
algorithms

Article

Scheduling Non-Preemptible Jobs to Minimize
Peak Demand

Sean Yaw 1 ID and Brendan Mumey 2,* ID

1 Los Alamos National Laboratoy, Los Alamos, NM 87545, USA; yaw@lanl.gov
2 Gianforte School of Computing, Montana State University, Bozeman, MT 59717, USA
* Correspondence: brendan.mumey@montana.edu

Received: 22 September 2017; Accepted: 25 October 2017; Published: 28 October 2017

Abstract: This paper examines an important problem in smart grid energy scheduling; peaks in power
demand are proportionally more expensive to generate and provision for. The issue is exacerbated
in local microgrids that do not benefit from the aggregate smoothing experienced by large grids.
Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often
flexibility in job start times. We focus attention on the case where the jobs are non-preemptible,
meaning once started, they run to completion. The associated optimization problem is called the peak
demand minimization problem, and has been previously shown to be NP-hard. Our results include
an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well
as an effective heuristic that can also be used in an online setting of the problem. Simulation results
show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for
household power jobs.

Keywords: peak demand minimization; job scheduling; approximation algorithms; smart grid

1. Introduction

The problem of scheduling non-preemptible jobs occurs naturally in smart power grid systems,
in which communication can occur between energy consumers and the energy provider.
Some household appliances require instant functionality (e.g., light bulbs), but many others have more
flexibility in exactly when they operate (e.g., dishwasher or water heater). Peaks in power demand are
proportionally more expensive to generate and provision for (since more infrastructure is required),
so it is advantageous to schedule power-consuming jobs in such a way as to minimize peak demand.
This problem has been previously formalized as the Peak demand minimization (PDM) problem,
and has been studied extensively [1–8]. The basic formulation of the problem is as follows: Each
job j is non-preemptible, meaning once it begins execution, it must run to completion without any
interruptions. Each job j is characterized by four parameters: an arrival time (aj), deadline (dj), and
length (lj) that are real-valued for continuous timescales and integer-valued for discrete timescales,
and a real-valued instantaneous demand (hj) which is conceptually the height of the job. The arrival
time and deadline are within the fixed time interval [0, T] and form the execution window of the job.
Job j is scheduled by assigning it a start time, sj, which allows it to run in the closed interval [sj, sj + lj]

such that [sj, sj + lj] ⊆ [aj, dj]. The demand at time t is the sum of the job heights that are scheduled to
run during t:

H(t) = ∑
j:t∈[sj ,sj+lj)

hj

Then, the peak demand, Hmax, of the schedule is the maximum demand for any time t in [0, T],

Hmax = max
t∈[0,T]

H(t)

Algorithms 2017, 10, 122; doi:10.3390/a10040122 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-6791-2691
https://orcid.org/0000-0001-7151-2124
http://dx.doi.org/10.3390/a10040122
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 122 2 of 11

The PDM problem is to determine a job schedule, S = 〈sj〉, that minimizes Hmax. In this work,
we propose three algorithms to solve PDM:

1. An optimal dynamic programming algorithm for discrete-timescale instances that utilizes
branch-and-bound techniques that is fixed-parameter tractable.

2. A polynomial-time randomized algorithm based on linear programming that provides
an O

(log n
log log n

)
-approximation, where n is the number of jobs, and is the first known approximation

for PDM.
3. An effective and simple heuristic algorithm that can be used in either an online or offline fashion.

The rest of this paper is organized as follows. We discuss related work in Section 2. Algorithms
are presented in Section 3. Simulation results are presented in Section 4, and the paper is concluded
in Section 5.

2. Related Work

Many variations on modifying demand to improve the efficiency of power grids (generically
called demand response) have been explored. These approaches can generically be categorized as utility
function optimization (commonly cost function minimization) and peak demand minimization (PDM).
Utility function optimization techniques use price incentives to encourage consumers to modify their
behavior, and are outside the scope of this work.

PDM aims to directly schedule jobs to reduce peaks in power schedules instead of passively
influencing changes with price incentives. PDM has been studied in the context of preemptible jobs
(i.e., jobs that can be interrupted partway through execution) [1,2]. In this paper, we consider the
scenario where jobs are non-preemptible, and thus must run to completion once started. The PDM
problem has been found to be NP-hard to approximate within a ratio of 2 in this scenario [3].
Heuristics have been developed that show promise in practice, but which provide no theoretical
guarantee [4,5]. Approximation algorithms have been developed for the special case where all
jobs have the same start time and deadline [6,7]. Our work introduces the first general purpose
approximation algorithm where no assumptions are placed on the job parameters. Finally, optimal
algorithms have been introduced that work on a limited number of jobs [3,8]. Our work also introduces
an optimal fixed-parameter tractable algorithm that is able to schedule approximately 15 times more
jobs in practice than previous approaches.

Non-preemptible power job scheduling is also similar to the machine minimization problem and
rectangular strip packing [9–13]. In the machine minimization problem, jobs are assumed to have unit
height, as opposed to power jobs that can have variable height. The main differences with rectangular
strip packing are that in the general PDM case, jobs are limited in where they can be placed in the
strip, and once jobs are scheduled, they do not need to remain as intact rectangles. Since job height
represents the power required, each segment of a scheduled job will drop to lie on top of the job below
it, instead of remaining as an intact rectangle in the strip.

3. Algorithms

We first present an optimal fixed-parameter tractable algorithm that improves on the
efficiency of the method described in [3] due to an effective branch-and-bound idea. The second
algorithm described is based on linear programming relaxation and randomized rounding that is
a O
(log n

log log n
)
-approximation algorithm for the general PDM problem. Finally, we describe a heuristic

approach that can also be adapted to the online setting of the problem.

3.1. An Optimal Dynamic Programming Algorithm

In this section, we detail a dynamic programming algorithm for PDM, inspired by the algorithm
presented in [3]. Our algorithm takes a similar approach of identifying groups of overlapping jobs,
but uses a tree-based schedule representation and a branch-and-bound strategy to reduce the search

Algorithms 2017, 10, 122 3 of 11

space, resulting in substantially better performance (able to run instances with 15 times as many jobs).
We term this algorithm OptimalDP in the results section.

At a high level, the algorithm proceeds by first ordering jobs by increasing deadlines. For each
job, every possible configuration of start times of that job and as well as other earlier jobs that could
overlap it is considered. Job configurations are represented using trees, where each level in the tree
represents the scheduling choices of one job. Pointers from leaf configurations of the current job to
compatible configurations of the previous job are used to move between trees and generate a complete
schedule for all jobs. Valid schedules can be built by traversing these trees backwards, beginning
with a leaf node of the final job. A branch-and-bound approach is employed to limit unnecessary
schedule exploration.

3.1.1. Configuration Lists

Jobs are sorted first by increasing deadline and then by increasing arrival time. For each job j,
a list of preceding jobs Lj—called the configuration list—is defined as the set of jobs whose execution
windows either overlap j’s execution window, or overlap the execution window of a job following j.
Figure 1 illustrates a sample set of jobs along with their configuration lists. We observe that each job
configuration list consists of a consecutive interval in the sorted list of jobs; i.e., Lj = [s(j), j], where the
head s(j) of each list has the earliest deadline (and arrival in case of ties).

4

1
3

2

0 1 2 3 4 5 6 7 8 9

Job a
j
d
j

l
j

1 0 3 2

2 2 5 2

3 6 8 1

4 4 9 3

Figure 1. Sample jobs with arrival times, deadlines, lengths, and job configuration lists: L1 = {1},
L2 = {1, 2}, L3 = {2, 3}, L4 = {2, 3, 4}.

Lemma 1. The list heads are non-decreasing; i.e., s(1) ≤ s(2) ≤ . . . ≤ s(n).

Proof. Suppose job j < k. Since s(k) ∈ Lk, ∃ l ≥ k s.t. al < ds(k). If j ∈ Lk, then s(k) ∈ Lj since
al < ds(k) ≤ dj and l ≥ k > j. Thus s(j) ≤ s(k). If j /∈ Lk, then ds(j) ≤ dj < ds(k) and so s(j) < s(k).

3.1.2. Configuration Trees

For each job j, we represent all possible configurations of start times of all the jobs in its
configuration list Lj = [s(j), j] using a configuration tree, T(j). We consider these jobs in reverse
order starting from j and create a branching tree, where nodes at level k in the tree correspond to the
possible starting times for job j− (k− 1) (we assume the root of the tree is at level 0). Thus, each leaf l
in T(j) provides a schedule of start times for all jobs in Lj. Let height(l) be the peak demand of this
particular schedule for the jobs in Lj.

We need to keep track of compatible job configurations in order to build a consistent schedule
for all jobs. We do this by maintaining a compatibility pointer, c(l), from each leaf node l in T(j) to
a compatible node in T(j− 1) (j > 1). By Lemma 1, Lj ∩ Lj−1 = [s(j), j− 1]. Thus, we can follow the
same path in T(j− 1) that we took beginning with a node at level 2 in T(j) to reach the compatible node
in T(j− 1). If [s(j), j− 1] = ∅, then we simply make each leaf in T(j) point to the root of T(j− 1). Note
that compatibility pointers are stored only at the leaf nodes of trees T(2), . . . , T(n). Figure 2 shows an
example with four configuration trees.

Algorithms 2017, 10, 122 4 of 11

c(l)
b(m)

S1 =	0 S1 =	1

T(1)

S1 =	0 S1 =	1 S1 =	0 S1 =	1

S2 =	2 S2 =	3

T(2)

S2 =	2 S2 =	3 S2 =	2

S3 =	6 S3 =	7

S2 =	3

T(3)

S4 =	4 S4 =	5 S4 =	6

S2 =	2 S2 =	3 S2 =	2 S2 =	3 S2 =	2 S2 =	3 S2 =	2 S2 =	3 S2 =	2 S2 =	3 S2 =	2 S2 =	3

S3 =	6 S3 =	7 S3 =	6 S3 =	7 S3 =	6 S3 =	7

T(4)

Figure 2. Configuration trees for the jobs from Figure 1, with c(l) and b(m) pointers
shown; b(m) pointers from leaves to themselves are omitted. An optimal solution
〈s4 = 4, s3 = 7, s2 = 2, s1 = 0〉 is found by starting at the root of T(4) and following b and
c pointers to a leaf of T(1).

3.1.3. Dynamic Programming

Once the configuration trees T(j) are constructed and compatibility pointers c(l) found,
the minimum overall schedule can be found using dynamic programming, as follows:

For each leaf node l ∈ T(j), we compute h(l), which is the peak height of an optimal schedule for
jobs 1, . . . , j that is compatible with the configuration represented by l. For each node m ∈ T(j) we will
store a pointer, b(m), to the leftmost leaf l in the subtree rooted at m with best (i.e., lowest) peak height
h(l). The b(m) pointer for a leaf node is to itself. The h values satisfy the following recurrence:

h(l) =

{
height(l) if l ∈ T(1)

max[h(b(c(l))), height(l)] if l ∈ T(j), j > 1
(1)

We note that once the h(l) values are found for a given tree T(j), it is easy to compute the
b(m) pointers for the internal nodes m ∈ T(j) in a bottom-up fashion. Thus, we can apply dynamic
programming to find the h and b values for each job configuration tree in order, beginning with
T(0). An optimal schedule can be found by following alternating b and c pointers, starting with
b(root[T(m)]). The peak height of this schedule will be given by h(b(root[T(m)])) (the b pointers are
also shown in Figure 2).

3.1.4. Branch-and-Bound Approach

To avoid unnecessary tree expansion, a branch-and-bound technique can be employed to avoid
explicitly building and storing configuration trees. Configuration lists are created for each job as
described above. The algorithm keeps track of the peak demand Hbest for the best schedule found so
far (initialized to +∞).

The algorithm begins a recursive process of building and exploring paths through the
configuration trees by starting with the last job in the list. It proceeds in a depth-first fashion,

Algorithms 2017, 10, 122 5 of 11

creating subtrees of the previous job as compatibility pointers are followed. Once a new path has
been established from the last job through the first, if a better solution is found, Hbest is updated.
The search continues recursively to explore alternate paths. If at any point the current path creates
a node m with height(m) > Hbest, then that node can be marked as unnecessary to explore further
and the search pruned.

3.1.5. Fixed-Parameter Tractability

An algorithm is said to be fixed-parameter tractable with respect to parameters p1, . . . , pk of the
input or output if the running time of the algorithm is a polynomial function of the input size times
some function of the parameters: f (p1, . . . , pk) · poly(n). The complexity of the algorithm is driven by
the size of the configuration trees, T(j), that can be bounded by their branching factor and maximum
depth. The maximum branching factor is q = maxj(dj − aj − lj + 1), and the maximum depth is
r = maxj |Lj|. The following lemma shows that r is also a simple parameter of the input.

Lemma 2. r is the maximum number of earlier jobs that overlap any job; i.e., r = maxj |{j′ ≤ j : dj′ > aj}|.

Proof. Let j∗ = arg maxj |Lj|. Then Lj∗ = [s(j∗), j∗]. If s(j∗) ∈ Lk for some k > j∗, then this contradicts
the choice of j∗ (since Lk would contain [s(j∗), k], and so be a larger set). Thus ds(j∗) > aj∗ and so
Lj∗ = {j′ ≤ j∗ : dj′ > aj∗}. Since |{j′ ≤ j : dj′ > aj}| ≤ |Lj| for all j, maxj |{j′ ≤ j : dj′ > aj}| ≤ r =

|{j′ ≤ j∗ : dj′ > aj∗}|. It follows that r = maxj |{j′ ≤ j : dj′ > aj}|.

The maximum number of nodes in each configuration tree is O(qr). Since the dynamic
programming time is easily seen to be linear in the size of the trees, the total running time is O(qr · n).

3.2. An Approximation Algorithm

In this section we detail a novel algorithm for the PDM problem that provides the first known
approximation guarantee for the general PDM problem. The algorithm is based on relaxing an integer
linear program (ILP) to allow real-valued solutions and then rounding the real-valued solution back to
an integer solution.

3.2.1. Integer Linear Programming Formulation

The PDM problem can be formulated as an ILP using the following notation and variables:

J—Set of jobs.
Ij—A finite set of valid execution intervals for job j ∈ J (an interval [sj, sj + lj) is valid for job j if
and only if aj ≤ sj and sj + lj ≤ dj).
hj—Height of job j.
L—Set of all left hand time points of intervals in

⋃
j Ij.

Hmax ∈ R—Peak demand.
xi,j ∈ {0, 1}—Indicates if interval i ∈ Ij is scheduled.

The ILP is:
min Hmax

subject to:

∑
i∈Ij

xi,j = 1 ∀j (2)

∑
i∈⋃j Ij :t∈i

hjxi,j ≤ Hmax ∀t ∈ L (3)

Algorithms 2017, 10, 122 6 of 11

Constraint (2) ensures that exactly one interval will be selected for each job, and (3) ensures that
Hmax will denote the peak height of the schedule. Only elements of L need to be considered in (3) as
a consequence of Lemma 3.

Lemma 3. The maximum height of any schedule must occur for some t ∈ L.

Proof. Schedule height only increases at the moment a new job begins processing, and thus the peak
height of a schedule must be initiated at the start time of some job. Since L is the collection of all
possible start times for all jobs, some point in L must correspond to the arrival time of the peak height
of the schedule.

3.2.2. A Randomized Rounding Algorithm

The ILP presented above cannot be efficiently solved due to the restriction of xi,j to integer values.
To address this, we construct a relaxed LP in the exact same fashion as the ILP, except the xi,j variables
may take on any values in the range [0, 1]. After the relaxed LP is solved, a specific interval is selected
for each job j by randomly selecting interval i with probability xi,j. This linear programming rounding
scheme, RoundLP, is presented in Algorithm 1. We note the running time is polynomial, since linear
programs can be solved in polynomial time.

Algorithm 1 RoundLP

Step 1 Solve the LP as described in Section 3.2, but with real-valued xi,j ∈ [0, 1].

Step 2 Determine a start time for each job as follows:
forall jobs j

Pick a random i ∈ Ij with probability xi,j
Set sj to be the start time of interval i

endforall

3.2.3. Continuous Timescales

The ILP detailed above is polynomial in size for the case of discrete timescales, where each
Ij is finite, but not for continuous timescales in which jobs can be scheduled anywhere in the
arrival-deadline window (so Ij is infinite). Using a technique similar to the one introduced in [9] for the
unit-height machine minimization problem, we show that any continuous instance can be transformed
into a corresponding discrete instance such that an optimal solution to the discrete instance provides
a solution to the continuous instance that is within a factor of two from optimal.

Given a set of continuous jobs J, we first schedule as many jobs as possible, J′ ⊂ J, without
any overlaps by starting at the first time point and proceeding in this fashion: As soon as no job is
being served, schedule the job that will complete the earliest from all remaining jobs. A set of time
points P can be constructed from this initial schedule by adding the start and end times from all the
scheduled intervals in J′ and by adding the release times and deadlines for each remaining job in J \ J′.
This means that each interval of every remaining job contains at least one element of P and |P| ≤ 2n.
If some interval of job j ∈ J \ J′ did not contain a point of P, then either it is nested inside a scheduled
interval of J′ and thus would have been scheduled since it ends sooner, or it is totally separated from
any scheduled intervals and thus would also have been scheduled as well.

Next, for each remaining job j ∈ J \ J′, we discretize its intervals by expanding them to points in
P: For each interval, move its left endpoint to the nearest point in P that lies to the left and its right
endpoint to the nearest point in P that lies to the right. This results in a finite number (at most |P|) of
possible intervals for job j.

Consider an optimal solution to the continuous instance. When this solution is transformed to
a discrete instance by expanding the intervals as above, the overall height of the solution may increase,

Algorithms 2017, 10, 122 7 of 11

as two intervals that did not overlap now overlap. It is easy to see that these intervals must have
originally overlapped two consecutive points from P. Thus, the height of the schedule can at most
double after interval expansion. This implies that the height of an optimal schedule for the discrete
instance is at most twice the optimal height of the continuous instance.

Finally, observe that in the discrete instance we only need to look at the height at times t ∈ L
to determine the overall height of the schedule; this is because we can slide any time t a little bit to
the left until it touches the left endpoint of some interval without changing the overall height of the
schedule above t. By our construction,

|L| ≤ |P| ≤ 2n (4)

The following theorem shows that Algorithm 1 provides a polynomial-time approximation
algorithm for PDM (with a continuous timescale).

Theorem 1. The schedule generated by the RoundLP has a height of at most O
(log n

log log n
)

times the height of the
optimal ILP’s schedule, with probability at least 1−O(1/n).

Proof. Let Xi,j ∈ {0, 1} be the random variable produced by rounding xi,j in RoundLP. For each t ∈ L,
define the random variables Zt and Yt as

Zt = ∑
i∈⋃j Ij :t∈i

hjXi,j

Yt = ∑
i∈⋃j Ij :t∈i

hj

h
Xi,j, where h = max

j
{hj}

Bounding the probability that Yt exceeds some factor α times the optimal height (Hopt) divided
by h results in the same bound for the probability that Zt exceeds α times the optimal schedule height:

Pr[Zt > αHopt] = Pr[hYt > αHopt] (since Zt = hYt, ∀t)
= Pr[Yt > α Hopt

h]
(5)

We use a Chernoff-type bound [14] to bound the deviation of Yt above Hopt

h . Note that E[Yt] ≤ Hopt

h

by (3). Since Xi,j are independent Bernoulli trials, for any given t, with E[Xi,j] = pi,j and 0 <
hj
h ≤ 1 for

all jobs, the following bound exists for all δ > 0 (Theorem 1 in [15] proves that Pr[X > (1 + δ)µ] <[eδ

(1+δ)(1+δ)

]µ
for µ = E[X], but it is easy to see that this holds for all µ ≥ E[X]):

Pr[Yt > (1 + δ)
Hopt

h
] <

[
eδ

(1 + δ)(1+δ)

] Hopt
h

Substituting α = 1 + δ and gathering terms on the right hand of the expression into one
exponential results in,

Pr[Yt > α Hopt

h] < exp [−(Hopt

h)(α ln α− α + 1)]
≤ exp [−α ln α + α− 1] (since Hopt

h ≥ 1)
< exp [−α(ln α− 1)],

(6)

for all α > 1. Next, choose α =
4 log n

log log n and consider the value of ln α− 1:

ln α− 1 = ln
(

4 log n
log log n

)
− 1 ≥ ln log n− ln log log n

=
log log n

log e −
log log log n

log e (change of base)

≥ 1
log e (log log n− 1

2 log log n) = log log n
2 log e .

(7)

Algorithms 2017, 10, 122 8 of 11

Plugging (7) and α =
4 log n

log log n into (6) yields

Pr
[

Yt >
4 log n

log log n
Hopt

h

]
< exp

[
−4 log n
log log n

log log n
2 log e

]
= exp

[
−4 ln n log e

log log n
log log n

2 log e

]
= exp [−2 ln n] = 1/n2.

(8)

Finally, we use (5), (8), (4), and Lemma 3 to give a probabilistic bound on the height of rounded
schedule, Hrnd:

Pr
[

Hrnd >
4 log n

log log n
Hopt

]
≤∑

t∈L
Pr
[

Zt >
4 log n

log log n
Hopt

]
= ∑

t∈L
Pr
[

Yt >
4 log n

log log n
Hopt

h

]
< ∑

t∈L
1/n2

≤ |L|/n2

≤ 2n/n2 = 2/n ∈ O(1/n).

So, with probability 1−O(1/n), Hrnd ≤ 4 log n
log log n Hopt.

3.3. A Greedy Heuristic

We also consider a greedy approach for PDM that schedules each job to have a start time with the
smallest contribution to the peak energy required by the schedule. We consider both an offline and
online version of the algorithm. In the online version, each job must be scheduled as soon as it arrives.
The online algorithm schedules each job sequentially by finding the first starting time that minimizes
the resulting peak demand. The complete algorithm is presented as Algorithm 2, where height(S , j, sj)

is defined as the height of schedule S with new job j scheduled to start at sj.
The offline heuristic algorithm schedules individual jobs in the same fashion as the online one,

but the jobs that have tight execution windows are scheduled first while jobs with more space in
their execution windows are scheduled later. The complete algorithm is presented as Algorithm 3

(note that wj =
lj

dj−aj
∈ (0, 1] measures the execution window tightness of job j; values closer to 1

indicate tighter jobs).

Algorithm 2 MinFit-Online

Step 1 Build schedule, S , by determining start times as follows:
forall jobs, j (in the order that jobs arrive)

s = aj
for time t = aj + 1, . . . , dj − lj + 1

if height(S , j, t) < height(S , j, s)
s = t

endif
endfor
startj = s

endforall

Algorithms 2017, 10, 122 9 of 11

Algorithm 3 MinFit-Offline

Step 1 Sort jobs by decreasing wj =
lj

dj−aj
values.

Step 2 Execute Algorithm 2 on this ordered list of jobs.

4. Experimental Results

Simulations were conducted using the OptimalDP, RoundLP, MinFit-Online, and MinFit-Offline
algorithms. For a baseline comparison, we also compare to an on-demand algorithm, OnDemand,
that schedules jobs to start on their arrival times. Realistic household power-consuming jobs were
created using appliance-specific data from six residences [16]. We identified appliances (e.g., washing
machine) likely to have flexible timelines and determined their height, length, and arrival time
distributions within a 24 h period. Deadlines were set to be uniformly distributed between the
minimum possible deadline (aj + lj − 1) and the arrival time plus four times the average job length of
that appliance.

The first scenario we considered was a simple scenario meant to compare our algorithms
against an optimal solution. Instead of generating jobs as described above, we randomly generated
jobs with an arrival time of 0 to simulate a single peak. Figure 3 shows the average results of
running OptimalDP, RoundLP, MinFit-Online, MinFit-Offline, and OnDemand on 20 iterations of
a variable number of jobs, each from this simplified data generation method. RoundLP, MinFit-Online,
and MinFit-Offline all produced near-optimal solutions at each job set size, in stark contrast to the
solutions provided by OnDemand.

 0

 5

 10

 15

 20

 25

 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 P

e
a
k
 P

o
w

e
r

D
e
m

a
n
d
 (

k
W

h
)

Number of Jobs

OnDemand

RoundLP

MinFit-Offline

MinFit-Online

OptimalDP

Figure 3. Performance of peak demand minimization (PDM) scheduling algorithms in a smaller
scenario where the optimal solution can be computed.

The second scenario we considered was the performance of the RoundLP, MinFit-Online, and
MinFit-Offline algorithms with a large number of realistically generated jobs. Figure 4 shows the average
power demand versus time of day for the OnDemand, RoundLP, MinFit-Online, and MinFit-Offline
algorithms when scheduling 100 instances of 500 jobs over a 24 h period. The peak demands in k Wh
were 41.1 for OnDemand, 21.0 for RoundLP, 21.3 for MinFit-Offline, and 25.6 for MinFit-Online.

Algorithms 2017, 10, 122 10 of 11

 0

 5

 10

 15

 20

 25

 30

 35

 40

00:00 05:00 11:00 16:00 22:00

P
o
w

e
r

D
e
m

a
n
d
 (

k
W

h
)

Time

OnDemand

RoundLP

MinFit-Offline

MinFit-Online

Figure 4. Performance of PDM scheduling algorithms in a larger scenario. Total demand over time is
plotted for each algorithm.

5. Conclusions

In this work we presented the first approximation algorithm for the PDM problem for scheduling
non-preemptible jobs, as well as an optimal dynamic programming algorithm that is fixed-parameter
tractable and a heuristic approach that can be adapted to the online version of the problem. The problem
occurs naturally in scheduling household power consuming jobs in a smart grid power system.
Simulation results indicate that there is substantial opportunity to reduce the peak demand through
deferred scheduling vs. on-demand. Avenues for future work include considering renewable energy
when scheduling jobs. Integrating with renewable energy sources is becoming increasingly important
for microgrids, and provides an additional mechanism for controlling peak demand and reducing
dependency on non-renewable energy. Of critical importance, the available renewable energy curve
may not be known with certainty, and so forecasts must be used. This introduces a random aspect to
the performance of any schedule and so one might seek the schedule with the lowest expected
non-renewable peak demand, etc. A second consideration is the trade-off between minimizing
non-renewable peak demand and maximizing renewable energy consumption. Solutions of interest
would be on the Pareto front of minimizing peak non-renewable demand and maximizing renewable
energy use. Finally, the online version of PDM for non-preemptible jobs has not been explored in
great depth.

Acknowledgments: This work was supported in part by National Science Foundation grant CNS-1156475.

Author Contributions: S.Y. and B.M. jointly conceived and designed the algorithms; S.Y. performed
the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Koutsopoulos, I.; Tassiulas, L. Optimal control policies for power demand scheduling in the smart grid.
IEEE J. Sel. Areas Commun. 2012, 30, 1049–1060.

2. Fathi, M.; Bevrani, H. Adaptive Energy Consumption Scheduling for Connected Microgrids Under Demand
Uncertainty. IEEE Trans. Power Deliv. 2013, 28, 1576–1583.

3. Yaw, S.; Mumey, B. An Exact Algorithm for Non-preemptive Peak Demand Job Scheduling. In Combinatorial
Optimization and Applications; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014;
Volume 8881, pp. 3–12.

4. Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand Side Management in Smart Grid Using Heuristic
Optimization. IEEE Trans. Smart Grid 2012, 3, 1244–1252.

5. Huang, Q.; Li, X.; Zhao, J.; Wu, D.; Li, X.Y. Social Networking Reduces Peak Power Consumption in Smart
Grid. IEEE Trans. Smart Grid 2015, 6, 1403–1413.

Algorithms 2017, 10, 122 11 of 11

6. Tang, S.; Huang, Q.; Li, X.Y.; Wu, D. Smoothing the energy consumption: Peak demand reduction in
smart grid. In Proceedings of the 2013 IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 1133–1141.

7. Yaw, S.; Mumey, B.; Mcdonald, E.; Lemke, J. Peak demand scheduling in the Smart Grid. In Proceedings of
the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, Italy,
3–6 November 2014; pp. 770–775.

8. Roh, H.T.; Lee, J.W. Residential demand response scheduling with multiclass appliances in the smart grid.
IEEE Trans. Smart Grid 2016, 7, 94–104.

9. Chuzhoy, J.; Guha, S.; Khanna, S.; Naor, J. Machine minimization for scheduling jobs with interval constraints.
In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, Rome, Italy,
17–19 October 2004; pp. 81–90.

10. Cieliebak, M.; Erlebach, T.; Hennecke, F.; Weber, B.; Widmayer, P. Scheduling with release times and deadlines
on a minimum number of machines. In Exploring New Frontiers of Theoretical Informatics; IFIP International
Federation for Information Processing; Levy, J.J., Mayr, E., Mitchell, J., Eds.; Springer: New York, NY, USA,
2004; Volume 155, pp. 209–222.

11. Ortmann, F.G.; Ntene, N.; van Vuuren, J.H. New and improved level heuristics for the rectangular strip
packing and variable-sized bin packing problems. Eur. J. Oper. Res. 2010, 203, 306–315.

12. Gu, X.; Chen, G.; Xu, Y. Average-Case Performance Analysis of a 2D Strip Packing Algorithm—NFDH.
J. Comb. Optim. 2005, 9, 19–34.

13. Baker, B.S.; Schwarz, J.S. Shelf algorithms for two-dimensional packing problems. SIAM J. Comput. 1983,
12, 508–525.

14. Raghavan, P.; Tompson, C.D. Randomized Rounding: A Technique for Provably Good Algorithms and
Algorithmic Proofs. Combinatorica 1987, 7, 365–374.

15. Raghavan, P. Probabilistic construction of deterministic algorithms: Approximating packing integer
programs. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science, Toronto,
ON, Canada, 27–29 October 1986; pp. 10–18.

16. Kolter, J.Z.; Johnson, M.J. Redd: A public data set for energy disaggregation research. In Proceedings of the
SustKDD Workshop on Data Mining Applications in Sustainability, San Diego, CA, USA, 21 August 2011.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Algorithms
	An Optimal Dynamic Programming Algorithm
	Configuration Lists
	Configuration Trees
	Dynamic Programming
	Branch-and-Bound Approach
	Fixed-Parameter Tractability

	An Approximation Algorithm
	Integer Linear Programming Formulation
	A Randomized Rounding Algorithm
	Continuous Timescales

	A Greedy Heuristic

	Experimental Results
	Conclusions
	References

