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Abstract: The decision tree algorithm is a core technology in data classification mining, and ID3
(Iterative Dichotomiser 3) algorithm is a famous one, which has achieved good results in the field
of classification mining. Nevertheless, there exist some disadvantages of ID3 such as attributes biasing
multi-values, high complexity, large scales, etc. In this paper, an improved ID3 algorithm is proposed
that combines the simplified information entropy based on different weights with coordination degree
in rough set theory. The traditional ID3 algorithm and the proposed one are fairly compared by using
three common data samples as well as the decision tree classifiers. It is shown that the proposed
algorithm has a better performance in the running time and tree structure, but not in accuracy than
the ID3 algorithm, for the first two sample sets, which are small. For the third sample set that is large,
the proposed algorithm improves the ID3 algorithm for all of the running time, tree structure and
accuracy. The experimental results show that the proposed algorithm is effective and viable.
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1. Introduction

Large amount of data that includes a lot of potential and valuable information is stored
in a database. If a wealth of hidden information can be extracted from the database, more potential
value will be created. Faced with the challenge of the above issue, data mining [1,2] technologies came
into being and showed strong vitality. Data mining includes several important technologies such as
classification [3], clustering [4], regression [5], etc. The classification mining technology, among data
mining technologies, is becoming a most active and mature research direction allowing for successful
applications. Classification mining [6] can be applied to discover useful information from large
amounts of data stored in a large number of fields such as hospital, stock, banking, etc. For example,
it is important for a hospital to accurately predict the length of stay (LOS), and Ref. [7] showed that
the classification mining technology was not only beneficial to solve limited bed resources, but was
also helpful for the hospital staff to implement better planning and management of hospital resources.
In Ref. [8], in order to easily acquire stock returns in the stock market, different classifiers were used in
the stock market prediction, and the prediction accuracy was commonly satisfied. Ref. [9] used two
types of classifier ensembles to predict stock returns. The problem of bank note recognition is very
important for bank staff. Ref. [10] presented neuro-classifiers to address the big problem. Ref. [11]
presented the ANN classification approach, which could be used to detect early warning signals of
potential failures for banking sectors.
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The decision tree methods [12,13], the neural network methods [14] and the statistical
methods [15,16] are common classification algorithms used by researchers in the field of classification
mining. A large amount of decision tree algorithms such as Iterative Dichotomizer 3 (ID3) [17], C4.5 [18],
and Classification And Regression Tree (CART) [19] are used in different fields. Most decision tree
methods are developed from the ID3 method. For example, the C4.5 method [20] presented an optimal
attribution selection standard (gain ratio) [21] instead of the optimal attribution selection standard
(information gain) in ID3; The CART method took the Gini index [22] as the selection standard of
the optimal attribution. Although many advantages are acquired from these improved decision tree
methods, there is also much room for improvement.

The ID3 algorithm is used as a general classification function, and it has many advantages,
such as understandable decision rules and the intuitive model. Nevertheless, ID3 also has some
disadvantages, for example: (1) there exists a problem of multi-value bias in the process of attribute
selection [23], but the attribution that has more values is not always optimal; (2) it is not easy to calculate
information entropy [24,25] by using logarithmic algorithms, which costs a lot of time; and (3) the tree
size is difficult to control [26], and the tree with a big size requires many long classification rules.

In order to solve the problems above, an optimized scheme is proposed here based on the ID3
method. First of all, in order to solve the defect of multi-value bias brought by the information
gain equation in ID3, C4.5 selected gain ratio instead of the information gain equation, but this
method included a lot of logarithmic operations, which will affect the whole performance. This paper
presents a novel method by directly adding different weights for the information gain equation
of every candidate attribution, and this way not only makes the selection of the optimal attribute more
reasonable, but also has a small effect on the running speed. Secondly, as we all know, in two equivalent
formulas (e.g., the logarithmic expression and the four arithmetic operation), the computation speed
of the logarithmic expression is slower than that of the four arithmetic operations that only include
add, subtract, multiply and divide [27]. Hence, this paper changes the logarithmic expression of the
information gain of ID3 into the form of the four arithmetic operations by introducing the Taylor
formula for developing in real time. Thirdly, this paper introduces coordination degree [28,29] in rough
set theory [30] to control the decision tree size by one step because most current decision tree methods
take the pruning strategy to simplify the tree structure, which can complete the whole process in two
steps. Finally, this paper proposes a new method to build a more concise and reasonable decision tree
model with lower computational complexity. The experiment results finally shows that the proposed
algorithm gets better performance than ID3.

The rest of this paper is organized as follows: Section 2 describes steps of building a decision
tree based on an ID3 algorithm as well as some advantages and disadvantages about the ID3
algorithm. Section 3 addresses some drawbacks of the ID3 method by the proposed algorithm,
which combines simplified information entropy with coordination degree in rough set theory.
Section 4 presents the assessment algorithm used in this paper. In Section 5, differences between the
traditional ID3 algorithm and the proposed algorithm are compared and analyzed through experiments.
Final comments and conclusions are provided in Section 6.

2. ID3 Algorithm Description

ID3 algorithm, the traditional decision tree classification algorithm, was presented by
Ross Quinlan [31] in 1986. ID3 makes use of information gain as an attribute selection method.
The main structure of building a decision tree based on ID3 algorithm is summarized in Algorithm 1.
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Algorithm 1: ID3 algorithm
Input: Training set D = {(x1, y1), (x2, y2), · · · , (xn, yn)}

Attribute set A = {a1, a2, · · · , ad}
Output: a decision tree
1 Generate node
2 If samples in D belong to the same class. Then
3 The node is labeled as class C leaf node; Return
4 End if
5 If A = φ or the values in A are same in D, Then
6 The node is labeled as leaf node; Return
7 End if
8 Maximum Information Entropy is chosen as a heuristic strategy to select the optimal
splitting attribute ai from A;
9 For every value av

i in ai do
10 Generate a branch for node; Dv is the sample subset that has value av

i from ai in D
11 If Dv is empty. Then
12 The branch node is labeled as a leaf node; Return
13 Else
14 Take Tree Generate (Dv, A\ {ai}) as the node that can continue be divided
15 End if
16 End for

Let us introduce some notations. Information entropy and information gain are defined by:

Ent(D) = −
|κ|

∑
d=1

pklog2 pk, (1)

Gain(D, a) = Ent(D)−
V

∑
v=1

∣∣DV
∣∣

|D| , Ent(DV) (2)

where D = {(x1, y1), (x2, y2), · · · , (xm, ym)} stands for the training sample set, and |D| represents
the number of training samples. A = {a1, a2, · · · , ad} denotes the attribute set of |D|,
and d = {1, 2, · · · , |κ|}. pk(k = 1, 2, · · · , |D|) stands for the probability that a tuple in the training set
S belongs to class Ci. A homogenous data set consists of only one class. In a homogenous data set,
pk is 1, and log2(pk) is zero. Hence, the entropy of a homogenous data set is zero. Assuming that there
are V different values (V =

{
a1, a2, · · · , aV}) in an attribute ai, Di represents sample subsets of every

value, and
∣∣Di
∣∣ represents the number of current samples.

The decision tree model, a tree chart depicted in Figure 1, can be acquired with the ID3 method
described in Algorithm 1, and the decision tree model generally includes one root node, a number
of internal nodes and some leaf nodes, where the root node represents the whole sample set, an internal
node represents an attribute, and a leaf node represents a class label. The path from root node to every
leaf node corresponds to a determine sequence.

There are many advantages [32] to classify a mass of data by using the ID3 algorithm, such
as strong intuitive nature, easy decomposability and so on, but the ID3 algorithm also has some
disadvantages, for example:

(1) When using the information gain as attribute selection method, ID3 tends to choose the attribute
that has more values [33] because the value of the information gain equation of this type of
attribution will be larger than that of others.

(2) As is known to all, if the logarithmic expression and the four arithmetic operations are the two
equivalent expressions of one function, the running time of the four arithmetic operations
is faster than that of the logarithmic expression [34]. In the ID3 method, there are many
logarithmic computations in the optimal attribution selection process, which will waste much
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time to calculate the information gain. If the logarithmic expression is changed by the four
arithmetic operations, the running time in the whole building tree process will improve rapidly.

(3) It is hard to control the tree size in the process of building a decision tree. At present, most
improved methods take pruning methods [35] to avoid over-fitting phenomena, which will
lead to the whole process of building decision tree models finished in two steps (i.e.,
modeling and pruning). If a concise decision tree is built in one step, this will save much time.

Figure 1. The tree chart of a decision tree.

The intent of the paper is to solve the drawbacks that are mentioned above and propose an
improved method to build the decision tree model. The improved ID3 algorithm is designed to
generate a more concise decision tree model in a shorter time, and to choose a more reasonable optimal
attribute in every internal node.

3. Improved ID3 Algorithm

This section presents the corresponding solutions based on the above issues. A new method
that puts the three solutions together is designed, and it can be used to build a more concise decision
tree in a shorter running time than ID3. Table 1 is a small training sample set that is used to show
the differences between the traditional ID3 algorithm and the proposed one in detail.

Table 1. The data sample that determines the risk of dogs.

Number Colour Body Shape Hair Type Characteristic

1 black big poodle danger
2 brown big smooth danger
3 brown medium poodle safe
4 black small poodle safe
5 brown medium smooth danger
6 black big smooth danger
7 brown small poodle danger
8 brown small smooth safe
9 brown big poodle danger

10 black medium poodle safe
11 black medium smooth safe
12 black small smooth safe

3.1. The Solution of Simplification of Information Gain

3.1.1. The Derivation Process of Simplifying Information Entropy

The choice of the optimal attribute in ID3 algorithm is based on Equation (2), but the logarithm
algorithm increases the complexity of the calculation. If we can find a simpler computing formula,
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the speed of building a decision tree would be faster. The process of simplification is organized
as follows:

As is known to all, in two equivalent expressions, the running speed of the logarithmic expression
is slower than that of the four arithmetic operations. If the logarithmic expression in Equation (2) is
replaced by the four arithmetic operation, the running speed of the whole process to build the decision
tree will improve rapidly.

According to the differentiation theory in advanced mathematics, the meaning of Taylor
formula can simplify complex functions. The Taylor formula is an expanded form at any point,
and the Maclaurin formula is a function that can be expanded into Taylor’s series at point zero.
The difficulty in computation of the information entropy about the ID3 algorithm can be reduced
based on an approximation formula of Maclaurin formula, which is helpful to build a decision tree in
a short period of time. The Taylor formula is given by:

f (x) = f (x0) + f (1)(x0)(x− x0) + o(x− x0). (3)

Under circumstances of x = 0, Equation (3) is changed into the following form (also called
Maclaurin formula):

f (x) = f (0) + f (1)(0)x +
f (2)(0)

2!
x2+, · · · ,+

f (n)(0)
n!

xn + R(x), (4)

where

R(x) =
f (n+1)(x)
(n + 1)!

(x− x0)
n+1. (5)

For easy calculation, the final equation applied in this paper will be:

f (x) = f (0) + f (1)(0)x +
f (2)(0)

2!
x2+, · · · ,+

f (n)(0)
n!

xn. (6)

Assuming that there are n counter examples and p positive examples in sample set D,
the information entropy of D can be written as:

Ent(D) = − p
p + n

log2
p

p + n
− n

p + n
log2

n
p + n

. (7)

Assuming that there are V different values included in the attribute ai of D, and every value
contains ni counter examples and pi positive examples, the information gain of the attribute ai can be
written as:

Gain(D, ai) = Ent(D)−
V

∑
i=1

pi + ni
p + n

Ent(DV), (8)

where
Ent(DV) = − pi

pi + ni
log2

pi
pi + ni

− ni
pi + ni

log2
ni

pi + ni
.

(9)

In the process of simplification, if the formula ln(1 + x) ≈ x is true in the situation of very small
variable x and the constant included in every step can be ignored based on Equation (6), Equation (7)
can be rewritten as:

Ent(D) = − 1
(p + n) ln 2

[
−p ln

p
p + n

− n ln
n

p + n

]
= −p ln

p
p + n

− n ln
n

p + n

=
2pn

p + n
.

(10)
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Similarly, the expression
V
∑

i=1

pi+ni
p+n Ent(DV) can be rewritten as:

V

∑
i=1

pi + ni
p + n

Ent(DV)

=
V

∑
i=1

pi + ni
(p + n) ln 2

[
pini

(pi + ni)
2 +

ni pi

(pi + ni)
2

]

=
V

∑
i=1

pi + ni
(p + n) ln 2

· 2pini

(pi + ni)
2

=
V

∑
i=1

2pini
pi + ni

.

(11)

Therefore, Equation (8) can be rewritten as:

Gain(D, ai) = =
2pn

p + n
−

V

∑
i=1

2pini
pi + ni

. (12)

Hence, Equation (12) can be used to calculate the information gain of every attribute and the attribute
that has the maximal information gain will be selected as the node of a decision tree. The new information
gain expression in Equation (12) that only includes addition, subtraction, multiplication, and division
greatly reduces the difficulty in computation and increases the data-handling capacity.

3.1.2. Experimental Result Analysis

In order to verify the above theory, two decision trees are built based on the two different
information gain equations (i.e., Equations (2) and (12)) for Table 1 to compare the length of running
time about the two different methods.

The sample data in Table 1 is taken as the training set, and there are three candidate feature
attributions (Color, Body Shape, Hair Type) and one class attribution (Characteristic) in this table.
Although the decision trees that are built respectively based on the information gain Equations (2)
and (12) are the same, which can be presented in Figure 2a, but the running time of the two solutions
changed dramatically, which is shown in Figure 2b. The running time based on the new method is
smaller than that of ID3, which is helpful for improving the real-time capability.

Body Shape

danger Hair Type Hair Type

safe Color Color safe

safe safedanger danger

big
medium small

poodle smooth

brown black black brown

poodle smooth

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ID3 method The new method

(a)                                                                                                                                (b)

Figure 2. Comparison in building a same decision tree model: (a) the decision tree model based on ID3
and the new method; (b) the comparison of running time about ID3 and the new method.
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3.2. Variety Bias Problem and the Solution

People tend to choose as many attributes as possible to build decision tree models. If “Number”
can be used as a candidate attribute, there will be four feature attributions (Number, Color, Body Shape,
Hair Type) and one class attribution (characteristic) in Table 1. The selection of the optimal attribution
based on Equations (2) and (12) presented above is the feature attribution “Number”, the detailed
computation process is shown in the following. The decision tree model is presented in Figure 3.
From Figure 3, we find that there is no sense to predict new samples for this decision tree, because
each piece of sample data has their own number.

In order to avoid the multi-value bias problem, the C4.5 method used gain ratio instead of
the information gain equation, which is a good solution to the multi-value bias problem, but more
logarithmic expressions are brought into the computation process by gain ratio, which will influence
the running time according to Section 3.1. This paper proposed a new method that introduces different
weights for each attribute, which is not only helpful for the selection of the optimal attribution, but
also brings no computation pressure. The detailed computation process based on the information gain
equation in ID3 is shown in Equations (13)–(16). Equation (17) is the new information gain equation,
and the computation process based on Equations (17) is also briefly listed in Equations (18)–(21).
The decision tree built by the improved information gain equation is showed in Figure 4. Obviously,
this decision tree has better prediction ability for new unknown samples than that of decision trees
in Figure 3.

3.2.1. The Selection Process of the Optimal Attribution Based on the ID3 Method

The attribution that has the biggest information gain will be selected as the root node.
From Equations (13)–(16), the attribution “Number” has the biggest information gain in Table 1.
Hence, this attribution will be selected as the root node. Referring to Algorithm 1, the decision tree
model is presented in Figure 3:

Gain(D, Number) = Ent(D)−
V

∑
i=1

pi + ni
p + n

Ent(DV) =
2pn

p + n
−

12

∑
i=1

2pini
pi + ni

= 6, (13)

Gain(D, Color) = Ent(D)−
V

∑
i=1

pi + ni
p + n

Ent(DV) =
2pn

p + n
−

2

∑
i=1

2pini
pi + ni

= 5.3, (14)

Gain(D, Body Shape) = Ent(D)−
V

∑
i=1

pi + ni
p + n

Ent(DV) =
2pn

p + n
−

3

∑
i=1

2pini
pi + ni

= 1.5, (15)

Gain(D, Hair Type) = Ent(D)−
V

∑
i=1

pi + ni
p + n

Ent(DV) =
2pn

p + n
−

2

∑
i=1

2pini
pi + ni

= 0.3. (16)

Number

danger danger safe safe danger danger danger safe danger safe safe

Figure 3. Decision tree model based on ID3 method.
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3.2.2. The Selection Process of the Optimal Attribution Based on the Improved Method

In order to solve the variety bias problem, different weights are introduced into each attribution
based on Equation (17). Each weight equals the reciprocal of the length of different values
in the corresponding attribution. The computation process is listed in the following:

Gain(D, ai) = Mi (
2pn

p + n
−

V

∑
i=1

2pini
pi + ni

), (17)

Gain(D, Number) = M1(
2pn

p + n
−

V

∑
i=1

2pini
pi + ni

) = 0.5, (18)

Gain(D, Color) = M2(
2pn

p + n
−

V

∑
i=1

2pini
pi + ni

) = 0.3, (19)

Gain(D, Body Shape) = M3(
2pn

p + n
−

V

∑
i=1

2pini
pi + ni

) = 0.5, (20)

Gain(D, Hair Type) = M4(
2pn

p + n
−

V

∑
i=1

2pini
pi + ni

) = 0.5. (21)

The attribution that has the biggest information gain is the optimal attribution. If there is more
than one property with the maximum information gain value, the optimal property will be randomly
selected from these candidate attributions. The attribution “Body Shape” is finally randomly selected as
the optimal attribution in Matlab, the decision tree model based on the improved method is presented
in Figure 4.

With the help of Equation (8), a decision tree model will be quickly built and the problem of the
variety bias problem will be avoided. This paper introduced the coordination degree theory to improve
the feature of split points for acquiring a more concise decision tree model because the decision tree
size is hard to control.

Body Shape

danger Hair Type Hair Type

safe Color Color

safe safedanger danger

big
medium small

poodle smooth

brown black black brown

poodle smooth

Figure 4. Decision tree model based on the improved method.

3.2.3. Uncontrollable Tree Size and the Solution

The splitting degree of internal node is hard to control, which will bring a lot of disadvantages,
such as large tree size, long classification rules, and so on. Therefore, the concept of coordination degree
is introduced in this paper, which plays a great role in determining the split property of the internal
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node in advance, and avoids the subsequent pruning step [36] that used to deal with the over-fitting
problem. The basic idea of the proposed algorithm is that the standard of the splitting property of every
branch is determined by the size of coordination degree and the condition certainty degree.

Assume that D = {(x1, y1), (x2, y2), · · · , (xn, yn)} stands for training set, A = {a1, a2, · · · , ad}
denotes condition attribute set, which is variable, and adi stands for the subset of a value in the attribute
ai. Dl = {y1, y2, · · · , yn} denotes label attribute set, which is stationary.

Coordination degree is defined by:

Con(ai → Dl) =
∣∣∣ai ∪ Dl

∣∣∣ / |ai| . (22)

The condition certainty degree is defined by:

K(Eai) =
∣∣∣adi ∪ Dl

∣∣∣ / |adi| . (23)

The splitting property of different branches depends on the size of coordination degree
and condition certainty degree in the subset. If the size of the coordination degree is greater than
or equal to that of the coordination degree, the node will be a leaf node, on the contrary, the node will
be an non-leaf node, which can continue be splitted.

The decision trees built by the two different methods are shown in Figure 5, and the right figure
that has fewer nodes and branch rules is more concise than the left.

Body Shape

danger Hair Type Hair Type

safe
Colour

safe

safe danger

big
medium

small

poodle smooth
poodle smooth

black
brown

danger

    (a)                                                                                                                                               (b)

Colour

Body shape

danger safe

danger

black brown

big

safe

medium small

Figure 5. Different tree structures based on ID3 and the new method: (a) the decision tree based on ID3
method; (b) the decision tree based on the new method.

3.3. The Step of the Improved ID3 Algorithm

This paper presented a new method that combines the above three steps to build the decision
tree. This new method could build a more concise decision tree in a shorter time by combining these
three advantages than the ID3 method. The step of the improved ID3 algorithm is summarized in
Algorithm 2.
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Algorithm 2: The improved algorithm based on ID3 method

Input: decision table S =
〈

U, A ∪ Dl
〉

Output: a decision tree
1 Generate node
2 If the training sample inbelong to the same class. Then
3 The node is labeled as leaf node named C; Return
4 End if
5 If A = φ or the values in A are same in D, Then
6 The node is labeled as leaf node; Return
7 Else
8 Minimum entropy is chosen as a heuristic strategy to select the optimal partition
attribute ai from A based on the simplified information gain;
9 For every value av

i in ai do
10 Generate a branch for node; Dv is the sample subset that has value av

i from ai in D
11 If Dv is empty. Then
12 The node in a branch is labeled as a leaf node; Return
13 Else
14 Forevery branch of ai do
15 Determine split property by comparing the size of the coordination degree
and condition certainty degree.
16 If or there are no other condition attributes, define the branch as a leaf node.
17 ELSE define the branch as a none-leaf node, return Step 8.
18 End if
19 End for
20 End if
21 End for
22 End if

4. The Assessment of the Decision Tree Algorithm

In general, the improved solutions can be obtained by assessing the generalization error of the
existed decision tree models. Hence, the step of choosing a reasonable assessment algorithm is necessary.
The main purpose of the assessment algorithm is to judge the accuracy of the mathematical model.

There are many assessment algorithms [37–39] such as a hold-out algorithm, cross validation
algorithm and bootstrapping algorithm. The last two algorithms are more common in the case
of enough data. This paper selected the first algorithm (hold-out algorithm) as the assessment algorithm
to judge the validity of a decision tree model due to its rapidity and convenience. The detailed
procedure of the hold-out algorithm is shown in Figure 6. How can we have the training set
and the testing set from the data set D? This paper used the first method to divide D into two
parts: one is used as training set, and the other is used as a testing set.

Sample Set

Training Set

Testing Set

Decision tree model

Output Result

Accuracy

Figure 6. The process of assessing a decision tree.
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5. Examples and Analyses

Three examples are used to verify the feasibility of the new method in Section 3.3, and all example
results have proved the effectiveness and viability of the optimized scheme.

5.1. Example 1

The data set depicted in Table 1 is obtained from common life, which is used to judge the family
dogs’ characteristics based on the three attributes (Body Shape, Hair Type, Colour). The samples
in Table 1 are randomly divided into two subsets (training set and testing set). There are nine samples
in the training set, which are acquired by the function command (a = randperm(12), Train = data(a(1:9),:),
Test = data(a(10:end),:) in Matlab.

Two different decision tree models about family dogs’ characteristics are built based on the
training set that depicted in Table 2, and the two models are finally listed in Figure 7.

Table 2. Experimental dataset based on family dogs’ characteristic.

Training Set

Number Colour Body Shape Hair Type Characteristic

1 black big poodle danger
2 brown big smooth danger
4 black small poodle safe
5 brown medium smooth danger
7 brown small poodle danger
8 brown small smooth safe
9 brown big poodle danger

10 black medium poodle safe
12 black small smooth safe

Testing Set

Number Colour Body Shape Hair Type Characteristic

3 brown medium poodle safe
6 black big smooth danger

11 black medium smooth safe

Body Shape

danger Hair Type Hair Type

safe
Colour

safe

safe danger

big
medium

small

poodle smooth
poodle smooth

black
brown

danger

    (a)                                                                                                                                               (b)

Colour

Body shape

danger safe

danger

black brown

big

safe

medium small

Figure 7. Decision tree models using different algorithms based on family dogs’ characteristics:
(a) the decision tree using ID3 algorithm; (b) the decision tree using the improved algorithm based on
ID3 method.

From Figure 7a,b, the decision tree model built by the improved algorithm is more concise, which
can also be displayed in classification rules. The decision tree model in Figure 7a that built by the ID3
algorithm produces 10 nodes and 6 rules:
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1 if Body shape = big, then class = danger;
2 if Body shape = medium and Hair type = poodle, then Characteristic = safe;
3 if Body shape = medium and Hair type = smooth, then Characteristic = danger;
4 if Body shape = small and Hair type = poodle, and Colour = black, then Characteristic = safe;
5 if Body shape = small and Hair type = poodle, and Colour = brown, then Characteristic = danger;
6 if Body shape = small and Hair type = smooth, then Characteristic = safe.

The decision tree built by the improved ID3 algorithm produces six nodes and four rules, and all
rules are listed as the following:

1 if Colour = black, Body shape = big, then Characteristic = danger;
2 if Colour = black, Body shape = medium, then Characteristic = safe;
3 if Colour = black, Body shape = small, then Characteristic = safe;
4 if Colour = brown, then Characteristic = danger.

The optimal attribute of the root node in Figure 7a is Body Shape that has three values,
but the optimal attribute of the root node in Figure 7b is color that has two values, which solves
the attribution bias problem. The accuracy of the testing set can be predicted by the above rules.
After testing, all differences of the two decision tree models shown in Figure 7 are summarized in
Table 3 and Figure 8.

Table 3. Experimental results by the ID3 method and the new method based on family dogs’
characteristics.

Algorithm Tree Node Number Classification Rule Number Running Time Accuracy (%)

ID3 Algorithm 10 6 0.778 66.7
The Improved Algorithm 6 4 0.107 66.7
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running time accuracy

ID3 Algorithm The Improved Algorithm

Figure 8. Bar chart comparison results by two different methods based on Table 3.

5.2. Example 2

Referring to a decision table depicted in Table 2, which relates the decisions of playing balls
based on weather conditions, where U = {1, 2, · · · , 24} is the collection of 24 objects. The attribute
set C = {Outlook, Term, Hum, Windy} is a condition attribute unit, and the attribute set Dl = {d} is
a label attribute set. There are two data sets (i.e., training set and testing set ), which are randomly
divided according to Table 2 through the function command (a = randperm(24); Train = data(a(1:17),:);
Test = data(a(18:end),:) in Matlab. There are 17 samples in the training set, which includes 8 N and 9 Y ,
and seven samples in the testing set, which includes 4 N and 3 Y. The data of the training set and the
data of the testing set are presented in Table 4. Next, a decision tree model of the event in Table 4 will
be built based on ID3 and the new method, and the two decision tree models are listed in Figure 9.
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Table 4. Experimental dataset based on the decision of playing tennis.

Training Set

Number Outlook Term Hum Windy d

1 overcast hot high not N
2 overcast hot high very N
3 overcast hot high medium N
5 sunny hot high medium Y
6 rain mild high not N
7 rain mild high medium N
8 rain hot normal not Y
9 rain cool normal medium N

10 rain hot normal very N
12 sunny cool normal medium Y
13 overcast mild high not N
15 overcast cool normal medium Y
17 rain mild normal not N
22 sunny mild high medium Y
24 rain mild high very N
20 overcast mild normal very Y
21 sunny mild high very Y
23 sunny hot normal not Y

Testing Set

Number Outlook Term Hum Windy d

11 sunny cool normal very Y
14 overcast mild high medium N
16 overcast cool normal medium Y
18 rain mild normal medium N
19 overcast mild normal medium Y

Outlook

Hum Hum

N Y Windy N

Y N
N

overcast
sunny

rain

high
normal

normal high

not very medium

(a)The decision tree based on ID3 algorithm

Hum

Outlook

N N

N

high normal

overcast

(b)The decision tree based on the improved ID3 algorithm

Y

sunny rain

Figure 9. Decision tree models based on weather using two different algorithms: (a) the decision
tree model using ID3 method; (b) the decision tree model using the improved algorithm based on
ID3 method.

From Figure 9a,b, the decision tree model built by the improved algorithm is more concise.
The decision tree built by the ID3 algorithm produces 11 nodes and seven rules:

1 if Outlook = overcast and Hum = high, then d = N;
2 if Outlook = overcast and Hum = normal, then d = Y;
3 if Outlook = sunny, then d = Y;
4 if Outlook = rain, Hum = normal, then Windy = not, then d = Y;
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5 if Outlook = rain, Hum = normal, then Windy = very, then d = N;
6 if Outlook = rain, Hum = normal, then Windy = medium, then d = N;
7 if Outlook = rain, Hum = high, then d = N.

The decision tree built by the improved ID3 algorithm produces six nodes and four rules:

1 if Hum = high, Outlook = overcast, then d = N;
2 if Hum = high, Outlook = sunny, then d = N;
3 if Hum = high, Outlook = rain, then d = Y;
4 if Hum = normal, then d = N.

The latter has a smaller scale and shorter rules by contrast. The accuracy of the improved ID3
algorithm equals that of the ID3 method (i.e., 85.71%) after predicting the labels of testing samples.
The running time (i.e., 0.073 s) of the improved method is shorter than that (i.e., 0.769 s) of the ID3
algorithm, and the tree size built by the improved algorithm is more concise than that of the ID3
method. The optimal attribute of root node in Figure 9a is Outlook that has three values (the maximum
number of all attributions), but the optimal attribute of root node in Figure 9b is hum that has two
values, which proves that the attribute that has multi-values is not always the optimal attribute.
All differences between the ID3 algorithm and the improved ID3 algorithm are summarized in Table 5
and Figure 10.

Table 5. Results by the ID3 method and the new method based on the decision of playing tennis.

Algorithm Tree Node Number Classification Rule Number Running Time Accuracy (%)

ID3 Algorithm 11 7 0.769 85.71
The Improved Algorithm 6 4 0.073 85.71
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Figure 10. Bar chart comparison results by the ID3 method and the new method based on Table 5.

5.3. Example 3

Examples 1 and 2 verified the effectiveness and availability of the optimized scheme well,
but the sample sizes of the first two examples are too small to prove the extensibility of the proposed
method, especially in accuracy. In order to highlight the differences of the two methods, this paper
downloaded Wisconsin Breast Cancer Database [40] that includes 699 samples from the University of
Californiairvine (UCI) machine learning database. This database is collected and denoted to Machine
learning problem library by William H. Wolberg from the University of Wisconsin-Madison.

Each case in the sample set was performed with a cytological examination and postoperative
pathological examination. There are nine feature attributions (Clump Thickness, Uniformity of Cell
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Size, Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nucleoli Bland
Chromatin, Normal Nucleoli and Mitoses) and one label attribution that including two classes:
benign and malignant in this database. In this data sample, there are 241 malignant and 458 benign.
The training sample set that includes 500 examples was selected randomly from the 699 examples,
the other samples were selected as the testing set.

Two different decision trees based on the two methods are listed in Figure 11, and, obviously,
the decision tree model built by the new method is more concise than that of the ID3 method, which is
verified from the experimental results. All differences between the ID3 algorithm and the improved
ID3 algorithm are summarized in Table 6 and Figure 12.
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Single Epithelial 
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Cell Size
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benign malignant

malignant
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   (a)                                                                                                                                                       (b)

Figure 11. Decision tree models based on the cancer label using different algorithms: (a) the decision
tree model using ID3 method; (b) the decision tree model using the improved algorithm based on
ID3 method.

Table 6. Experimental results by the ID3 method and the new method based on the cancer label.

Algorithm Tree Node Number Classification Rule Number Running Time Accuracy (%)

ID3 Algorithm 21 11 0.899 80.49
The Improved Algorithm 9 5 0.368 96.52
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Figure 12. Bar chart comparison results by the ID3 method and the new method based on Table 6.
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6. Conclusions

This paper proposed an improved ID3 algorithm, in which the information entropy equation that
includes addition, subtraction, multiplication, and division firstly replaced the original information
entropy expression that includes complicated logarithm operation in the ID3 method for economizing
large amounts of running time, and then different weight values are respectively added to the new
information entropy expression of each attribution for overcoming the multi-value bias problem in
the ID3 method. Finally, the coordination degree is introduced to control the splitting degree of
each internal node for building a more concise decision tree. The results of these experiments clearly
indicate that the new algorithm in this study leads to less running time, shorter decision rules and
higher predictive accuracy than those of the ID3 algorithm.

For future work, we will study how to build classifiers for dynamic data samples because they
are more common than static samples in our life. We will also study how to choose a more efficient
assessment method for reasonably assigning the training set and the testing set in view of its importance
to the predictive accuracy of the decision tree model.
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