Singh [37] considered the optimal choice range
of FFA parameters in different numeric experiments. Bidar and Rashidy [38] improved FFA by
adjusting the parameter controller in order to balance the exploitation and exploration of the algorithm.
Gandomi et al. [39] introduced a hybrid algorithm by combining the Fuzzy C-Means (FCM) with FFA
to improve the clustering accuracy with global optimum solutions. Farahani et al. [40] increased
the efficiency of FFA by stabilizing the algorithm’s movement to direct the fireflies towards the global
best if there is no better solution found.

3.3. Cuckoo Search Method

Another recent nature-inspired global optimization method is the Cuckoo Search (CS) approach
developed by Yang in 2009 [41]. The CS method is based on the natural obligatory brood parasitic
behaviour of cuckoo birds in integration with the Lévy flight. A cuckoo bird places its eggs in another
bird’s nest to be brooded by the mother bird of another species. In some cases, other birds engage
in battle with the stranger cuckoos when the other bird realizes that the eggs in her nest are not her
own. In this case, the other bird either destroys the unwelcome eggs in the nest or leaves its own nest
and rebuilds a new one elsewhere. Some cuckoo female species have developed a new strategy based
on imitating the colours and shapes of the eggs of other birds to increase the chance of reproduction
and decrease the probability of desertion by the other bird. In general, the cuckoo’s eggs hatch before
the other bird’s eggs, thus the first job of the cuckoo chick is to get rid of the other bird’s eggs to
increase its own chance of being fed by the resident mother bird. This knowledge of the Cuckoo bird
has been used to develop the CS algorithm.

The easiest way of applying the CS algorithm is achieved through the following three steps [42].
First, every cuckoo bird places only one egg at a time in a random nest. Second, the best nests
(solutions) with a good quality of eggs are selected for the next population. Third, the number of
nests is constant, and the egg deposited by a cuckoo is recognized by the other bird with a probability
of Pa ∈ [0, 1]. Therefore, the other bird may either destroy the alien eggs or relinquish the nest
and establish a new nest. The last assumption can be estimated as the fraction Pa of the n nests
when new nests (completely new solutions) are substituted. In the CS method, every egg in a nest
expresses a solution, and each cuckoo can only deposit one egg. This algorithm can also be used when
the problem is more complex such as where each nest could hold several eggs representing a number
of solutions. Further, each cuckoo can be simply considered as a random point in the design space

Algorithms 2017, 10, 120 6 of 30

while the nest is the memories that are used to keep the previous solutions and compare them with
the next solutions.

CS is used in dealing with high-dimensional, linear and nonlinear GO problems. A recent
study showed that CS is more effective and robust than PSO and GA in multi-modal objective
functions [41,42]. This is partly due to the fact that there are a limited number of parameters to be
adjusted in the CS method compared to other GO algorithms such as PSO and GA. A comprehensive
description of the structure of the CS method is available in [42].

Since the development of the CS method in 2010, several studies have been introduced to improve
its performance. Walton et al. [43] modified the CS algorithm to be more effective in handling
nonlinear GO problems such as mesh generation. Yildiz [44] employed the CS algorithm to find
the optimal parameters for a machine in the milling process. Vazquez [45] used the CS algorithm
with artificial neural network model can to deal with different linear and non-linear problems.
Kaveh and Bakhshpoori [46] applied the CS algorithm in designing steel frames. Chifu et al. [47] used
a modification of the CS algorithm to optimize the semantic web service. Tein and Ramli [48] proposed
a discrete CS algorithm to solve nurse scheduling problems. Choudhary and Purohit [49] applied
the CS algorithm to solve software data generation problems. Bulatovic’ et al. [50] applied the CS
algorithm in handling a six-bar optimization problem. Speed [51] modified the CS algorithm to be
used efficiently in dealing with large-scale problems.

3.4. Bat Algorithm Method

The Bat Algorithm (BA) is a mature nature-based algorithm proposed by Yang based on
prey tracking behaviour [52]. Using the concept of echolocation, bats create sounds while flying
about hunting for food. These sounds are reflected to the bat providing useful information about
the targets. This mechanism enables bats to identify the type of the objects, the distance from the target,
and the kind and speed of the prey. Bats have the capability to establish three-dimensional pictures
around the hunting area using their advanced echolocation strategy [53,54].

While hunting, bats move randomly with velocity vi at location xi sending pulses with a range
of frequency f ∈ [fmin, fmax] (wavelength of λ and loudness A0) while searching for prey. Bats can
control the frequency pulses and regulate the rate of pulse emissions r ∈ [0, 1] where 0 expresses that
there are no emissions, and 1 expresses that the emissions of bats are at their maximum power. In BA,
the loudness can be controlled from maximum (positive) A0 to the lowest value. Note that A0 = 0
expresses that a bat has reached its target and has stopped releasing any sounds. In BA, x∗ is the best
so far global solution and is obtained from among all achieved solutions. The value of f depends on
the size of the design space. The higher the frequency, the shorter the wavelength and the shorter
the traveled distance. Bats use a limited range of frequencies from 200 to 500 kHz. The steps of BA are
described in [53–55].

BA is known as a very robust and efficient method in dealing with many engineering optimization
problems [56]. Although many publications on this algorithm exist, BA still attracts a great deal of
interest from scientists and is used in a wide range of applications. Many researchers studied BA
to ensure that it is able to avoid becoming trapped into local minima. For instance, Xie et al. [57]
introduced a combination of Lévy flight with the BA (DLBA). Lin et al. [58] presented another
hybrid of Lévy flight and bat approach (CLBA) for parameter approximation in a nonlinear dynamic
model. Yılmaz and Kucuksille [59], motivated by the PSO algorithm and the ABC algorithm,
proposed an improved bat algorithm (IBA) to advance the exploration mechanism of the algorithm.
Wang and Guo [60] integrated the harmony search (HS) method into BA, and developed a hybrid
metaheuristic (HSBA) method to increase the convergence speed of BA. Zhu et al. [61] improved
the exploration capability of BA by modifying its equations. Afrabandpey et al. [54] introduced
the chaotic sequences into BA in order to escape local convergence. Gandomi and Yang [62] replaced
the four parameters in BA by different chaotic systems to increase the global search capability

Algorithms 2017, 10, 120 7 of 30

of BA. Kielkowicz and Grela [63] introduced some modification to the Bat Algorithm to solve
nonlinear optimization.

3.5. Flower Pollination Algorithm Method

The Flower Pollination method (FPA) is stimulated by the nature of flower pollination [64].
The main objective of flower pollination is reproduction. Pollination occurs in two main ways: abiotic
and biotic. The majority of flowers use biotic pollination, where a pollinator such as a bee, a fly or a bird
transfers pollen. In some cases, flowers and insects have special cooperation, where flowers catch
the attention of and rely solely on a certain species of insect to ensure an effective pollination process.
Abiotic pollination is the result of wind and moving water and does not need any pollinators [64].

Self-pollination and cross-pollination are only two methods of flower pollination [65].
Self-pollination can happen when pollen is transferred from the same flower or to a different
flower on the same plant when no pollinator is available. Therefore, this is considered to be
a local solution. Cross-pollination happens when pollination transfers from the flowers of another
plant. Biotic, cross-pollination can happen with long distance pollination and can be achieved
by pollinators as a global solution. Those pollinators can behave as Lévy flight obeying Levy
distribution steps. Hence, this behaviour was used to design FPA. In FPA, n is considered to be
the flower pollen population, where k indicates the current iteration, and the parameter L > 0
is the density of the pollination. In FFA both local search and global search can be adjusted by
changing the probability between p ∈ [0, 1] in order to reach the optimum solution. The mechanisms
described above are formulated into mathematical expression in order to solve any optimization
problem of interest. FPA has many advantages in comparison to other nature-inspired algorithms—in
particular its simplicity and flexibility. Moreover, FPA requires only a few tuning parameters making
its implementation relatively easy. PA has been efficiency adapted to deal with a number of real-world
design GO problems in engineering and science. Alam et al. [66] used FPA for solving problems in
the area of solar PV parameter estimation. Dubey et al. [63] modified FPA to deal with the fuzzy
selection of dynamic GO problems. Yang et al. [17] extended FPA to solve multi-objective GO
problems, developing a multi-objective flower pollination algorithm (MOFPA). Henawy et al. [67]
introduced a hybrid of FPA combined with harmony search (FPCHS) to increase the accuracy
of FPA. Wang and Zhou [68] presented a new search strategy called a Dimension by Dimension
Improvement of FPA (DDIFPA) to enhance the convergence speed and solution quality of the original
FPA. Kanagasabai et al. [69] integrated FPA with PSO (FPAPSO) to deal with reactive power dispatch
problems. Meng et al. [70] presented a modified flower pollination algorithm (MFPA) while attempting
to optimize five mechanical engineering design problems. Binh et al. [71] proposed the Chaotic Flower
Pollination Algorithm (CFPA) to overcome the large computation time and solution instability of
FPA. Łukasik et al. [72] studied FPA in solving continuous global optimization problems in intelligent
systems. Sakib et al. [73] also presented a comparative study of FPA and BA in solving continuous
global optimization problems. The main steps and the mathematical equations of FPA are explained in
detail in [17].

3.6. Grey Wolf Optimizer Method

The Grey Wolf Optimizer (GWO) approach is a recently proposed algorithm by Seyedali [74]
and is based on the behaviour of grey wolves in the wild [18,74]. GWO simulates the leadership
policy and hunting strategy of a grey wolf’s family in its natural habitat. GWO is similar to other
nature-inspired population-based approaches such as GA, PSO and ACO. In a family of grey wolves,
there are four different groups: alpha, beta, delta and omega. The alpha, which is always male,
is in charge of making decisions in hunting, selecting rest and sleeping places, etc., and its decisions
must be obeyed by the rest of the family. Due to its dominating role, alpha is placed at the top of
the family pyramid. Beta is at the second level in the family, and its duty is to support the alpha’s
decisions or other family initiatives. Beta can be female or male, and, because of its experience working

Algorithms 2017, 10, 120 8 of 30

alongside the alpha, can replace the alpha if it becomes necessary. Beta acts as a counsellor to the alpha
and ensures that the alpha’s orders are applied in the community, while at the same time, it guides
the lower-level wolves. Further down the pyramid is the Delta which must follow the orders of
the alpha and beta wolves but has domination over the omega. The duty of the delta is to defend and
provide safety to all family members [75]. Omega is the lowest ranked among the grey wolf family
and plays the role of scapegoat. Omegas are the last group of the grey wolf family to eat from the prey,
and its duty is to take care of the new born pups. These three groups are used to simulate the leadership
hierarchy in the grey wolf family. The first three groups lead omega wolves to search the space. During
this search, all members update their positions according to the locations of the alpha, beta and delta.

In GWO, there are three steps of hunting which must be realized: finding prey, surrounding
prey, and finally attacking and killing prey. Through the optimization procedure, the three most
effective candidate solutions are alpha, beta and delta, as they are likely to be at the location of
the optimal solution. Meanwhile the omega wolves must relocate with respect to the location of
the other groups. As laid out in the GWO algorithm, alpha is the fittest candidate, but beta and
delta gain better information about the potential position of prey than omegas. Accordingly, the best
three solutions are saved in the database, while the rest of the search agents (omegas) are obliged
to update their position according to the position of the best solution so far. In GWO, n is the wolf
population, k indicates the number of iteration, A and C are random parameters A = (1, 0), C = (1, 1),
xp represents the location vector of the prey, x is the location of the agent, and a is a random value to
update position.

The GWO algorithm is recognized as being a capable and efficient optimization tool that can
provide a very accurate result without becoming trapped in local optima [76]. Because of its inherent
advantages, GWO is used in several optimal design applications. Kamboj et al. [77] successfully
applied GWO in solving economic dispatch problems. Emary et al. [78] dealt with feature subset
selection problems using GWO. Gholizadeh [79] utilized GWO to find the best design for nonlinear
optimization problem of double layer grids. Yusof and Mustaffa [80] developed GWO to forecast
daily crude oil prices. Komaki and Kayvanfar [81] employed GWO to solve scheduling optimization
problems. El-Fergany and Hasanien [82] integrated GWO and DE to handle single and complex power
flow problems. Zawbaa et al. [83] developed and applied a new version of GWO called the binary grey
wolf optimization (BGWO) to find the optimal zone of the complex design space. Kohli and Arora [84]
introduced the chaos theory into the GWO algorithm (CGWO) with the aim of accelerating its global
convergence speed. Mittal et al. [85] proposed a modified grey wolf optimizer (MGWO) to improve
the exploration and exploitation capability of the GWO that led to optimal efficiency of the method.
GWO implementation steps are referenced in [18,81].

4. Benchmark Function and Experiment Materials

The most significant collections of global optimization benchmark problems can be found
in [18,86,87]. Each benchmark problem has its individual characteristic, such as whether it is
a multimodal, a unimodal or a random shape function as illustrated in Figure 1. The collection
of the properties of these functions defines the complexity of benchmark problems. A problem is
considered to be unimodal when it has only a local minimum which is also the global optimal, and it
is classed as a multimodal when it has many local minima. The optimization problem is more difficult
when the problem is non-convex or multimodal. In the search procedure, the neighborhood around
local minima should be avoided as much as possible so that the optimizer does not get stuck in local
minima regions. If the problem has many local minima that are randomly distributed in the design
space, the problem is extremely challenging. Another significant factor that defines the complexity
of the optimization problem is the number of dimensions found in the design space. Table 2 lists
benchmark problems employed for the efficiency evaluation of the above optimization algorithms.
The table includes name, range, dimension, characteristics and formulas of the benchmark functions.

Algorithms 2017, 10, 120 9 of 30

The benchmark problems used in this work have been widely used in the literature to provide a deep
understanding of the performance of these six nature-based optimization algorithms.

Algorithms 2017, 10, 120 9 of 30

f5 Schwefel ෍|ݔ௜|஽
௜ୀଵ 0 50 [−100 100]50 Unimodal

f6 Ackley
(ݔ)݂ = ටଵ஽	0.2−)	݌ݔ݁	20−	 ∑ ௜ଶ)஽௜ୀଵݔ ଵ஽)	݌ݔ݁− ∑ ஽௜ୀଵ(௜ݔߨ2)ݏ݋ܿ) + 20 + ݁

0 30 [−32 32]30 Multi-modal

f7 Griewank ݂(ݔ) = 	෍ ௜ଶ4000஽ݔ
௜ୀଵ −	ෑܿݏ݋ ൬ݔ௜√݅൰ + 1 0 30 [−100 100]30 Multi-modal

f8 Alpine ݂(ݔ) = 	෍|ݔ௜ (௜ݔ)݊݅ݏ + ௜|஽ݔ0.1
௜ୀଵ 0 30 [−10 10] Multi-modal

f9 Egg Crate ݂(ݔ) = ௜ଶݔ + ଶଶݔ + (௜ݔ)ଶ݊݅ݏ)25 + ((ଶݔ)ଶ݊݅ݏ 0 30 [−5 5] Multi-modal

f10 Rastrigin ݂(ݔ) = 10݀ +෍[ݔ௜ଶ − ௜]஽ݔߨ2)ݏ݋10ܿ
௜ୀଵ 0 30 [−10 10] Multi-modal

f11 Leon ݂(ݔ) = 	 (1 ௜)ଶݔ	− + 100 ଶݔ) − ଵଶ)ଶݔ 0 25 [−1.2 1.2] Hard convergence unimodal

f12 Zakharov ݂(ݔ) = 	෍ݔ௜ଶ ൭12෍݅ݔ௜஽
௜ୀଵ ൱ଶ஽

௜ୀଵ + ൭12෍݅ݔ௜஽
௜ୀଵ ൱ସ 0 25 [−5 10] Hard convergence unimodal

f13 Dixon-Price ݂(ݔ) = ௜ݔ)−	 − 1)ଶ +෍݅(2ݔ௜ଶ − ௜ݔ − 1)ଶ஽
௜ୀ଴ 0 25 [−5 5] Hard convergence unimodal

f14 Cigar ݂(ݔ) = ଵଶݔ	 + 10଺෍ݔ௜ଶ஽
௜ୀଶ 0 25 [−100 100] Hard convergence multi-

modal

f15 Levy ݂(ݔ) = (ଵݕߨ)ଶ݊݅ݏ +෍(ݕ௜ − 1)ଶ[1 + ஽ିଵ[(௜ାଵݕߨ)ଶ݊݅ݏ10
௜ୀଵ + ௡ݕ) − 1)ଶ 0 25 [−10 10] Hard convergence multi-

modal

(A) multimodal function (f1) (B) multimodal function (f8)

(C) Non-smooth multimodal function (f7) (D) Hard unimodal function (f12)

Figure 1. Sample of tested benchmark functions.

5. Experiments

Benchmark functions are used to assess the robustness and effectiveness of optimization
algorithms. In this paper, fifteen benchmark functions, as computationally-expensive black-box
functions with different properties and characteristics, are used to evaluate the efficiency of the
aforementioned optimization approaches. In this regard, three experiments are performed. The first
experiment compares the performance among the six discussed procedures (ABC, FFA, CS, BA, PFA,
and GWO) while the iteration number is restricted. The second experiment tests the consequences of
increasing the dimensions of the problem on the efficiency of the algorithm. The final experiment
observes the sensitivity of the CPU time needed to obtain the global solution to the number of design
variables (dimensional) change.

Figure 1. Sample of tested benchmark functions.

Table 2. Selected benchmark functions.

No Function Formula f* D Space Properties

f 1 Sphere f (x) =
D
∑

i=1
x2

i 0 50 [−5.12 5.12]50 Unimodal

f 2 Sargan f (x) =
D
∑

i=1

i
∑

j=1
x2

j 0 50 [−100 100]50 Unimodal

f 3 S. Square f (x) =
D
∑

i=1
ix2

i 0 50 [−10 10]50 Unimodal

f 4 Powell f (x) = ∑
D
4

i=1(x4i−3 + 10x4i−1)
2+5 (x4i−1 − x4i)

2

+(x4i−2 − x4i−1)
4+10 (x4i−3 − x4i)

4
0 50 [−4 5]50 Unimodal

f 5 Schwefel
D
∑

i=1
|xi | 0 50 [−100 100]50 Unimodal

f 6 Ackley
f (x) = −20 exp (−0.2

√
1
D

D
∑

i=1
x2

i)

−exp(1
D

D
∑

i=1
cos(2πxi)) + 20 + e

0 30 [−32 32]30 Multi-modal

f 7 Griewank f (x) =
D
∑

i=1

x2
i

4000 −∏ cos
(

xi√
i

)
+ 1 0 30 [−100 100]30 Multi-modal

f 8 Alpine f (x) =
D
∑

i=1
|xisin(xi) + 0.1xi | 0 30 [−10 10] Multi-modal

f 9 Egg Crate f (x) = x2
i + x2

2 + 25
(
sin2(xi) + sin2(x2)

)
0 30 [−5 5] Multi-modal

f 10 Rastrigin f (x) = 10d +
D
∑

i=1

[
x2

i − 10cos(2πxi
]

0 30 [−10 10] Multi-modal

f 11 Leon f (x) = (1− xi)
2 + 100

(
x2 − x2

1
)2 0 25 [−1.2 1.2] Hard convergence

unimodal

f 12 Zakharov f (x) =
D
∑

i=1
x2

i

(
1
2

D
∑

i=1
ixi

)2

+

(
1
2

D
∑

i=1
ixi

)4
0 25 [−5 10] Hard convergence

unimodal

f 13 Dixon-Price f (x) = −(xi − 1)2 +
D
∑

i=0
i
(
2x2

i − xi − 1
)2 0 25 [−5 5] Hard convergence

unimodal

Algorithms 2017, 10, 120 10 of 30

Table 2. Cont.

No Function Formula f* D Space Properties

f 14 Cigar f (x) = x2
1 + 106

D
∑

i=2
x2

i 0 25 [−100 100] Hard convergence
multi-modal

f 15 Levy
f (x) = sin2(πy1) +

D−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1)

]
+ (yn − 1)2

0 25 [−10 10] Hard convergence
multi-modal

5. Experiments

Benchmark functions are used to assess the robustness and effectiveness of optimization
algorithms. In this paper, fifteen benchmark functions, as computationally-expensive black-box
functions with different properties and characteristics, are used to evaluate the efficiency of
the aforementioned optimization approaches. In this regard, three experiments are performed. The first
experiment compares the performance among the six discussed procedures (ABC, FFA, CS, BA, PFA,
and GWO) while the iteration number is restricted. The second experiment tests the consequences
of increasing the dimensions of the problem on the efficiency of the algorithm. The final experiment
observes the sensitivity of the CPU time needed to obtain the global solution to the number of design
variables (dimensional) change.

Experiment 1. The purpose of this experiment is to compare the optimization algorithms in terms of the efficiency
when only a limited number of function evaluations (NFE) are available. In order to have unbiased comparisons,
all approaches are restricted to the same iteration number (1000) as well as the same population size (40).

Experiment 2. The impact of increasing the number of variables on the resultant accuracy of the above algorithms
is examined for fifteen high-dimensional benchmark functions considered as computationally expensive black-box
problems. The selected benchmark problems with their properties are shown in Section 3.2.

Experiment 3. The computation time needed for solving computationally-expensive black-box problems is
the most important matter in assessing the efficiency of an algorithm. In this experiment, the above algorithms
are also compared in terms of the computation (CPU) time required to reach the global solution on the same set of
benchmark problems with different numbers of design variables (dimensions).

5.1. Setting Parameters in the Experiments

The setting of parameters is indeed an essential part of applying these algorithms, affecting
the outcome of the search. It is imperative to set the parameters associated with each approach to its
most appropriate values to obtain the best performance of the algorithms. Generally, these parameters
are found prior to implementing the algorithm and remain unchanged during execution. Several
studies indicate that the best mechanism for selecting parameters is based on intensive experiments to
reach the optimal parameters of any algorithm [88]. Yang X-S [89] has conducted a number of runs
to select the optimal setting parameters of BA. In the ABC algorithm, Akay and Karaboga [90] have
suggested efficient parameters to obtain the best results of ABC. Yuan et al. [91] have recommended
better parameter values in order to enhance the efficiency of FFA and converge the global optimum.
Wang et al. [92] have provided the optimal setting parameters of CS to solve the problem of Chaotic
Systems in order to gain the best performance of the CA method. Yang [93] has carried out parametric
studies to obtain the best values for setting parameters of FPA. Rodríguez and Castillo [94] have
proposed the optimal setting parameters of the GWO to achieve the best performance of the GWO
approach. The setting parameters used in Table 3 of this paper are selected based on the studies
mentioned in this section.

Algorithms 2017, 10, 120 11 of 30

Table 3. Setting parameters associated with each method.

Algorithm Setting Parameters

ABC Food Source = 20, the limit value = 10
FFA α = 0.5, γ = 1, β = 1
CSA p = 0.25, γ = 1.5, α = 0.01
BA α = 0.9, Population Loudness (A) = 0.25, Pulse rate F ∈ [0, 2]
FPA p = 0.8, γ = 0.1, λ = 1.5

GWO α ∈ [0, 2], C ∈ [0, 3]

5.2. Experiments Results

In this section, the optimization methods are compared against each other in terms of efficiency,
capability and computational complexity using the fifteen high-dimensional benchmark functions.
Although the overall performance of an optimization algorithm changes depending on setting
parameters and other experimental criteria, benchmark problems can be used to indicate the efficiency
of the algorithm under different levels of complexity. The statistical significance results from
experiments on the selected benchmark functions are presented in Table 4. From Figure 2 to Figure 10
present only the results for the constrained benchmark functions with different surface with D = 25, 40
and 50. The outcome of this study may not reflect the overall efficiency of the tested algorithms under
all conditions.

All experiments are conducted using a PC with a processor running at 2.60 GHz and 16 GB RAM
in MATLAB R2015b running under Windows 8.1. It should be mentioned that the results are based
on 25 independent runs for functions f 1 to f 15, with a population size set at 40 and the maximum
number of iterations fixed at 1000. In these experiments, the basic versions of the selected algorithms
are considered without further modification. All methods codes are obtained from different sources,
and adjusted to be harmonic with our work objectives [18,28,93].

Algorithms 2017, 10, 120 12 of 30

Table 4. This table is a summary of results for unconstrained optimization problems.

Alg. f 1 (D = 50) f 2 (D = 50) f 3 (D = 50)

Min Median SD NFE CPU Min Median SD NFE CPU Min Median SD NFE CPU

BA 3.168 13.91 ±8.94 20,000 0.219 79160 829400 ±2.74 × 10 5 20,000 0.484 4242 5812 ±210 20,000 0.234
CSA 0.6846 5.443 ±35.09 20,000 0.375 14.06 2430 ±1.72 × 10 5 20,000 1.219 1.5841 29.54 ±237 20,000 0.719
FFA 1.1 × 10−3 0.1129 ±38.27 20,000 1.266 0.1299 200.2 ±2.16 × 105 20,000 1.453 3.1861 13.67 ±298 20,000 1.266
FPA 7.373 10.10 ±35.66 20,000 0.344 187900 34570 ±2.70 × 105 20,000 0.547 1099 2518 ±413 20,000 0.313
ABC 5.60 × 10−5 0.2723 ±68.51 12,170 0.172 4.5 × 10−3 0.0321 ±3.42 × 102 19,956 0.449 5.60 × 105 16.18 ±637 17,534 0.172
GWO 6.14 × 10−56 6.27 × 10−19 ±20.60 20,000 0.297 0 4.76 × 10−19 ±1.49 × 105 20,000 0.469 0 4.20 × 10−26 ±175 20,000 0.281

f 4 (D = 50) f 5 (D = 50) f 6 (D = 30)

Min Median SD NFE CPU Min Median SD NFE CPU Min Median SD NFE CPU

BA 11.92 147.1 ±303.8 20,000 0.50 1.44 × 10−7 4.4 × 10−7 ±0.177 20,000 0.234 16.77 16.77 ±0.576 20,000 0.25
CSA 6.38 × 10−2 1.094 ±1792 20,000 1.109 5.03 × 10−43 9.51 × 10−25 ±0.052 20,000 0.406 4.567 6.99 ±3.99 20,000 0.375
FFA 2.644 5.696 ±1332 20,000 1.406 1.64 × 10−5 1.77 × 10−4 ±0.078 20,000 1.266 1.30 × 10−3 9.61 × 10−2 ±1.51 20,000 1.234
FPA 54.89 109.7 ±2759 20,000 0.578 0 2.17 × 10−13 ±0.128 20,000 0.344 3.022 4.206 ±4.268 20,000 0.313
ABC 5.10 × 10−3 0.631 ±1356 20,096 0.297 3.12 × 10−4 3.45 × 10−2 ±0.755 20,005 0.156 5.79 × 10−5 9.34 × 10−2 ±4.36 19,645 0.188
GWO 1.23 × 10−6 1.10 × 10−3 ±1190 20,000 0.453 0 0 ±0.760 20,000 0.303 7.99 × 10−15 8.10 × 10−15 ±2.43 20,000 0.203

f 7 (D = 30) f 8 (D = 30) f 9 (D = 30)

Min Median SD NFE CPU Min Median SD. NFE CPU Min Median SD NFE CPU

BA 6.867 6.960 ±0.173 20,000 0.266 2.53 × 10−7 3.04 × 10−6 ±1.90 × 10−3 20,000 0.219 7.416 × 10−14 5.91 × 10 −12 ±1.10 × 10−6 20,000 1.391
CSA 0.1534 1.073 ±2.647 20,000 0.375 3.94 × 10−13 2.74 × 10−10 ±2.80 × 10−4 20,000 0.375 1.346 × 10−75 1.70 × 10−34 ±0.166 20,000 1.531
FFA 3.21 × 10−4 0.2293 ±1.922 20,000 1.281 5.57 × 10−9 1.31 × 10−6 ±1.90 × 10−4 20,000 1.5 9.818 × 10−14 1.10 × 10−9 ±0.062 20,000 2.188
FPA 1.1599 1.353 ±1.455 20,000 0.328 3.43 × 10−10 3.08 × 10−8 ±1.17 × 10−2 20,000 0.344 1.06 × 10−36 1.30 × 10−21 ±1.80 × 10−6 20,000 1.469
ABC 1.96 × 10−10 1.20 × 10−3 ±3.159 16,890 0.203 5.50 × 10−6 5.50 × 10−6 ±4.62 × 10−2 18,006 0.188 5.00 × 10−8 1.90 × 10−5 ±0.153 20,175 0.734
GWO 0 0 ±0.996 20,000 0.234 0 0 ±0.9112 20,000 0.219 0 0 ±2.00 × 10−2 20,000 0.984

f 10 (D = 30) f 11 (D = 25) f 12 (D = 25)

Min Median SD NFE CPU Min Median SD NFE CPU Min Median SD NFE CPU

BA 117.4 117.4 ±34.98 20,000 0.234 6.44 × 10−11 6.45 × 10−11 ±4.50 × 102 20,000 0.281 40.45 69.48 ±22.80 20,000 0.219
CS 33.28 48.59 ±44.13 20,000 0.328 0 0 ±8.80 × 102 20,000 0.391 7.844 31.57 ±5.41 × 107 20,000 0.313
FFA 21.89 24.42 ±53.68 20,000 1.234 4.59 × 10−14 2.43 × 10−9 ±7.10 × 103 20,000 1.203 0.7202 3.704 ±1.05 × 105 20,000 1.125
FPA 62.22 94.78 ±50.91 20,000 0.297 2.42 × 10−28 8.57 × 10−19 ±2.61 × 102 20,000 0.359 15.71 40.18 ±1.26 × 105 20,000 0.281
ABC 1.93 × 10−9 2.249 ±3937 19,700 0.161 3.71 × 10−5 3.71 × 10−5 ±0.776 18,765 0.219 105.9 133.4 ±2.52 × 107 16,742 0.166
GWO 0 0 ±33.09 20,000 0.291 1.10 × 10−6 1.11 × 10−6 ±7.90 × 102 20,000 0.217 3.85 × 10−38 2.20 × 10−18 ±2.31 × 107 20,000 0.154

f 13 (D = 25) f 14 (D = 25) f 15 (D = 25)

Min Median SD NFE CPU Min Median SD NFE CPU Min Median SD NFE CPU

BA 286.64 12,600 ±1.15 × 104 20,000 0.219 49000 51900 ±1.68 × 104 20,000 0.344 8.881 23.88 ±10.29 20,000 0.221
CS 4.9342 80.59 ±3.84 × 104 20,000 0.297 0.9062 460.3 ±4.34 × 105 20,000 0.469 2.05 × 10−5 0.226 ±15.44 20,000 0.313
FFA 1.2766 1.095 ±3.45 × 104 20,000 1.094 3.91 × 10−2 248.9 ±3.79 × 105 20,000 1.734 7.86 × 10−7 3.30 × 10−3 ±11.21 20,000 1.188
FPA 52.5473 314.1 ±4.57 × 104 20,000 0.281 7490 47800 ±6.07 × 105 20,000 0.406 2.977 6.616 ±18.71 20,000 0.313
ABC 9.84 × 10−4 3.10 × 10−3 ±1.53 × 103 18,900 0.188 2.14 × 10−12 1.20 × 10−3 ±4.98 × 105 19,150 0.25 1.436 × 10−15 1.3 × 10−6 ±19.96 19,406 0.256
GWO 0.6666 2.70 × 10−3 ±1.10 × 103 20,000 0.172 0 5.05 × 10−45 ±2.41 × 105 20,000 0.234 0.1418 0.1804 ±6.38 20,000 0.188

Algorithms 2017, 10, 120 13 of 30

6. Discussion

In this section, the statistical results obtained in this study are compared and discussed in detail
broken down by the target criteria in Section 5.

6.1. The Accuracy with Limited Number of Iterations

In this experiment, the impact of a limit of the number of iterations as well as the number of
function evaluations (NFE) on the accuracy of the results of the algorithms are analyzed. Figures 2–4
show the optimal solution found by BA, CSA, FFA, FPA, ABC and GWO methods versus the iteration
number for three computationally-expensive problems. The selected functions are Sphere (f 1),
Griewank (f 7) and Cigar (f 14), which represent unimodal, multimodal and tough shape functions.
The primary goal is to measure the performance of these algorithms based on different surface
topologies/structures. The accuracy is measured by comparing the obtained optimum with the known
actual optimum of the function. The evaluated efficiency is based on the convergence rate of these
algorithms under the given conditions. The algorithm that yields accurate global solutions in a shorter
computation time is the efficient and robust method.

As illustrated in Figures 2–4 (i.e., Sphere, Griewank and Cigar), GWO, followed by ABC,
have shown the best performance among the examined algorithms regardless of the function form
used. GWO starts to quickly converge to the global solution within approximately 100 iterations,
while the other algorithms require a higher number of iterations to find the region where the global
solution may exist. The ABC algorithm also demonstrates its superior efficiency in terms of the accuracy
of the solution. This is, perhaps, because of the GWO’s and ABC’s search mechanism that prevents
them from easily getting trapped in local optima. GWO reaches the global solution (6.14 × 10−56,
0 and 3.51 × 10−101 respectively) with a very smooth convergence rate, and ABC is the second best
(5.60 × 10−5, 1.96 × 10−10 and 2.14 × 10−12) as shown in Table 4. On the other hand, BA and FPA
show the lowest convergence rates with comparably low efficiencies. It appears that BA and FPA
require a higher number of iterations to converge to the global solution. This may be because of
the poor exploration ability of BA. In addition, the multidimensional objective problem can affect
the convergence rate and the accuracy of the solutions obtained by PFA [17]. This result implies that BA,
FPA and also CSA are potentially more efficient in solving low-dimensional computationally-expensive
optimization problems.Algorithms 2017, 10, 120 14 of 30

Figure 2. Convergence speed for Sphere (f1) function (50D).

Figure 3. Convergence speed for Griewank (f7) function (30D).

Figure 4. Convergence speed for Cigar (f14) function (25D).

Figure 2. Convergence speed for Sphere (f 1) function (50D).

Algorithms 2017, 10, 120 14 of 30

Algorithms 2017, 10, 120 14 of 30

Figure 2. Convergence speed for Sphere (f1) function (50D).

Figure 3. Convergence speed for Griewank (f7) function (30D).

Figure 4. Convergence speed for Cigar (f14) function (25D).

Figure 3. Convergence speed for Griewank (f 7) function (30D).

Algorithms 2017, 10, 120 14 of 30

Figure 2. Convergence speed for Sphere (f1) function (50D).

Figure 3. Convergence speed for Griewank (f7) function (30D).

Figure 4. Convergence speed for Cigar (f14) function (25D).

Figure 4. Convergence speed for Cigar (f 14) function (25D).

The performance of any algorithm typically depends upon how well the algorithm can balance
the exploitation and exploration mechanisms. With intensive exploitation and poor exploration ability,
algorithms such as BA easily get trapped into the local minima, whereas GWO and ABC show a much
better performance, especially on the functions with a large number of local minima. CSA and FFA
do not perform as well as GWO and ABC in terms of convergence rate and search efficiency and
need more iterations to reach the global optima. The poor effectiveness of FFA may be due to the fact
that its parameters are fixed during the search process [44] making it more likely to get trapped
in local solutions. ABC shows the best performance in all cases except in f 2, f 4 and f 12 functions,
where GWO is the best performing approach, except in f 13, f 15. Using the Zakharov problem as
an example, GWO manages to reach a minimum value of 3.85 × 10−38, which can be considered to
be zero, whereas ABC finds a local solution of 105.886. From the results shown, it is clear that GWO
shows a superior performance and robustness in handling high dimensional optimization problems
when the number of function evaluations is limited.

6.2. The Computational Complexity Analysis

Figure 5 compares these six optimization methods in terms of the required computation time
to find the optimum value, using various benchmark functions with different numbers of design
variables. The computation time needed to converge is the most significant factor for any method

Algorithms 2017, 10, 120 15 of 30

when examining its efficiency. The number of function evaluations (NFE) required by each algorithm
on a set of benchmark test functions places the computation time of the six optimization methods
under investigation. Figure 5 and Table 3 indicate that GWO and FFA need the lowest and highest
average CPU time respectively. As an example, in Figure 5 for functions f 7 and f 13, the FFA method
demands a 6 and 7 times higher computation time in comparison to the ABC and GWO approaches.
The computational complexity results shown in Figure 5 depict that ABC is more efficient than
GWO as its CPU time is almost 50% of GWO for function f 3. ABC shows good efficiency most of
the time; however, it can sometimes get stuck into local minima. BA, CSA, FFA and FPA show better
performances on low-dimensional problems compared to when it is dealing with high-dimensional
GO problems. The GWO algorithm requires the least computation time, suggesting that GWO is
the most promising global optimization method for computationally-expensive black-box problems.

Algorithms 2017, 10, 120 15 of 30

6.2. The Computational Complexity Analysis

Figure 5 compares these six optimization methods in terms of the required computation time to
find the optimum value, using various benchmark functions with different numbers of design
variables. The computation time needed to converge is the most significant factor for any method
when examining its efficiency. The number of function evaluations (NFE) required by each algorithm
on a set of benchmark test functions places the computation time of the six optimization methods
under investigation. Figure 5 and Table 3 indicate that GWO and FFA need the lowest and highest
average CPU time respectively. As an example, in Figure 5 for functions f7 and f13, the FFA method
demands a 6 and 7 times higher computation time in comparison to the ABC and GWO approaches.
The computational complexity results shown in Figure 5 depict that ABC is more efficient than GWO
as its CPU time is almost 50% of GWO for function f3. ABC shows good efficiency most of the time;
however, it can sometimes get stuck into local minima. BA, CSA, FFA and FPA show better
performances on low-dimensional problems compared to when it is dealing with high-dimensional
GO problems. The GWO algorithm requires the least computation time, suggesting that GWO is the
most promising global optimization method for computationally-expensive black-box problems.

Figure 5. Required Computation time by each method on a set of benchmark function.

The influence of increasing the number of variables on the CPU time is presented in Figures 6
and 7. As shown, when the number of variables increases, FFA and CSA yield a higher computational
complexity compared to the other methods. Furthermore, BA is less sensitive to increasing the
number of variables than the other methods while its accuracy is less. Comparing GWO and ABC, to
ascertain the best algorithms, shows that GWO needs a relatively lower CPU time, making this
algorithm an efficient method for solving many practical GO problems with expensive objective
function and constraints.

0

0.5

1

1.5

2

2.5

BA CSA FFA FPA ABC GWO

Co
m

pu
ta

io
n

Ti
m

s (
s)

Methods

Sphere
Schwefel
Griewank
Egg Crate
Dixon and Price

Figure 5. Required Computation time by each method on a set of benchmark function.

The influence of increasing the number of variables on the CPU time is presented in Figures 6 and 7.
As shown, when the number of variables increases, FFA and CSA yield a higher computational complexity
compared to the other methods. Furthermore, BA is less sensitive to increasing the number of variables
than the other methods while its accuracy is less. Comparing GWO and ABC, to ascertain the best
algorithms, shows that GWO needs a relatively lower CPU time, making this algorithm an efficient
method for solving many practical GO problems with expensive objective function and constraints.Algorithms 2017, 10, 120 16 of 30

Figure 6. Impact of increasing number of function dimensions vs. CPU time for Sphere function.

Figure 7. Impact of increasing number of function dimensions vs. CPU time for Dixon and price
function.

6.3. The Impact of Increasing the Number of Variables on the Performance

The aim of this section is to study the impact of high dimensionality on the reliability and
accuracy of the solutions achieved by the tested optimization algorithms in solving computationally-
expensive complex optimization problems. Figures 8–10 compare the performance of these six
methods for the Sphere, Griewank and Dixon and Price functions. The horizontal axis shows the
number of variables, and the vertical axis shows the objective function’s error value at a fixed number
of function evaluations. Similarly, the value obtained in each iteration serves as a performance
indicator. As illustrated, increasing the number of variables leads to the degradation in the
performance of BA and FPA. This is owing to the fact that the exploitation capability of BA is
comparatively low-especially for high- dimensional problems. The results also reveal that FPA is only
efficient in handling low-dimensional expensive black-box functions design problems (less than 10
design variables). On the other hand, GWO and ABC are not as sensitive as the other methods in
handling high-dimensional problems regardless of the complexity and the surface topology of the
tested problem. Figures 8–10 show that the performance of the GWO and ABC algorithms, which is
related to capability and efficiency, is superior for high-dimensional problems. Figure 10 illustrates

Figure 6. Impact of increasing number of function dimensions vs. CPU time for Sphere function.

Algorithms 2017, 10, 120 16 of 30

Algorithms 2017, 10, 120 16 of 30

Figure 6. Impact of increasing number of function dimensions vs. CPU time for Sphere function.

Figure 7. Impact of increasing number of function dimensions vs. CPU time for Dixon and price
function.

6.3. The Impact of Increasing the Number of Variables on the Performance

The aim of this section is to study the impact of high dimensionality on the reliability and
accuracy of the solutions achieved by the tested optimization algorithms in solving computationally-
expensive complex optimization problems. Figures 8–10 compare the performance of these six
methods for the Sphere, Griewank and Dixon and Price functions. The horizontal axis shows the
number of variables, and the vertical axis shows the objective function’s error value at a fixed number
of function evaluations. Similarly, the value obtained in each iteration serves as a performance
indicator. As illustrated, increasing the number of variables leads to the degradation in the
performance of BA and FPA. This is owing to the fact that the exploitation capability of BA is
comparatively low-especially for high- dimensional problems. The results also reveal that FPA is only
efficient in handling low-dimensional expensive black-box functions design problems (less than 10
design variables). On the other hand, GWO and ABC are not as sensitive as the other methods in
handling high-dimensional problems regardless of the complexity and the surface topology of the
tested problem. Figures 8–10 show that the performance of the GWO and ABC algorithms, which is
related to capability and efficiency, is superior for high-dimensional problems. Figure 10 illustrates

Figure 7. Impact of increasing number of function dimensions vs. CPU time for Dixon and
price function.

6.3. The Impact of Increasing the Number of Variables on the Performance

The aim of this section is to study the impact of high dimensionality on the reliability and accuracy
of the solutions achieved by the tested optimization algorithms in solving computationally-expensive
complex optimization problems. Figures 8–10 compare the performance of these six methods for
the Sphere, Griewank and Dixon and Price functions. The horizontal axis shows the number of
variables, and the vertical axis shows the objective function’s error value at a fixed number of
function evaluations. Similarly, the value obtained in each iteration serves as a performance indicator.
As illustrated, increasing the number of variables leads to the degradation in the performance
of BA and FPA. This is owing to the fact that the exploitation capability of BA is comparatively
low-especially for high- dimensional problems. The results also reveal that FPA is only efficient
in handling low-dimensional expensive black-box functions design problems (less than 10 design
variables). On the other hand, GWO and ABC are not as sensitive as the other methods in handling
high-dimensional problems regardless of the complexity and the surface topology of the tested problem.
Figures 8–10 show that the performance of the GWO and ABC algorithms, which is related to capability
and efficiency, is superior for high-dimensional problems. Figure 10 illustrates that the FFA and CS
methods continue to provide comparable and acceptable solutions regardless of the complexity of
the optimization problem. Furthermore, the results indicate that the performance of these algorithms
is roughly similar for low-dimensional unimodal problems (D < 10). In summary, the dimensionality
strongly affects the performance of most algorithms; however, it seems that ABC is more stable as
the dimension of the problems increases which is probably a result of the greater exploration ability of
the ABC algorithm.

Algorithms 2017, 10, 120 17 of 30

Algorithms 2017, 10, 120 17 of 30

that the FFA and CS methods continue to provide comparable and acceptable solutions regardless of
the complexity of the optimization problem. Furthermore, the results indicate that the performance
of these algorithms is roughly similar for low-dimensional unimodal problems (D < 10). In summary,
the dimensionality strongly affects the performance of most algorithms; however, it seems that ABC
is more stable as the dimension of the problems increases which is probably a result of the greater
exploration ability of the ABC algorithm.

Figure 8. Error vs. variable number for Sphere function.

Figure 9. Error vs. variable number for Griewank function (f7).

Figure 8. Error vs. variable number for Sphere function.

Algorithms 2017, 10, 120 17 of 30

that the FFA and CS methods continue to provide comparable and acceptable solutions regardless of
the complexity of the optimization problem. Furthermore, the results indicate that the performance
of these algorithms is roughly similar for low-dimensional unimodal problems (D < 10). In summary,
the dimensionality strongly affects the performance of most algorithms; however, it seems that ABC
is more stable as the dimension of the problems increases which is probably a result of the greater
exploration ability of the ABC algorithm.

Figure 8. Error vs. variable number for Sphere function.

Figure 9. Error vs. variable number for Griewank function (f7). Figure 9. Error vs. variable number for Griewank function (f 7).Algorithms 2017, 10, 120 18 of 30

Figure 10. Error vs. variable number for Dixon and Price function (f13).

6.4. The Overall Performance of the Methods

The overall results obtained in Table 4 can be evaluated based on the properties of the selected
benchmark functions. GWO outperforms other algorithms by successfully obtaining the global
optimum in 13 out of 15 cases, followed by ABC which outperforms others in 12 out of 15 cases. The
third and the fourth best algorithms are FFA and CSA with 9 and 6 respectively out of 15 successful
convergence functions, while both BA and FPA solve only 4 of the 15 problems. In terms of accuracy,
results suggest that GWO is the best performing approach in all three cases. However, in terms of the
required computation time, ABC is superior to the others with an average computation time of 0.2369
seconds, followed by GWO with an average of 0.3136 s. Despite its simplicity, FFA is limited by its
tendency to get trapped at local minima, mainly because of its relatively weak global search capability
with complex and multimodal problems. That being said, FFA provides excellent solutions in most
optimization problems in this work. In addition, BA shows a poor performance in this study, mainly
due to some insufficiencies at exploration and the required high number of function evaluations.
Yang [93] BA has been effectively used to handle many challenging GO issues such as multimodal
objective problems. Moreover, FPA, known to be a highly efficient method with low-dimensional
problems, becomes problematic with high-dimensional problems. Finally, the CS algorithm shows a
good performance on number of benchmark tested function. However, the algorithm becomes
inefficient when objective function evaluation represents a significant computational cost such as
CFD problems. In conclusion, although this study shows GWO and ABC have the highest
convergence rates with acceptable computational costs, there is, as yet, no universal algorithm
capable of obtaining the global solution for all kind of problems. More research is needed to be carried
out to solve computationally-expensive black-box problems. Table 4 presents the overall performance
of the tested algorithms under different levels of complexity and dimensionality in order to examine
their efficiency and robustness.

7. Further Tests Using Nonlinear Constrained Engineering Applications

After testing the methods with fifteen unconstrained high-dimensional benchmark functions,
four non-smooth constrained engineering design GO problems were selected to examine the
effectiveness of these methods in practice and identify their advantages and drawbacks. These
comprised four structural design applications, involving the Welded Beam Design (WBD), the
Tension/Compression Spring Design (TSD), the Pressure Vessel Design (PVD) and the Speed Reducer
Design (SRD) [1]. Several authors in [1,15,95–98] have solved these problems using different methods
such as the hybrid PSO-GA algorithm, the artificial bee colony, etc. All four of these selected
constrained engineering problems have been considered to be computationally-expensive black-box
problems. The problems chosen have design variables ranging from 3 to 7 with 4, 7, 4 and 11
constraints, respectively. An average of 25 independent runs were performed per problem, with a

Figure 10. Error vs. variable number for Dixon and Price function (f 13).

Algorithms 2017, 10, 120 18 of 30

6.4. The Overall Performance of the Methods

The overall results obtained in Table 4 can be evaluated based on the properties of the selected
benchmark functions. GWO outperforms other algorithms by successfully obtaining the global
optimum in 13 out of 15 cases, followed by ABC which outperforms others in 12 out of 15 cases.
The third and the fourth best algorithms are FFA and CSA with 9 and 6 respectively out of 15 successful
convergence functions, while both BA and FPA solve only 4 of the 15 problems. In terms of accuracy,
results suggest that GWO is the best performing approach in all three cases. However, in terms of
the required computation time, ABC is superior to the others with an average computation time of
0.2369 s, followed by GWO with an average of 0.3136 s. Despite its simplicity, FFA is limited by its
tendency to get trapped at local minima, mainly because of its relatively weak global search capability
with complex and multimodal problems. That being said, FFA provides excellent solutions in most
optimization problems in this work. In addition, BA shows a poor performance in this study, mainly
due to some insufficiencies at exploration and the required high number of function evaluations.
Yang [93] BA has been effectively used to handle many challenging GO issues such as multimodal
objective problems. Moreover, FPA, known to be a highly efficient method with low-dimensional
problems, becomes problematic with high-dimensional problems. Finally, the CS algorithm shows
a good performance on number of benchmark tested function. However, the algorithm becomes
inefficient when objective function evaluation represents a significant computational cost such as CFD
problems. In conclusion, although this study shows GWO and ABC have the highest convergence
rates with acceptable computational costs, there is, as yet, no universal algorithm capable of obtaining
the global solution for all kind of problems. More research is needed to be carried out to solve
computationally-expensive black-box problems. Table 4 presents the overall performance of the tested
algorithms under different levels of complexity and dimensionality in order to examine their efficiency
and robustness.

7. Further Tests Using Nonlinear Constrained Engineering Applications

After testing the methods with fifteen unconstrained high-dimensional benchmark functions,
four non-smooth constrained engineering design GO problems were selected to examine
the effectiveness of these methods in practice and identify their advantages and drawbacks.
These comprised four structural design applications, involving the Welded Beam Design (WBD),
the Tension/Compression Spring Design (TSD), the Pressure Vessel Design (PVD) and the Speed
Reducer Design (SRD) [1]. Several authors in [1,15,95–98] have solved these problems using different
methods such as the hybrid PSO-GA algorithm, the artificial bee colony, etc. All four of these selected
constrained engineering problems have been considered to be computationally-expensive black-box
problems. The problems chosen have design variables ranging from 3 to 7 with 4, 7, 4 and 11 constraints,
respectively. An average of 25 independent runs were performed per problem, with a total of
20,000 NEF in each run. All algorithms were tested with the same stopping conditions to ensure
that their convergence rate, efficiency and computation time would be examined using the same
parameters. Figure 11 shows the welded beam design problem where ABC started the search with
lower function values; however, it required additional time to converge, along with the algorithm,
to the global minimum.

Algorithms 2017, 10, 120 19 of 30

Algorithms 2017, 10, 120 19 of 30

total of 20,000 NEF in each run. All algorithms were tested with the same stopping conditions to
ensure that their convergence rate, efficiency and computation time would be examined using the
same parameters. Figure 11 shows the welded beam design problem where ABC started the search
with lower function values; however, it required additional time to converge, along with the
algorithm, to the global minimum.

Figure 11. The welded beam problem results.

In relation to the tension/compression design problem, Figure 12 shows that GWO
outperformed other optimization algorithms, converging to global solution after only a few NFE. In
addition, when compared to the other algorithms, GWO converged to global optimal with the least
computation time and yielded better minimum values. In the pressure vessel problem, FPA had the
best performance, with the lowest standard deviation value. FPA yielded the best global optimum
function value, taking more computation time to converge in comparison to BA which had the lowest
CPU time.

Figure 12. The tension/compression spring problem results.

Figure 13 compares the required CPU time in dealing with the four selected constrained
optimization problems. The obtained statistical results were analysed and compared to find out the
performance of the algorithms when dealing with constrained problems. The results in Table 5 have
shown that:

Figure 11. The welded beam problem results.

In relation to the tension/compression design problem, Figure 12 shows that GWO outperformed
other optimization algorithms, converging to global solution after only a few NFE. In addition,
when compared to the other algorithms, GWO converged to global optimal with the least computation
time and yielded better minimum values. In the pressure vessel problem, FPA had the best performance,
with the lowest standard deviation value. FPA yielded the best global optimum function value, taking
more computation time to converge in comparison to BA which had the lowest CPU time.

Algorithms 2017, 10, 120 19 of 30

total of 20,000 NEF in each run. All algorithms were tested with the same stopping conditions to
ensure that their convergence rate, efficiency and computation time would be examined using the
same parameters. Figure 11 shows the welded beam design problem where ABC started the search
with lower function values; however, it required additional time to converge, along with the
algorithm, to the global minimum.

Figure 11. The welded beam problem results.

In relation to the tension/compression design problem, Figure 12 shows that GWO
outperformed other optimization algorithms, converging to global solution after only a few NFE. In
addition, when compared to the other algorithms, GWO converged to global optimal with the least
computation time and yielded better minimum values. In the pressure vessel problem, FPA had the
best performance, with the lowest standard deviation value. FPA yielded the best global optimum
function value, taking more computation time to converge in comparison to BA which had the lowest
CPU time.

Figure 12. The tension/compression spring problem results.

Figure 13 compares the required CPU time in dealing with the four selected constrained
optimization problems. The obtained statistical results were analysed and compared to find out the
performance of the algorithms when dealing with constrained problems. The results in Table 5 have
shown that:

Figure 12. The tension/compression spring problem results.

Figure 13 compares the required CPU time in dealing with the four selected constrained
optimization problems. The obtained statistical results were analysed and compared to find out
the performance of the algorithms when dealing with constrained problems. The results in Table 5
have shown that:

• ABC consistently requires lower NFE than the other algorithms.
• GWO performs well in TSD, WBD and PVD cases, but it seems that the GWO needs more

iterations to reach the exact global solution in the SRD case.

Algorithms 2017, 10, 120 20 of 30

• Results demonstrate that the other tested algorithms are sensitive when the number of variables
increases, but they can provide competitive search efficiency in some problems.

Algorithms 2017, 10, 120 20 of 30

● ABC consistently requires lower NFE than the other algorithms.
● GWO performs well in TSD, WBD and PVD cases, but it seems that the GWO needs more

iterations to reach the exact global solution in the SRD case.
● Results demonstrate that the other tested algorithms are sensitive when the number of variables

increases, but they can provide competitive search efficiency in some problems.

We conclude that there is no specific superior optimization algorithm that can perform well for
all engineering design problems. Clearly, an algorithm may work well for a specific engineering
design problem and fail on another problem. The statistical results obtained are shown in Table 5.

Figure 13. Required CPU time by each algorithm for all constrained problems.

0
1
2
3
4
5
6
7
8
9

10

BA CS FFA FPA ABC GWO

C
PU

 ti
m

e
(S

ec
)

Methods

TSD

WBD

PVD

SRD

Figure 13. Required CPU time by each algorithm for all constrained problems.

We conclude that there is no specific superior optimization algorithm that can perform well for all
engineering design problems. Clearly, an algorithm may work well for a specific engineering design
problem and fail on another problem. The statistical results obtained are shown in Table 5.

Algorithms 2017, 10, 120 21 of 30

Table 5. This table is a summary of results for nonlinear constrained engineering applications.

Methods Prob.
Analytical

f* x1 x2 x3 x4 x5 x6 x7 Obtained f* NFE CPU Time

BA

TSD 0.012665 0.05123 0.34582 13.5571 - 0.013242 20,000 0.6078
WBD 1.738522 0.31623 5.5111 6.4044 0.49061 - - - 1.8268 20,000 6.6091
PVD 6059.71433 1.04938 0.51773 49.5176 187.5231 - - - 6190.4687 20,000 2.0781
SRD 2996.34816 3.5 0.7 17 7.56 7.6892 3.5424 5.2458 3019.5833 20,000 4.0369

CS

TSD 0.012665 0.05178 0.359011 11.1579 - - - - 0.01266 20,000 0.6875
WBD 1.724852 0.20573 3.4705 9.0366 0.20573 - - - 1.7449 20,000 4.2563
PVD 6059.71433 0.77714 0.384442 40.44869 178.2513 - - - 6074.587 20,000 6.7438
SRD 2996.34816 3.5001 0.7032 17.1 7.4 7.80 3.46 5.27 3000.9597 20,000 3.0927

FFA

TSD 0.012665 0.052209 0.370468 10.821 - - - - 0.012713 20,000 1.675
WBD 1.727852 0.19588 3.7176 9.0367 0.20573 - - - 1.7291 20,000 9.2266
PVD 6059.71433 0.902631 0.445717 46.92328 177.7547 - - - 6026.3068 20,000 6.225
SRD 2996.34816 3.5 0.7 17 7.31 7.820 3.351 5.327 2996.3478 20,000 7.771

FPA

TSD 0.012665 0.051643 0.35558 11.3619 - - - - 0.012669 20,000 0.4843
WBD 1.724852 0.20573 3.4705 9.0366 0.20573 - - - 1.7568 20,000 8.5938
PVD 6059.71433 0.77447 0.38323 40.32289 179.959 - - - 5990.4928 20,000 4.5969
SRD 2996.34816 3.5 0.761 17.001 7.1 7.54 3.3521 5.3412 3019.5833 20,000 5.4109

ABC

TSD 0.012665 0.052855 0.37997 10.1552 - - - - 0.012657 16,092 0.3796
WBD 1.729852 0.20866 3.3293 8.9139 0.20453 - - - 1.7251 17,145 6.8906
PVD 6059.71433 0.84036 0.426735 42.56989 176.4665 - - - 6059.037 16,200 3.6609
SRD 2996.34816 3.512 0.7 17 7.3 7.8 3.3502 5.2866 2996.3088 18,700 3.2701

GWO

TSD 0.012665 0.051149 0.305127 10.7273 - - - - 0.012665 20,000 0.2031
WBD 1.724852 0.20431 3.5018 9.0378 0.20576 - - - 1.7266 20,000 6.5938
PVD 6059.71433 0.8125 0.434511 42.0891 176.7587 - - - 6059.7639 20,000 3.2563
SRD 2996.34816 3.46427 0.7129 17.1001 7.25581 7.18738 3.2359 5.7814 3005.6092 20,000 4.9021

Algorithms 2017, 10, 120 22 of 30

8. Real-Life Application (Cost for Floating Offshore Wind Turbine Support Structures (FOWTs))

Wind energy technology is growing rapidly at commercial scales and is one the mature means
of renewable energy generations [99]. At the coastlines, higher wind speed resources are available
and they provide consistent wind power. Therefore, offshore wind turbine technologies require
floating platforms to harvest the wind energy in deep waters instead of using fixed structures which
are suitable for shallow waters [100]. This section provides a real life application for a group of
optimization algorithms to evaluate FOWTs support structure cost based on the method reported
in [100]. A spar buoy platform is one of the structures that is currently used in offshore wind projects
and has been selected in this study for cost analysis as shown in Figure 14.

Algorithms 2017, 10, 120 22 of 30

8. Real-life Application (Cost for Floating Offshore Wind Turbine Support Structures (FOWTs))

Wind energy technology is growing rapidly at commercial scales and is one the mature means
of renewable energy generations [99]. At the coastlines, higher wind speed resources are available
and they provide consistent wind power. Therefore, offshore wind turbine technologies require
floating platforms to harvest the wind energy in deep waters instead of using fixed structures which
are suitable for shallow waters [100]. This section provides a real life application for a group of
optimization algorithms to evaluate FOWTs support structure cost based on the method reported in
[100]. A spar buoy platform is one of the structures that is currently used in offshore wind projects
and has been selected in this study for cost analysis as shown in Figure 14.

Figure 14. Floating Offshore Wind Turbine (FOWT) with a spar buoy support structure.

The approach used in this paper is to define a design parameterization for the support structure
as well as a linearized frequency domain dynamic model which evaluates the stability of the floating
system using the NREL 5 MW offshore wind turbine [100,101]. The support structure parametrization
pattern used in this work provided the spar buoy platforms with a limited number of design
variables. Hence, four design parameters are defined to shape the platform and mooring system: a
central cylinder with a draft, HI, cylinder radius, RI, top tapper ratio, TI, and a catenary mooring
system, XM for spar buoy platforms. Note that a free board (FB) of 5 m is used for all the spar buoy
platform designs as a constant parameter. The geometric design variables are summarized in Table 6
and Figure 15. In this work, the mooring system design variable, XM defines the angled taut line and
slack line configurations for the spar buoy platform. Three lines are used for this platform and they
are located at the middle the cylinder height as presented in Figure 15. The anchor position is defined
by the mooring variation of XM from positioning under the platform to the horizontal spread of the
lines. The mass properties for each spar buoy platform are determined using the platform and
mooring design parameters. The mass of support structure is calculated using a wall thickness of 50
mm using a steel density of 8050 kg/m3.

Figure 14. Floating Offshore Wind Turbine (FOWT) with a spar buoy support structure.

The approach used in this paper is to define a design parameterization for the support structure
as well as a linearized frequency domain dynamic model which evaluates the stability of the floating
system using the NREL 5 MW offshore wind turbine [100,101]. The support structure parametrization
pattern used in this work provided the spar buoy platforms with a limited number of design variables.
Hence, four design parameters are defined to shape the platform and mooring system: a central
cylinder with a draft, HI, cylinder radius, RI, top tapper ratio, TI, and a catenary mooring system,
XM for spar buoy platforms. Note that a free board (FB) of 5 m is used for all the spar buoy platform
designs as a constant parameter. The geometric design variables are summarized in Table 6 and
Figure 15. In this work, the mooring system design variable, XM defines the angled taut line and slack
line configurations for the spar buoy platform. Three lines are used for this platform and they are
located at the middle the cylinder height as presented in Figure 15. The anchor position is defined by
the mooring variation of XM from positioning under the platform to the horizontal spread of the lines.
The mass properties for each spar buoy platform are determined using the platform and mooring
design parameters. The mass of support structure is calculated using a wall thickness of 50 mm using
a steel density of 8050 kg/m3.

Algorithms 2017, 10, 120 23 of 30

Table 6. Geometric design variables of spar buoy platform.

Variable Description Min. Max.

HI Central cylinder draft 2 m 150 m
RI Central cylinder radius 3 m 25 m
TI Top tapper ratio 0.2 2

XM Mooring System 0.2 2
Algorithms 2017, 10, 120 23 of 30

Figure 15. Design characteristics of a spar buoy platform including height, radius, and taper ratio of
the cylinder as well as platform’s free board.

Table 6. Geometric design variables of spar buoy platform.

Variable Description Min. Max.
HI Central cylinder draft 2 m 150 m
RI Central cylinder radius 3 m 25 m
TI Top tapper ratio 0.2 2

XM Mooring System 0.2 2

In this study, the cost of the FOWT design is defined based on three main components which
include the mooring line, the 5 MW wind turbine, and the floating platform. To determine the
stability of the floating system in a given environmental condition, the linearized characteristics of
the hydrodynamics and aerodynamics of the FOWT must be collected in a frequency domain
dynamic model. For floating platform hydrodynamics, the added mass, damping, and hydrostatic
loads are calculated using WAMIT. The wind turbine dynamic characteristics are kept constant in
this study. However, FAST is used to calculate the linearized dynamic properties for the NREL 5 MW
offshore wind turbine. These properties include linearized stiffness, mass, and damping matrices of
the offshore wind turbine in a given wind speed. Like the floating platform hydrodynamics,
linearized mooring line properties can be added to the frequency domain dynamic model using a
quasi-static mooring subroutine of FAST. All the calculated coefficients and loads are collected into
a 6 × 6 system stiffness, mass, damping to generate the linearized frequency domain equation of
motion for a FOWT Equation (1). The stability of the system is evaluated by calculating the complex
response amplitude operator (RAO) for all modes of motion. More details about the dynamic model
and platform parameterization can be found in [101]. −߱ଶܯ௧௢௧௔௟(߱) መܼ(߱) + ,߱)௧௢௧௔௟ܤ߱݅ (ߞ መܼ(߱) + ௧௢௧௔௟ܥ መܼ(߱) = ෠ܺ ܣܴ] (1) (߱) ଵܱ(߱) ∶∶ [(߱)଺ܱܣܴ	 = [−߱ଶܯ௧௢௧௔௟(߱) + ,߱)௧௢௧௔௟ܤ߱݅ (ߞ +]ିଵ	௧௢௧௔௟ܥ ෠ܺ(߱) (2)

The performance of the FOWT in this study is defined as the standard deviation of nacelle
acceleration and is shown below:

(߱)௔௡௔௖ߪ = ඩන|ܴܣ ௔ܱ௡௔௖(߱)|ଶஶ
଴ 	ܵ(߱)	݀߱	 (3)

Figure 15. Design characteristics of a spar buoy platform including height, radius, and taper ratio of
the cylinder as well as platform’s free board.

In this study, the cost of the FOWT design is defined based on three main components which
include the mooring line, the 5 MW wind turbine, and the floating platform. To determine
the stability of the floating system in a given environmental condition, the linearized characteristics
of the hydrodynamics and aerodynamics of the FOWT must be collected in a frequency domain
dynamic model. For floating platform hydrodynamics, the added mass, damping, and hydrostatic
loads are calculated using WAMIT. The wind turbine dynamic characteristics are kept constant in
this study. However, FAST is used to calculate the linearized dynamic properties for the NREL 5 MW
offshore wind turbine. These properties include linearized stiffness, mass, and damping matrices
of the offshore wind turbine in a given wind speed. Like the floating platform hydrodynamics,
linearized mooring line properties can be added to the frequency domain dynamic model using
a quasi-static mooring subroutine of FAST. All the calculated coefficients and loads are collected into
a 6 × 6 system stiffness, mass, damping to generate the linearized frequency domain equation of
motion for a FOWT Equation (1). The stability of the system is evaluated by calculating the complex
response amplitude operator (RAO) for all modes of motion. More details about the dynamic model
and platform parameterization can be found in [101].

−ω2Mtotal(ω)Ẑ(ω) + iωBtotal(ω, ζ)Ẑ(ω) + Ctotal Ẑ(ω) = X̂ (ω) (1)

[RAO1(ω) :: RAO6(ω)] =
[
−ω2Mtotal(ω) + iωBtotal(ω, ζ) + Ctotal

]−1
X̂(ω) (2)

Algorithms 2017, 10, 120 24 of 30

The performance of the FOWT in this study is defined as the standard deviation of nacelle
acceleration and is shown below:

σanac(ω) =

√√√√√ ∞∫
0

|RAOanac(ω)|2 S(ω) dω (3)

where S(ω) is the wave spectral density, and RAOanac(ω) is the fore-aft nacelle acceleration response
amplitude operator. The complex forms of the nacelle displacement RAO and nacelle acceleration
RAO are given by Equations (4) and (5):

RAOζnac (ω) = (RAO1(ω) + RAO5(ω) znac) (4)

RAOanac(ω) = −ω2(RAO1(ω) + RAO5(ω)znac) (5)

where znac is the wind turbine hub height. In Equations (4) and (5) the RAOanac(ω) includes the aero
dynamic effects of the wind turbine implicitly from the linearized dynamic properties of the wind
turbine. ZnacRAOanac The objective function to optimize in this study is the support structure cost
including mooring system, anchor and floating platform costs:

min f (x) : C(x) = CPlat f orm (x) + CMooring (x) + CAnchor (x) (6)

The floating platform cost is defined as a function of the design parameters as shown in Table 7.
In this study, the platform cost contains the materials, manufacturing, and installation costs using
a constant cost factor of $2.5/kg [100,101]. The mooring system cost is calculated using the length of
the mooring lines and the maximum steady state mooring line tension with a factor of $0.42/m kN.
The anchor cost is the third component of the cost model that includes the installation and technology
costs. The drag embedment anchor technology is selected in this study for catenary mooring system.
Therefore, the installation cost for each anchor is defined as 100 $/anchor/kN and the technology cost
is based on 5000 $/anchor.

Table 7. Summary of comparison result for support structure cost for FOWTs application.

Methods f* Min NFE CPU Time

BA 5,533,111.9378 1000 121.1719
CSA 4,426,006.2921 1000 123.5938
FFA 4,811,655.8121 1000 131.8125
FPA 4,727,085.732 1000 132.875
ABC 3,817,499.5279 951 119.2969
GWO 4,395,036.2793 1000 123.5313

In this study, a number of constraints are also applied to the objective function. To avoid expensive
design configurations, a constraint limits the cost of the platform to less than $9 M. The performance
metric RAOanac(ω) is also limited to less than 1. In addition, to avoid the floating platform turning
over, the steady state pitch angle of the platform should be less than 10◦. The expression of this
constraint is given in the following equation:

ζ 5 =
Fthrust·znac + Mmooring5 −Mballast

ρg∀ZCB −MtgzCG + ρg Ixx − Cmooring5,5 + C5,1z f air
(7)

where Fthrust is the steady thrust load, Mmooring5 is the mooring line pitching moment, Mballast is
the pitching moment from the ballast mass stabilizers, ∀ is the platform displacement, zCB is the center
of buoyancy of the platform, Mt is the total mass of the FOWT, zCG is the center of gravity location, Ixx is
the water plane moment of inertia in platform pitch motion, Cmooring5,5 is the mooring lines stiffness in

Algorithms 2017, 10, 120 25 of 30

pitch motion, C5,1 is the mooring line stiffness in pitch-surge motions, and z f air is the fairlead depth in
pitch motion. For details of each constraint, the reader is referred to the study presented in [101].

The optimization methods have been tested on this real-life engineering optimization problem.
The exploration space for the various platform concepts helps identify the effective cost of structure
for FOWTs. In order to obtain solid results, 25 independent runs have been performed. The test results
are given in Table 7 and the convergence history of each method is illustrated in Figure 16. The ABC
method still provides outstanding performance and could find the global optimum within 951 function
evaluations of the original functions in this case study. According to the results from previously
published performance tests [101], the obtained optima are sufficiently accurate and the recorded NFEs
are much lower. Figure 17 compares the optimization methods in terms of the required CPU time.Algorithms 2017, 10, 120 25 of 30

Figure 16. Cost for FOWT problem results.

Figure 17. Required CPU time for FOWT problem.

9. Conclusions

New and advanced GO algorithms have been continuously introduced to solve complex design
optimization problems. These problems are characterized by using computation intensive numerical
analyses and simulations as objective and constraint functions with a large number of design
variables, forming the so-called computation intensive, black-box GO problems. The relatively new,
nature-inspired global optimization methods, Artificial Bee Colony (ABC), Firefly Algorithm (FFA),
Cuckoo Search (CS), Bat Algorithm (BA), Flower Pollination Algorithm (FPA) and Grey Wolf
Optimizer (GWO), have been introduced to improve search efficiency by reducing the needed
number of objective function evaluations and increasing the robustness and accuracy of the results.
This study is aimed at gaining a better understanding of the relative overall performance of these six
well-known new GO search methods. The systematically conducted comparative study under the
same evaluation criteria has quantitatively illustrated each algorithm’s ability to handle a variety of
GO problems to enable a user to better select an appropriate GO tool for their specific design
applications.

Fifteen high-dimensional, unconstrained benchmark functions with unimodal and multimodal
shapes; four constrained engineering optimization problems; and a real-life floating offshore wind

114

116

118

120

122

124

126

128

130

132

BA CS FFA FPA ABC GWO

C
PU

 T
im

e
(s

)

Methods

Figure 16. Cost for FOWT problem results.

Algorithms 2017, 10, 120 25 of 30

Figure 16. Cost for FOWT problem results.

Figure 17. Required CPU time for FOWT problem.

9. Conclusions

New and advanced GO algorithms have been continuously introduced to solve complex design
optimization problems. These problems are characterized by using computation intensive numerical
analyses and simulations as objective and constraint functions with a large number of design
variables, forming the so-called computation intensive, black-box GO problems. The relatively new,
nature-inspired global optimization methods, Artificial Bee Colony (ABC), Firefly Algorithm (FFA),
Cuckoo Search (CS), Bat Algorithm (BA), Flower Pollination Algorithm (FPA) and Grey Wolf
Optimizer (GWO), have been introduced to improve search efficiency by reducing the needed
number of objective function evaluations and increasing the robustness and accuracy of the results.
This study is aimed at gaining a better understanding of the relative overall performance of these six
well-known new GO search methods. The systematically conducted comparative study under the
same evaluation criteria has quantitatively illustrated each algorithm’s ability to handle a variety of
GO problems to enable a user to better select an appropriate GO tool for their specific design
applications.

Fifteen high-dimensional, unconstrained benchmark functions with unimodal and multimodal
shapes; four constrained engineering optimization problems; and a real-life floating offshore wind

114

116

118

120

122

124

126

128

130

132

BA CS FFA FPA ABC GWO

C
PU

 T
im

e
(s

)

Methods

Figure 17. Required CPU time for FOWT problem.

9. Conclusions

New and advanced GO algorithms have been continuously introduced to solve complex design
optimization problems. These problems are characterized by using computation intensive numerical
analyses and simulations as objective and constraint functions with a large number of design

Algorithms 2017, 10, 120 26 of 30

variables, forming the so-called computation intensive, black-box GO problems. The relatively new,
nature-inspired global optimization methods, Artificial Bee Colony (ABC), Firefly Algorithm (FFA),
Cuckoo Search (CS), Bat Algorithm (BA), Flower Pollination Algorithm (FPA) and Grey Wolf Optimizer
(GWO), have been introduced to improve search efficiency by reducing the needed number of objective
function evaluations and increasing the robustness and accuracy of the results. This study is aimed at
gaining a better understanding of the relative overall performance of these six well-known new GO
search methods. The systematically conducted comparative study under the same evaluation criteria
has quantitatively illustrated each algorithm’s ability to handle a variety of GO problems to enable
a user to better select an appropriate GO tool for their specific design applications.

Fifteen high-dimensional, unconstrained benchmark functions with unimodal and multimodal
shapes; four constrained engineering optimization problems; and a real-life floating offshore
wind turbine design optimization problem have been used to conduct the performance and
robustness tests on these newer GO methods. These selected complex benchmark functions and
real-life computationally expensive design optimization examples present either convergence or
computation challenges.

The GWO and the ABC algorithms have been found most capable in providing the optimal
solutions to the high-dimensional GO problems. The main advantages of the GWO method include
quick convergence, more accurate results, highly robust, and strong exploration ability over the search
space with an overall efficiency of 86%. The ABC method ranks as the second best with an overall
efficiency of 80%. The FFA, CS, PFA and BA methods were found to be able to provide competitive
results with other well-known algorithms, including SA, GA and PSO. Results from this comparative
study show that the ability of these newer global optimization methods to obtain a good solution
also declines as the dimension of the problem increases, and each specific application requires
a particular type of GO search algorithm. The research contributes to future improvements of global
optimization methods.

Acknowledgments: Financial supports from the Fellowship funds of the Libyan Ministry of Education, the Natural
Science and Engineering Research Council of Canada, and University of Victoria are gratefully acknowledged.

Author Contributions: A.E.H.S., D.Z. and K.M. conceived and designed the experiments; A.E.H.S. performed
the experiments. A.E.H.S., D.Z. and K.M. analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016, 274,
292–305. [CrossRef]

2. Liao, T.; Socha, K.; de Montes Oca, M.A.; Stützle, T.; Dorigo, M. Ant Colony Optimization for Mixed-Variable
Optimization Problems. IEEE Trans. Evolut. Comput. 2014, 18, 503–518. [CrossRef]

3. Samora, I.; Franca, M.J.; Schleiss, A.J.; Ramos, H.M. Simulated Annealing in Optimization of Energy
Production in a Water Supply Network. Water Resour. Manag. 2016, 30, 1533–1547. [CrossRef]

4. Garg, H.; Sharma, S.P. Multi-objective reliability-redundancy allocation problem using particle swarm
optimization. Comput. Ind. Eng. 2013, 64, 247–255. [CrossRef]

5. Brenna, M.; Foiadelli, F.; Longo, M. Application of Genetic Algorithms for Driverless Subway Train Energy
Optimization. Int. J. Veh. Technol. 2016, 2016, 1–14. [CrossRef]

6. Zhao, J.; Cheng, D.; Hao, C. An Improved Ant Colony Algorithm for Solving the Path Planning Problem of
the Omnidirectional Mobile Vehicle. Math. Probl. Eng. 2016, 2016, 1–10. [CrossRef]

7. Garg, H. Reliability, Availability and Maintainability Analysis of Industrial Systems Using PSO and Fuzzy
Methodology. Mapan 2013, 29, 115–129. [CrossRef]

8. Baeyens, E.; Herreros, A.; Perán, J. A Direct Search Algorithm for Global Optimization. Algorithms 2016,
9, 40. [CrossRef]

9. Morrison, D.R.; Jacobson, S.H.; Sauppe, J.J.; Sewell, E.C. Branch-and-bound algorithms: A survey of recent
advances in searching, branching, and pruning. Discret. Optim. 2016, 19, 79–102. [CrossRef]

http://dx.doi.org/10.1016/j.amc.2015.11.001
http://dx.doi.org/10.1109/TEVC.2013.2281531
http://dx.doi.org/10.1007/s11269-016-1238-5
http://dx.doi.org/10.1016/j.cie.2012.09.015
http://dx.doi.org/10.1155/2016/8073523
http://dx.doi.org/10.1155/2016/7672839
http://dx.doi.org/10.1007/s12647-013-0081-x
http://dx.doi.org/10.3390/a9020040
http://dx.doi.org/10.1016/j.disopt.2016.01.005

Algorithms 2017, 10, 120 27 of 30

10. Xu, D.; Tian, Y. A Comprehensive Survey of Clustering Algorithms. Ann. Data Sci. 2015, 2, 165–193.
[CrossRef]

11. Levy, A.V.; Montalvo, A. The Tunneling Algorithm for the Global Minimization of Functions. SIAM J. Sci.
Stat. Comput. 1985, 6, 15–29. [CrossRef]

12. Scaria, A.; George, K.; Sebastian, J. An Artificial Bee Colony Approach for Multi-objective Job Shop
Scheduling. Procedia Technol. 2016, 25, 1030–1037. [CrossRef]

13. Ritthipakdee, A.; Thammano, A.; Premasathian, N.; Jitkongchuen, D. Firefly Mating Algorithm for
Continuous Optimization Problems. Comput. Intell. Neurosci. 2017, 2017, 8034573. [CrossRef] [PubMed]

14. Yang, X.-S.; Deb, S. Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 2013, 40,
1616–1624. [CrossRef]

15. Garg, H. An approach for solving constrained reliability-redundancy allocation problems using cuckoo
search algorithm. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 14–25. [CrossRef]

16. Yang, X.S.; Hossein Gandomi, A. Bat algorithm: A novel approach for global engineering optimization.
Eng. Comput. 2012, 29, 464–483. [CrossRef]

17. Yang, X.-S.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective
optimization. Eng. Optim. 2014, 46, 1222–1237. [CrossRef]

18. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
19. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A comprehensive review of swarm optimization algorithms.

PLoS ONE 2015, 10, e0122827. [CrossRef] [PubMed]
20. Wang, L.; Li, F.; Xing, J. A hybrid artificial bee colony algorithm and pattern search method for inversion of

particle size distribution from spectral extinction data. J. Mod. Opt. 2017, 64, 2051–2065. [CrossRef]
21. Gao, W.-F.; Liu, S.-Y. A modified artificial bee colony algorithm. Comput. Oper. Res. 2012, 39, 687–697.

[CrossRef]
22. Zhu, G.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization.

Appl. Math. Comput. 2010, 217, 3166–3173. [CrossRef]
23. Li, G.; Niu, P.; Xiao, X. Development and investigation of efficient artificial bee colony algorithm for numerical

function optimization. Appl. Soft Comput. 2012, 12, 320–332. [CrossRef]
24. Banharnsakun, A.; Achalakul, T.; Sirinaovakul, B. The best-so-far selection in Artificial Bee Colony algorithm.

Appl. Soft Comput. 2011, 11, 2888–2901. [CrossRef]
25. Xiang, W.-L.; An, M.-Q. An efficient and robust artificial bee colony algorithm for numerical optimization.

Comput. Oper. Res. 2013, 40, 1256–1265. [CrossRef]
26. Li, X.; Yang, G. Artificial bee colony algorithm with memory. Appl. Soft Comput. 2016, 41, 362–372. [CrossRef]
27. Garg, H.; Rani, M.; Sharma, S.P. An efficient two phase approach for solving reliability-redundancy allocation

problem using artificial bee colony technique. Comput. Oper. Res. 2013, 40, 2961–2969. [CrossRef]
28. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial

bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
29. Fister, I.; Fister, I., Jr.; Yang, X.-S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evolut.

Comput. 2013, 13, 34–46. [CrossRef]
30. Yang, X.-S.; He, X. Firefly Algorithm: Recent Advances and Applications. Int. J. Swarm Intell. 2013, 1, 36–50.

[CrossRef]
31. Bhushan, B.; Pillai, S.S. Particle Swarm Optimization and Firefly Algorithm: Performance analysis.

In Proceedings of the 2013 IEEE 3rd International Advance Computing Conference (IACC), Ghaziabad,
India, 22–23 February 2013; pp. 746–751.

32. Mashhadi Farahani, S.; Nasiri, B.; Meybodi, M. A multiswarm based firefly algorithm in dynamic
environments. In Proceedings of the Third International Conference on Signal Processing Systems
(ICSPS2011), Yantai, China, 27–28 August 2011; Volume 3, pp. 68–72.

33. Younes, M.; Khodja, F.; Kherfane, R.L. Multi-objective economic emission dispatch solution using hybrid
FFA (firefly algorithm) and considering wind power penetration. Energy 2014, 67, 595–606. [CrossRef]

34. Talatahari, S.; Gandomi, A.H.; Yun, G.J. Optimum design of tower structures using Firefly Algorithm.
Struct. Des. Tall Spec. Build. 2014, 23, 350–361. [CrossRef]

35. Hassanzadeh, T.; Vojodi, H.; Moghadam, A.M.E. An image segmentation approach based on maximum
variance Intra-cluster method and Firefly algorithm. In Proceedings of the 2011 Seventh International
Conference on Natural Computation, Shanghai, China, 26–28 July 2011.

http://dx.doi.org/10.1007/s40745-015-0040-1
http://dx.doi.org/10.1137/0906002
http://dx.doi.org/10.1016/j.protcy.2016.08.203
http://dx.doi.org/10.1155/2017/8034573
http://www.ncbi.nlm.nih.gov/pubmed/28808442
http://dx.doi.org/10.1016/j.cor.2011.09.026
http://dx.doi.org/10.1016/j.bjbas.2015.02.003
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1080/0305215X.2013.832237
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1371/journal.pone.0122827
http://www.ncbi.nlm.nih.gov/pubmed/25992655
http://dx.doi.org/10.1080/09500340.2017.1337250
http://dx.doi.org/10.1016/j.cor.2011.06.007
http://dx.doi.org/10.1016/j.amc.2010.08.049
http://dx.doi.org/10.1016/j.asoc.2011.08.040
http://dx.doi.org/10.1016/j.asoc.2010.11.025
http://dx.doi.org/10.1016/j.cor.2012.12.006
http://dx.doi.org/10.1016/j.asoc.2015.12.046
http://dx.doi.org/10.1016/j.cor.2013.07.014
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1016/j.swevo.2013.06.001
http://dx.doi.org/10.1504/IJSI.2013.055801
http://dx.doi.org/10.1016/j.energy.2013.12.043
http://dx.doi.org/10.1002/tal.1043

Algorithms 2017, 10, 120 28 of 30

36. Jati, G.K. Evolutionary Discrete Firefly Algorithm for Travelling Salesman Problem. In Proceedings of
the Adaptive and Intelligent Systems, Second International Conference (ICAIS 2011), Klagenfurt, Austria,
6–8 September 2011; Bouchachia, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 393–403.

37. Arora, S.; Singh, S. The Firefly Optimization Algorithm: Convergence Analysis and Parameter Selection.
Int. J. Comput. Appl. 2013, 69, 48–52. [CrossRef]

38. Bidar, M.; Kanan, H.R. Modified firefly algorithm using fuzzy tuned parameters. In Proceedings of the 13th
Iranian Conference on Fuzzy Systems (IFSC), Qazvin, Iran, 27–29 August 2013.

39. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Mixed variable structural optimization using Firefly Algorithm.
Comput. Struct. 2011, 89, 2325–2336. [CrossRef]

40. Farahani, M.S.; Abshoiri, A.A.; Nasiri, B.; Meybodi, M.R. A Gaussian Firefly Algorithm. Int. J. Mach.
Learn. Comput. 2011, 1, 448–453. [CrossRef]

41. Yang, X.-S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174.
[CrossRef]

42. Yatim, J.; Zain, A.; Bazin, N.E.N. Cuckoo Search Algorithm for Optimization Problems—A Literature Review
and its Applications. Appl. Artif. Intell. 2014, 28, 419–448.

43. Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R. Modified cuckoo search: A new gradient free optimisation
algorithm. Chaos Solitons Fractals 2011, 44, 710–718. [CrossRef]

44. Yildiz, A. Cuckoo search algorithm for the selection of optimal machining parameters in milling operations.
Int. J. Adv. Manuf. Technol. 2012, 64, 1–7. [CrossRef]

45. Vazquez, R.A. Training spiking neural models using cuckoo search algorithm. In Proceedings of the 2011
IEEE Congress on Eovlutionary Computation (CEC), New Orleans, LA, USA, 5–8 June 2011; pp. 679–686.

46. Kaveh, A.; Bakhshpoori, T. Optimum design of steel frames using Cuckoo Search algorithm with Lévy
flights. Struct. Des. Tall Spec. Build. 2013, 22, 1023–1036. [CrossRef]

47. Chifu, V.R.; Pop, C.B.; Salomie, I.; Suia, D.S.; Niculici, A.N. Optimizing the Semantic Web Service
Composition Process Using Cuckoo Search. In Intelligent Distributed Computing V. Studies in Computational
Intelligence; Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 382.

48. Tein, L.H.; Ramli, R. Recent Advancements of Nurse Scheduling Models and a Potential Path. In Proceedings
of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA 2010), Kuala Lumpur,
Malaysia, 3–4 November 2010.

49. Choudhary, K.; Purohit, G. A new testing approach using cuckoo search to achieve multi-objective genetic
algorithm. J. Comput. 2011, 3, 117–119.

50. Bulatović, R.; Djordjevic, S.; Djordjevic, V. Cuckoo Search algorithm: A metaheuristic approach to solving
the problem of optimum synthesis of a six-bar double dwell linkage. Mech. Mach. Theory 2013, 61, 1–13.
[CrossRef]

51. Speed, E.R. Evolving a Mario agent using cuckoo search and softmax heuristics. In Proceedings of the 2010
International IEEE Consumer Electronics Society’s Games Innovations Conference (ICE-GIC), Hong Kong,
China, 21–23 December 2010; pp. 1–7.

52. Yang, X.-S. A New Metaheuristic Bat-Inspired Algorithm. Nat. Inspired Cooper. Strateg. Optim. 2010, 284,
65–74.

53. Yılmaz, S.; Kucuksille, E.U.; Cengiz, Y. Modified Bat Algorithm. Elektronika Elektrotechnika 2014, 20, 71–78.
[CrossRef]

54. Afrabandpey, H.; Ghaffari, M.; Mirzaei, A.; Safayani, M. A Novel Bat Algorithm Based on Chaos for
Optimization Tasks. In Proceedings of the 2014 Iranian Conference on Intelligent Systems (ICIS), Bam, Iran,
4–6 February 2014.

55. Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for
Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.

56. Al-Betar, M.; Awadallah, M.A.; Faris, H.; Yang, X.-S.; Khader, A.T.; Al-Omari, O.A. Bat-inspired Algorithms
with Natural Selection mechanisms for Global optimization. Int. J. Neurocomput. 2017. [CrossRef]

57. Xie, J.; Zhou, Y.-Q.; Chen, H. A Novel Bat Algorithm Based on Differential Operator and Lévy Flights
Trajectory. Comput. Intell. Neurosci. 2013, 2013, 453812. [CrossRef] [PubMed]

58. Lin, J.H.; Chou, C.-W.; Yang, C.-H.; Tsai, H.-L. A chaotic Levy flight bat algorithm for parameter estimation
in nonlinear dynamic biological systems. Comput. Inf. Technol. 2012, 2, 56–63.

http://dx.doi.org/10.5120/11826-7528
http://dx.doi.org/10.1016/j.compstruc.2011.08.002
http://dx.doi.org/10.7763/IJMLC.2011.V1.67
http://dx.doi.org/10.1007/s00521-013-1367-1
http://dx.doi.org/10.1016/j.chaos.2011.06.004
http://dx.doi.org/10.1007/s00170-012-4013-7
http://dx.doi.org/10.1002/tal.754
http://dx.doi.org/10.1016/j.mechmachtheory.2012.10.010
http://dx.doi.org/10.5755/j01.eee.20.2.4762
http://dx.doi.org/10.1016/j.neucom.2017.07.039
http://dx.doi.org/10.1155/2013/453812
http://www.ncbi.nlm.nih.gov/pubmed/23606827

Algorithms 2017, 10, 120 29 of 30

59. Yilmaz, S.; Kucuksille, E.U. Improved Bat Algorithm (IBA) on Continuous Optimization Problems. Lect. Notes
Softw. Eng. 2013, 1, 279. [CrossRef]

60. Wang, G.; Guo, L. A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization.
J. Appl. Math. 2013, 2013, 696491. [CrossRef]

61. Zhu, B.; Zhu, W.; Liu, Z.; Duan, Q.; Cao, L. A Novel Quantum-Behaved Bat Algorithm with Mean Best
Position Directed for Numerical Optimization. Comput. Intell. Neurosci. 2016, 2016, 6097484. [CrossRef]
[PubMed]

62. Gandomi, A.; Yang, X.-S. Chaotic bat algorithm. J. Comput. Sci. 2013, 5, 224–232. [CrossRef]
63. Kielkowicz, K.; Grela, D. Modified Bat Algorithm for Nonlinear Optimization. Int. J. Comput. Sci. Netw. Secur.

2016, 16, 46.
64. He, X.; Yang, X.-S.; Karamanoglu, M.; Zhao, Y. Global Convergence Analysis of the Flower Pollination

Algorithm: A Discrete-Time Markov Chain Approach. Procedia Comput. Sci. 2017, 108, 1354–1363. [CrossRef]
65. Nabil, E. A Modified Flower Pollination Algorithm for Global Optimization. Expert Syst. Appl. 2016, 57,

192–203. [CrossRef]
66. Alam, D.F.; Yousri, D.A.; Eteiba, M. Flower Pollination Algorithm based solar PV parameter estimation.

Energy Convers. Manag. 2015, 101, 410–422. [CrossRef]
67. Henawy, I.; Abdel-Raouf, O.; Abdel-Baset, M. A New Hybrid Flower Pollination Algorithm for Solving

Constrained Global Optimization Problems. Int. J. Appl. Oper. Res. Open Access J. 2014, 4, 1–13.
68. Wang, R.; Zhou, Y.-Q. Flower Pollination Algorithm with Dimension by Dimension Improvement.

Math. Probl. Eng. 2014, 2014, 1–9. [CrossRef]
69. Kanagasabai, L.; RavindhranathReddy, B. Reduction of real power loss by using Fusion of Flower Pollination

Algorithm with Particle Swarm Optimization. J. Inst. Ind. Appl. Eng. 2014, 2, 97–103. [CrossRef]
70. Meng, O.K.; Pauline, O.; Kiong, S.C.; Wahab, H.A.; Jafferi, N. Application of Modified Flower Pollination

Algorithm on Mechanical Engineering Design Problem. IOP Conf. Ser. Mater. Sci. Eng. 2017, 165, 012032.
[CrossRef]

71. Binh, H.T.T.; Hanh, N.T.; Dey, N. Improved Cuckoo Search and Chaotic Flower Pollination Optimization
Algorithm for Maximizing Area Coverage in Wireless Sensor Network. Neural Comput. Appl. 2016, 1–13.
[CrossRef]

72. Łukasik, S.; Kowalski, P.A. Study of Flower Pollination Algorithm for Continuous Optimization. In Intelligent
Systems' 2014; Springer: Cham, Switzerland, 2015; Volume 322, pp. 451–459.

73. Sakib, N.; Kabir, W.U.; Rahman, S.; Alam, M.S. A Comparative Study of Flower Pollination Algorithm and
Bat Algorithm on Continuous Optimization Problems. Int. J. Soft Comput. Eng. 2014, 4, 13–19. [CrossRef]

74. Mirjalili, S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl. Intell. 2015,
43, 150–161. [CrossRef]

75. Li, L.; Sun, L.; Guo, J.; Qi, J.; Xu, B.; Li, S. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel
Image Thresholding. Computational Intelligence and Neuroscience. Comput. Intell. Neurosci. 2017,
2017, 3295769. [CrossRef] [PubMed]

76. Precup, R.-E.; David, R.-C.; Szedlak-Stinean, A.-I.; Petriu, E.M.; Dragan, F. An Easily Understandable Grey
Wolf Optimizer and Its Application to Fuzzy Controller Tuning. Algorithms 2017, 10, 68. [CrossRef]

77. Kamboj, V.K.; Bath, S.K.; Dhillon, J.S. Solution of non-convex economic load dispatch problem using Grey
Wolf Optimizer. Neural Comput. Appl. 2016, 27, 1301–1316. [CrossRef]

78. Emary, E.; Zawbaa, H.M.; Grosan, C.; Ali, A. Feature Subset Selection Approach by Gray-Wolf Optimization.
In Proceedings of the 1st Afro-European Conference for Industrial Advancement, Addis Ababa, Ethiopia,
17–19 November 2014; pp. 1–13.

79. Gholizadeh, S. Optimal design of double layer grids considering nonlinear behaviour by sequential grey
wolf algorithm. Int. J. Optim. Civ. Eng. 2015, 5, 511–523.

80. Yusof, Y.; Mustaffa, Z. Time Series Forecasting of Energy Commodity using Grey Wolf Optimizer.
In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong,
China, 18–20 March 2015; pp. 25–30.

81. Komaki, G.; Kayvanfar, V. Grey Wolf Optimizer Algorithm for the Two-stage Assembly Flowshop Scheduling
Problem with Release Time. J. Comput. Sci. 2015, 8, 109–120. [CrossRef]

82. El-Fergany, A.; Hasanien, H. Single and Multi-objective Optimal Power Flow Using Grey Wolf Optimizer
and Differential Evolution Algorithms. Electric Power Compon. Syst. 2015, 43, 1548–1559. [CrossRef]

http://dx.doi.org/10.7763/LNSE.2013.V1.61
http://dx.doi.org/10.1155/2013/696491
http://dx.doi.org/10.1155/2016/6097484
http://www.ncbi.nlm.nih.gov/pubmed/27293424
http://dx.doi.org/10.1016/j.jocs.2013.10.002
http://dx.doi.org/10.1016/j.procs.2017.05.020
http://dx.doi.org/10.1016/j.eswa.2016.03.047
http://dx.doi.org/10.1016/j.enconman.2015.05.074
http://dx.doi.org/10.1155/2014/481791
http://dx.doi.org/10.12792/JIIAE.2.97
http://dx.doi.org/10.1088/1757-899X/165/1/012032
http://dx.doi.org/10.1007/s00521-016-2823-5
http://dx.doi.org/10.5120/ijais14-451231
http://dx.doi.org/10.1007/s10489-014-0645-7
http://dx.doi.org/10.1155/2017/3295769
http://www.ncbi.nlm.nih.gov/pubmed/28127305
http://dx.doi.org/10.3390/a10020068
http://dx.doi.org/10.1007/s00521-015-1934-8
http://dx.doi.org/10.1016/j.jocs.2015.03.011
http://dx.doi.org/10.1080/15325008.2015.1041625

Algorithms 2017, 10, 120 30 of 30

83. Zawbaa, H.; Emary, E.; Hassanien, A.E. Binary Grey Wolf Optimization Approaches for Feature Selection.
Neurocomputing 2016, 172, 371–381.

84. Kohli, M.; Arora, S. Chaotic grey wolf optimization algorithm for constrained optimization problems.
J. Comput. Des. Eng. 2017. [CrossRef]

85. Mittal, N.; Singh, U.; Singh Sohi, B. Modified Grey Wolf Optimizer for Global Engineering Optimization.
Appl. Comput. Intell. Soft Comput. 2016, 2016, 7950348. [CrossRef]

86. Jamil, M.; Yang, X.-S. A Literature Survey of Benchmark Functions for Global Optimization Problems. Int. J.
Math. Modell. Numer. Optim. 2013, 4, 150–194.

87. Dong, H.; Song, B.; Dong, Z.; Wamg, P. Multi-start Space Reduction (MSSR) surrogate-based global
optimization method. Struct. Multidiscip. Optim 2016, 54, 907–926. [CrossRef]

88. Eiben, A.; Hinterding, R.; Michalewicz, Z. Parameter Control in Evolutionary Algorithms. In Parameter Setting
in Evolutionary Algorithms; Fernando, G.L., Cláudio, F.L., Zbigniew, M., Eds.; Springer: Berlin, Germany, 2007;
pp. 19–46.

89. Yang, X.S.; Deb, S.; Fong, S. Bat Algorithm is better than Intermittent Search Strategy. J. Mult.-Valued Log.
Soft Comput. 2014, 22, 223–237.

90. Akay, B.; Karaboga, D. Parameter Tuning for the Artificial Bee Colony Algorithm. Int. Conf. Comput.
Collect. Intell. 2009, 5796, 608–619.

91. Mo, Y.-B.; Ma, Y.-Z.; Zheng, Q. Optimal Choice of Parameters for Firefly Algorithm. In Proceedings of
the 2013 Fourth International Conference on Digital Manufacturing & Automation (ICDMA), Qingdao,
China, 29–30 June 2013; pp. 887–892.

92. Wang, J.; Zhou, B.; Zhou, S. An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic
Systems Parameter Estimation. Comput. Intell. Neurosci. 2016, 2016, 2959370. [CrossRef] [PubMed]

93. Yang, X.-S. Nature-Inspired Optimization Algorithms; Elsevier: London, UK, 2014; p. 300.
94. Rodríguez, L.; Castillo, O.; Soria, J. A Study of Parameters of the Grey Wolf Optimizer Algorithm for

Dynamic Adaptation with Fuzzy Logic. In Nature-Inspired Design of Hybrid Intelligent Systems; Melin, P.,
Castillo, O., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 371–390.

95. Coello, C.A.C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:
A survey of the state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287. [CrossRef]

96. Garg, H. Solving structural engineering design optimization problems using an Artificial Bee Colony
algorithm. J. Ind. Manag. Optim. 2013, 10, 777–794. [CrossRef]

97. Mezura-Montes, E.; Coello, C.A.C. A Simple Multimembered Evolution Strategy to Solve Constrained
Optimization Problems. IEEE Trans. Evol. Comput. 2005, 9, 1–17. [CrossRef]

98. Garg, H. A Hybrid GA-GSA Algorithm for Optimizing the Performance of an Industrial System by Utilizing
Uncertain Data. In Handbook of Research on Artificial Intelligence Techniques and Algorithms; IGI Global: Hershey,
PA, USA, 2015; pp. 620–654.

99. Leung, D.Y.C.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain.
Energy Rev. 2012, 16, 1031–1039. [CrossRef]

100. Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5 MW Reference Wind Turbine for Offshore System
Development; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009.

101. Karimi, M.; Hall, M.; Buckham, B.; Crawford, C. A multi-objective design optimization approach for floating
offshore wind turbine support structures. J. Ocean Eng. Mar. Energy 2017, 3, 69–87. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcde.2017.02.005
http://dx.doi.org/10.1155/2016/7950348
http://dx.doi.org/10.1007/s00158-016-1450-1
http://dx.doi.org/10.1155/2016/2959370
http://www.ncbi.nlm.nih.gov/pubmed/26880874
http://dx.doi.org/10.1016/S0045-7825(01)00323-1
http://dx.doi.org/10.3934/jimo.2014.10.777
http://dx.doi.org/10.1109/TEVC.2004.836819
http://dx.doi.org/10.1016/j.rser.2011.09.024
http://dx.doi.org/10.1007/s40722-016-0072-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Notations and Symbols
	Nature-Inspired Global Optimization Methods
	Artificial Bee Colony Method
	Firefly Algorithm Method
	Cuckoo Search Method
	Bat Algorithm Method
	Flower Pollination Algorithm Method
	Grey Wolf Optimizer Method

	Benchmark Function and Experiment Materials
	Experiments
	Setting Parameters in the Experiments
	Experiments Results

	Discussion
	The Accuracy with Limited Number of Iterations
	The Computational Complexity Analysis
	The Impact of Increasing the Number of Variables on the Performance
	The Overall Performance of the Methods

	Further Tests Using Nonlinear Constrained Engineering Applications
	Real-Life Application (Cost for Floating Offshore Wind Turbine Support Structures (FOWTs))
	Conclusions

