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Abstract: In this paper, we optimize the search and rescue (SAR) in disaster relief through agent-based
simulation. We simulate rescue teams’ search behaviors with the improved Truncated Lévy walks.
Then we propose a cooperative rescue plan based on a distributed auction mechanism, and illustrate
it with the case of landslide disaster relief. The simulation is conducted in three scenarios, including
“fatal”, “serious” and “normal”. Compared with the non-cooperative rescue plan, the proposed
rescue plan in this paper would increase victims’ relative survival probability by 7–15%, increase the
ratio of survivors getting rescued by 5.3–12.9%, and decrease the average elapsed time for one site
getting rescued by 16.6–21.6%. The robustness analysis shows that search radius can affect the rescue
efficiency significantly, while the scope of cooperation cannot. The sensitivity analysis shows that the
two parameters, the time limit for completing rescue operations in one buried site and the maximum
turning angle for next step, both have a great influence on rescue efficiency, and there exists optimal
value for both of them in view of rescue efficiency.

Keywords: disaster relief; simulation optimization; Truncated Lévy walks; distributed auction
mechanism; cooperative rescue

1. Introduction

Search and rescue of victims in large-scale disasters is of great importance in disaster relief.
The research of disaster relief has focused mostly on emergency supplies reserves, location problems,
emergency transportation, resource allocation and evacuation [1–7], which has provided an important
theoretical foundation for disaster relief and improved rescue efficiency for sure. However, the research
about search and rescue in the post-disaster phase are rarely seen.

The cooperation between rescue teams is essentially about task allocation. Many approaches
for the task allocation problem have been proposed, such as contract net protocol [8,9], intelligent
algorithm-based approaches [10–13] and auction-based approaches [14–16], etc.

Contract net protocol is a market-based approach that was proposed as early as 1980 [17]. Liang
and Kang [8] have proposed an improved contract net protocol for task allocation in agent-oriented
unmanned underwater vehicle (UUV) swarm system. Su et al. [9] employed contract net protocol for
task allocation at an assembly point when adjusting group members periodically.

Intelligent algorithms are also frequently adopted in this problem. Ju and Chen [10] have
applied the extended labor division model of ant colony to task allocation in a dynamic environment.
Liu and Kroll [11] have developed a novel memetic algorithm for multi-robot task allocation of
inspection problems.

One of the most used approaches is auction-based strategy. Nanjanath et al. [14] have used
Sequential Single Item Auctions to assign tasks to agents. Nair et al. [15] have developed two
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auction-based approaches, a centralized combinatorial auction mechanism and a distributed method.
Kong et al. [16] have proposed a decentralized indicator-based combinatorial auction strategy for
group task allocation.

Moreover, some task allocation problems have been solved through coalition formation.
The sequential and holistic coalition methods proposed in [18] provided both online and offline
solutions for task allocation into a group of heterogeneous mobile robots. Ramchurn et al. [19] have
provided a DCOP formulation of the coalition problem and solve it with the Max-Sum algorithm.

In this paper, agent-based simulation is used to model the disaster relief. Compared with
other approaches such as discrete event simulation [20,21], agent-based approach could describe
the interaction between agents in complex systems. The agent-based approach is more appropriate
to model complex systems and cope with the complexities and dynamics in complex systems [22].
In agent-based simulation, the conceptual model was built from the view of agents. Furthermore,
the agents are autonomous [23], which means they can carry out some set of operations with some
degree of independence or autonomy. The agents can react to the environment and act on it, while, in
discrete event simulation (DES), the model was built from the view of event. The entities in the DES
are not autonomous, and they cannot make decisions on their own. Thus, the entities’ status cannot be
decided by themselves.

There exist few researches which integrate search with cooperative rescue in disaster relief.
However, search and rescue are inseparable in disaster relief. In this paper, we first construct a
post-disaster environment based on multi-agent modeling. The survival probabilities of victims
trapped in rubble are assumed to deteriorate with time [24]. Related to the search for victims, it has
been proved that for randomly located targets, whether the targets can be revisited many times or not,
and whether the targets are fixed or moving, Lévy walks is an efficient strategy [25,26]. In addition,
Rhee et al. [27] have found that the patterns of human walks and Lévy walks are similar in some
statistical properties. Thus, we adopt the improved Truncated Lévy walks [25] to simulate rescue
teams’ search behaviors. Finally, we propose a cooperative rescue plan based on distributed auction
mechanism, evaluate its performance with the case of landslide rescue, and analyze its effect on rescue
efficiency in different scenarios. The robustness and sensitivity of our proposed cooperative plan are
tested as well.

The structure of the paper is organized as follows. Section 2 introduces the problem and describes
two types of agent, victims and rescue teams. Section 3 introduces the cooperative rescue plan based
on distributed auction mechanism. The simulations of the cooperative rescue plan are shown in
Section 4. The robustness and sensitivity of our proposed cooperative plan are evaluated in Section 5.
Conclusions are given in Section 6.

2. Description of Multi-Agent Model

In this paper, we have adopted a bottom-up approach to model the search and rescue (SAR).
Before we built the conceptual model, we had gathered a lot of detailed information about SAR through
the interviews carried out with first responders and experts who specialize in on-site search and rescue
in disaster. In this model, shown in Figure 1, two types of active agents are defined, namely victims and
rescue teams, and they can act upon their own initiative [28]. Apart from the active agents, there are
passive agents in this model, such as the buried sites. The passive agents are solely reactive. The buried
sites are spread randomly in the affected area, and they differ in buried depth. There might exist one or
more victims in each site. The victim agents have a property, i.e., survival probability. Without timely
rescue, the health condition of a victim could deteriorate continuously, thus the survival probability
will decrease with time, and they may be dead as time passes. The rescue teams are agents that can
take actions against disastrous situations. They can sense the environment, interact with other agents,
and plan the next actions according to their objectives, such as searching for victims, rescuing a buried
site, calling for cooperation and so on [23].



Algorithms 2017, 10, 125 3 of 17

Algorithms 2017, 10, 125  3 of 17 

probability. The rescue teams who locate the buried site take on the role of auctioneers, and other 
rescue teams who are not at work presently within the scope of cooperation take on the role of 
bidders. The interaction takes place mostly between rescue teams, which include auctioneers and 
bidders, and the interaction is carried out through communication. The communication is modeled 
as the input that agents receive and the outputs that they produce [28]. Auctioneers would 
communicate with bidders who are within the scope of cooperation if necessary, sending messages 
about victims’ coordinates, buried depth, etc. The bidders receive the auction messages, calculate 
the bids, and send them back to the auctioneers. Finally, the auctioneers will determine the winning 
bids, and send the message to bidders. The rescue operations would start once the cooperation is 
reached. 

 
Figure 1. The model of multi-agent simulation. 

2.1. Victims 

The essential parameters of victims include buried depth rubblev , coordinates xyv  and injury 

severity siv . 
Buried depth rubblev  indicates the amount of rubble over the trapped victims. It is assumed that 

victims in the same buried site are equal in buried depth rubblev . Coordinates xyv  indicate the 

location of victims. 
Injury severity {" " " " " " " "}siv Death , , Slight injury , No injuryHeavy injury∈ . Each victims’ 

injury severity will be decided by medical staff according to their mental status, respiration, etc. In 
this paper, three scenarios are assumed (“Fatal”, “Serious” and “Normal”), and they will be 
combined with injury severities. 

2.2. Rescue Teams 

The essential parameters of rescue teams include search radius rs , maximum turning angle as , 
speed of rescue rubbles , scope of cooperation cs , move length ls , turning angle sθ . 

Search radius rs  indicates the maximum extent of the search for survivors. Maximum turning 
angle as  indicates the range of turning angle in each step, shown in Figure 2. Speed of rescue rubbles  
indicates speed of move rubbles by a rescue team. Scope of cooperation cs  indicates that the 
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Figure 1. The model of multi-agent simulation.

The rescue teams search victims in the affected area, and if there are survivors trapped in a buried
site within the search radius, rescue teams are able to locate the buried site with a certain probability.
The rescue teams who locate the buried site take on the role of auctioneers, and other rescue teams who
are not at work presently within the scope of cooperation take on the role of bidders. The interaction
takes place mostly between rescue teams, which include auctioneers and bidders, and the interaction
is carried out through communication. The communication is modeled as the input that agents receive
and the outputs that they produce [28]. Auctioneers would communicate with bidders who are within
the scope of cooperation if necessary, sending messages about victims’ coordinates, buried depth, etc.
The bidders receive the auction messages, calculate the bids, and send them back to the auctioneers.
Finally, the auctioneers will determine the winning bids, and send the message to bidders. The rescue
operations would start once the cooperation is reached.

2.1. Victims

The essential parameters of victims include buried depth vrubble, coordinates vxy and injury
severity vsi.

Buried depth vrubble indicates the amount of rubble over the trapped victims. It is assumed that
victims in the same buried site are equal in buried depth vrubble. Coordinates vxy indicate the location
of victims.

Injury severity vsi ∈ {“Death”, “Heavy injury”, “Slight injury”, “No injury”}. Each victims’
injury severity will be decided by medical staff according to their mental status, respiration, etc. In
this paper, three scenarios are assumed (“Fatal”, “Serious” and “Normal”), and they will be combined
with injury severities.

2.2. Rescue Teams

The essential parameters of rescue teams include search radius sr, maximum turning angle sa,
speed of rescue srubble, scope of cooperation sc, move length sl , turning angle sθ .

Search radius sr indicates the maximum extent of the search for survivors. Maximum turning
angle sa indicates the range of turning angle in each step, shown in Figure 2. Speed of rescue srubble
indicates speed of move rubbles by a rescue team. Scope of cooperation sc indicates that the cooperation
only occurs between rescue teams in this specified area.
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Figure 2. The movement of rescue teams.

In rescue teams’ searching process, shown in Figure 2, they move along the steps which are
determined by move lengths sl and turning angles sθ . The move length and turning angle are drawn
from particular probability distributions. The steps are terminated when a move length or boundary is
reached, or when a buried site is detected. At the end of a step, rescue teams move to the buried site or
selects next step to continue searching [29].

Truncated Lévy walks are adopted to simulate rescue teams’ search behaviors in this paper [25].
The move lengths in Lévy walks are drawn from generalized Lévy probability density distribution:

P(sl) = csl
−µ, 1 < µ ≤ 3 (1)

where c is a constant, µ denotes Lévy index. In order to impose restrictions on move lengths, Truncated
Lévy walks are adopted in the simulation. Thus, the probability density function of move length is

P(sl) =


0, sl > lmax

µ−1

l1−µ
min −l1−µ

max
× sl

−µ, lmin ≤ sl ≤ lmax, 1 < µ ≤ 3

0, sl < lmin

(2)

where lmin, lmax denote the minimum and maximum move length, respectively. The buried sites within
the search radius are possible to be detected by rescue teams; consequently, the move lengths are
larger than lmin, corresponding to the search radius of rescue teams. The move lengths are truncated at
the distance lmax, corresponding to limit scale of environment [25,30]. The corresponding sampling
functions are obtained directly applying the Inverse Transform Sampling.

sl =
[
(l1−µ

max − l1−µ
min )γ + l1−µ

min

]1/1− µ

, γ ∼ U(0, 1) (3)

The turning angles in traditional Lévy walks are drawn from uniform distribution U(0, 2π).
In this paper, turning angles sθ are drawn from uniform distribution U(0, sa), where sa is used

instead. The sa shall be discussed later as a controllable parameter.
The searching plan of rescue teams is shown in Figure 3.
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3. Auction-Based Cooperative Rescue Plan

Auction is an efficient way to allocate resources, for its low information cost and high efficiency.
It often takes place in economic activities. Bidders make bids on the item according to their evaluation
of the item. Auctioneers allocate the item based on bidders’ bids.

The task allocation algorithm based on distributed auction mechanism will be adopted to allocate
rescuing tasks between rescue teams within the scope of cooperation. The notations related to the
auction-based algorithm are shown in Table 1. All teams are assumed to be equal in the rescue
capability. When a number of teams work together as a coalition, the coalition’s speed of rescue
would be the summation of srubble of all the teams in this coalition. There exist two types of role in
the allocation, that is, task publisher Ai and task responder Bj, corresponding to the auctioneers and
bidders in auction, respectively. The purpose of the auction-based algorithm is maximization of overall
performance. In what follows, we detail how the rescue teams act to reach cooperation.

Table 1. Main notations related to the auction-based algorithm.

Notation Definition

N = {1, 2, . . . , n} The set of buried site, where i ∈ N denotes a buried site
M = {1, 2, . . . , m} The set of rescue teams, where j ∈ M denotes a rescue team

Ti The task of rescuing buried site i, where i ∈ N
Ai The auctioneer who publishes task Ti , where i ∈ N
Bj The team j who received auction message, i.e., the bidder, where j ∈ M
ui The utility for a bidder who completes task Ti , where i ∈ N
gij The net utility for bidder Bj who completes task Ti , which equals ui − cij
cij The cost of Bj participating in task Ti , where i ∈ N and j ∈ M
c′ij The opportunity cost of Bj participating in task Ti , where i ∈ N and j ∈ M

tneed The time limit for completing rescue operations in each buried site
ni The number of teams required to complete task Ti , which is related to tneed
dij The distance between task Ti and Bj, where i ∈ N and j ∈ M
tij The time Bj spent in rescue operation of task Ti , where i ∈ N and j ∈ M
yj The number of buried sites within the scope of cooperation
lj The number of available rescue teams within the scope of cooperation
λ The coefficient of bid price, λ ∈ (0, 1)
pij The bid on task Ti , which is made by Bj
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3.1. Auctioneers

Rescue teams who have detected a buried site within the search radius take on the role of
auctioneers. Other teams who are not at work presently within the scope of cooperation take on the
role of bidders. Auctioneer Ai first evaluates the buried depth of Ti, and the number of required rescue
teams ni associated with tneed is derived as

ni =

⌊
vrubble

srubble · tneed
+ 0.5

⌋
(4)

When ni > 1, auctioneer Ai sends a request for cooperation to the bidders through broadcasting.
Bidders make bids on the tasks within the scope of cooperation. Auctioneer Ai receives the bids, and
then determines the winning bids. The number of winning bids for task Ti shall be ni − 1. There exists
time limit tl for each round of auction. A round of auction would terminate when the duration exceeds
tl or the request for cooperation is satisfied. If the number of winning bids for task Ti is less than
ni − 1, the rescue teams who win the bids would start rescue operations, the auctioneer Ai would start
another round of auction, and the procedure repeats until the request for cooperation is satisfied. If the
number of winning bids equals ni − 1, the task allocation would be completed.

3.2. Bidders

The rescue teams who received auction messages take the role of bidders. Bidders would bid on
only one task each time. When receiving more than one auction message, Bidders are supposed to
choose the task which could bring about the most net utility to bid on. Let gi be the net utility gained
by bidder Bj who participate in task Ti, and gi is formulated as ui − cij, where ui is the utility bidder Bj
could gain from participating in task Ti, cij is the cost of Bj participating in task Ti. If bidder Bj could
gain the most net utility from task Ti, Bj would bid on task Ti with the bid price pij. For each bidder,
both the decision about which task to bid on and the bid price are variable until it is assigned with a
particular task.

3.2.1. The Utility Function of Bidders

The utility ui bidders gain from task Ti indicates the task’s rescuing priority. The more urgent
the task is, the higher the utility would be. The utility ui could be measured by buried depth,
number of buried victims and severity of injury. In this paper, the utility is calculated through fuzzy
comprehensive evaluation (FCE).

Let Z =
{

z1, z2 , . . . , zq
}

be the factor set, where za(a = 1, 2, . . . , q) denotes the a-th
factor, q denotes the number of factors. Let V =

{
v1 , v2 , . . . , vp

}
be the evaluation set, where

vb(b = 1, 2, . . . , p) denotes one evaluation level, p denotes the number of levels.
We calculate the membership degree of each factor to V according to membership function. For

example, the membership degree of za is Ra = (ra1, ra2, . . . , rap), which is also called single factor
evaluation set. The overall fuzzy evaluation matrix of all q factors is R =

(
R1, R2, . . . . . . Rq

)′. Let
W = (w1, w2, . . . , wq) be the weight vector, where wa denotes the relative importance of a-th factor.
Consequently, the evaluation result would be

H = W × R =
(
h1, h2, . . . , hp

)
(5)

When evaluating the utility of task Ti, we first calculate the comprehensive score of task Ti

UT
i =

p
∑

b=1
hb ·b

p
∑

b=1
hb

, and then obtain the utility of task Ti ui =
UT

i
ni

.
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3.2.2. The Cost of Bidders

In disaster relief, saving the cost should not be put in the first place. However, the cost we
introduce in this paper does not refer to investment in equipment or manpower. The cost cij of bidder
Bj involving in task Ti refers to the distance from Bj to Ti, and the time tij spent in rescue operation. By
introducing the cost in this model, we can take the location of buried sites as a factor to determine the
allocation of task, and reduce time spent in moving process.

The cost cij is a function of distance dij from Bj to Ti and the time tij spent in rescue operation.

cij = f
(
dij, tij

)
(6)

When auctioneer Ai estimates the required number of rescue teams ni as shown in Equation (4),
the time tij Bj spends in rescue operation is set to be approximately equal to tneed, and the same goes
with all the other bidders. Therefore, the time spent in rescue operation does not make a difference,
and it is ignored in the following model, i.e., cij = f

(
dij
)
.

When receiving more than one auction message, bidders are supposed to take opportunity cost c′ij
into consideration as to determine bid price pij. Opportunity cost c′ij is the loss of net utility bidder Bj
could gain from the second best choice Ts when choosing task Ti to bid on, as shown in Equation (7).

c′ij = us − f (dsj) (7)

3.2.3. The Bidding Strategy of Bidders

When determining the bid price, in addition to utility ui, cost cij and opportunity cost c′ij, bidder
Bj has to consider the number of buried sites within the scope of cooperation yj and the number of
available rescue teams within the scope of cooperation lj. Let ρj = yj/lj, the larger the value of ρj,
the more likely for Bj to be involved in a task. Therefore, in order to make as many tasks as possible to
be assigned to enough rescue teams, a coefficient λj is introduced in this model to adjust bid price, as
shown in Equation (8). The coefficient λj needs to be tuned when applied in different cases. The bid
price pij is defined in Equation (9).

λj = 1−
ρj − ρmin

ρmax − ρmin
, λj ∈ (0, 1) (8)

pij = λj(ui − cij − c′ij) (9)

3.3. The Adjustment in Task Allocation

When bidder Bj is participating in task Ti, the utility ui it could gain from task Ti varies as time
goes by. Assuming that a new task Tk is auctioned around Bj, and there exist few available rescue
teams for task Tk within the scope of cooperation sc. Then Bj would evaluate task Tk. If the net utility
gkj of task Tk were much higher than gij of task Ti, i.e., gkj − gij ≥ Q (Q is pre-defined), the current
allocation of tasks would be revised. The number of teams required to complete task Ti would be
updated according to Equation (4), for the buried depth vrubble is changing. The updated number
of required teams for Ti is n′i(n

′
i ≤ ni), then auctioneer Ai would allow up to nb

i = ni − n′i bidders
to withdraw from task Ti. Assuming task Tk still lacks nc

k available rescue teams within the scope
of cooperation, then the number of rescue teams that withdraw from task Ti would be min(nb

i , nc
k).

The rescue teams that withdraw from Ti would bid on new task Tk.
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4. Simulation Results

4.1. Experimental Settings

The search and rescue in landslide disaster are simulated here to evaluate the performance of
proposed rescue plan. The simulation is implemented in NetLogo. The affected area is characterized
as a circular area of radius 100 m, assuming that there are 100 victims and 20 rescue teams in this area.
The victims are located in randomly-distributed buried sites. The unit of simulation steps is minute.
A round of simulation would continue until all survivors get rescued, and the time limit of one round
of simulation is set to be 72 h, i.e., 4320 simulation steps.

According to the records of casualties in landslide over the last decade, the proportions of four
kinds of injury severities in each scenario are assumed in Table 2.

Table 2. The proportions of four injury severities in each scenario.

Injury Severity
Scenarios

Fatal (%) Serious (%) Normal (%)

Death 40 30 20
Heavy injury 30 25 20
Slight injury 10 15 20

No injury 20 30 40

The settings of simulation are as follows: the number of buried survivors in one single buried
site βi ∼ U(1, 3); the injury severity of victims vsi is initialized according to Table 2; the buried
depth vrubble~N(120, 30); the time limit for completing rescue operations in each buried site tneed = 30;
the number of rescue teams m = 20; search speed 3 m/min; search radius sr = 3 m; speed of rescue
srubble = 0.5; move lengths sl are determined through Equation (3), in which µ = 2; maximum turning
angle sa = π, i.e., turning angles sθ~U(0, π); If there are survivors trapped in a buried site within the
search radius, rescue teams are able to locate the buried site with a probability prob = 20%; scope of
cooperation sc = 40 m; the time limit for each round of auction tl = 3 min.

When making bids on tasks, bidders would evaluate the utility of tasks through FCE. The factor set
Z = {Buried Depth, Number o f Victims, Total Injury Severity}. Buried depth indicates the workload
of rescue. Number of victims refers to the number of victims who are buried in this buried site.
The injury severities are coded as “0”, “3”, “2” and “1”, corresponding to “death”, “heavy-injury”,
“slight-injury” and “no-injury”. Total injury severities are the sum of injury severities of victims buried
here. The weight vector of three factors in FCE W = (1/3, 1/3, 1/3). Evaluation criterions are shown
in Table 3.

Table 3. Evaluation criterion of tasks’ urgency levels.

Urgent Less Urgent Normal

Buried depth 150 120 90
Number of victims 3 2 1

Total injury severity 9 5 1

The evaluation set V = {Urgent, Less Urgent, Normal}, shown in Table 3. The membership
degree of factor za to evaluation level vb, denoted as rab, is calculated through semi-trapezoid
distribution function. For example, the membership degree of buried depth to v1 is calculated by
Equation (10).

r11 =


1 vrubble ≥ 150
vrubble−120

30 120 < vrubble < 150
0 vrubble ≤ 120

(10)
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The model outputs a number of comparative statistics at the end of a simulation, which include:
survival probability of each victim vsp, average survival probability ps, relative survival probability
prs, ratio of survivors getting rescued pr and average elapsed time for one site getting rescued ta.

Survival probabilities vsp of victims are related to their injury severity vsi. Without timely rescue,
the health condition of a victim could deteriorate continuously. Survival probability vsp is assumed to
deteriorate with time until the victim gets rescued. In this paper, three curves are adopted to estimate
survival probability for different injury severity [24].

vsp-hi = e−(t/3.324)3.71

vsp-si = e−(t/26.59)3.71

vsp-ni = e−(t/66.48)3.71

(11)

where vsp-hi denotes survival probability of victims who are heavily injured, vsp-si denotes survival
probability of victims who are slightly injured, and vsp-ni denotes survival probability of victims who
are not injured. t denotes trapped time (h). Three curves, shown in Figure 4, from left to right, represent
survival probability of victims with heavy injury, slight injury and no injury, respectively.Algorithms 2017, 10, 125  10 of 17 
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Figure 4. The deterioration rate of survival probabilities of victims with different injury severity.

Relative survival probability prs is the ratio of average survival probability to initial average
survival probability. When disaster happens, there always exist some survivors under the rubbles.
Some of them would be rescued, and some of them would die without timely rescue, pr is the ratio of
survivors getting rescued in the end. In the rescuing process, a lot of time is required until one site gets
rescued, and ta is the average required time.

4.2. Results

Simulations are run in three scenarios, including “fatal”, “serious” and “normal”, and the
simulation results of cooperative rescue plan would be compared with non-cooperative rescue plan. In
non-cooperative rescue plan, rescue teams only rescue the victims which are detected by themselves.
Each simulation is repeated 200 times. The simulation results are analyzed through three output
indicators, i.e., relative survival probability prs (the initial relative survival probability is 1), ratio of
survivors getting rescued pr and average elapsed time for one site getting rescued ta, shown in Table 4.
The comparison shows that the auction-based cooperative rescue plan outperforms non-cooperative
rescue plan in three scenarios at 1% significance level, which can be seen from the independent-samples
t test in Table 4.
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Table 4. The comparison of simulation results in three scenarios.

prs (%) pr (%) ta (min)

Fatal
Cooperation 56.40 64.62 512.2

No-cooperation 48.96 57.22 653.2
t test 7.44 *** 7.40 *** −141.0 ***

Serious
Cooperation 68.17 75.11 587.0

No-cooperation 62.37 69.04 703.6
t test 5.80 *** 6.07 *** −116.6 ***

Normal
Cooperation 76.26 82.15 624.1

No-cooperation 71.30 78.01 749.0
t test 4.96 *** 4.14 *** −124.9 ***

Note: “*”, “**”, “***” denote that the tests are significant at significance level 0.1, 0.05, 0.01, respectively.

The simulation of cooperative rescue plan is repeated 200 times in three scenarios separately.
The average relative survival probability and average ratio of rescued victims of 200 runs at every
simulation step are depicted in Figures 5–7.Algorithms 2017, 10, 125  11 of 17 
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Figure 5. The average output results of 200 runs at every step in scenario “Fatal”.
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Figure 6. The average output results of 200 runs at every step in scenario “Serious”.
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Figure 7. The average output results of 200 runs at every step in scenario “Normal”.

In Figures 5–7, x-axis indicates the simulation step, which is also the time in the process of disaster
relief. The primary y-axis indicates relative survival probability, and the secondary y-axis indicates
ratio of rescued victims. As can be seen from the three figures, relative survival probability under
auction-based cooperative rescue plan remains higher than non-cooperative rescue plan at every step
in the simulation. Relative survival probability decreases rapidly in the beginning, because of the
existence of victims who are heavily injured, and their survival probability decrease extremely rapidly,
as shown in Figure 4. When rescue lasts for about 300 min, the decrease of relative survival probability
would slow down. Because the victims who are heavily injured would die if not rescued within
300 min, there exist only victims who are slightly injured or not injured, whose survival probability
decrease slowly.

The simulation results indicate that the cooperative rescue plan would improve the rescue result
a lot, compared with the non-cooperative rescue plan. In the above three scenarios, it increases victims’
relative survival probability by 7–15%, increases the ratio of survivors getting rescued by 5.3–12.9%,
and decreases the average elapsed time for one site getting rescued by 16.6–21.6%. Moreover, as the
scenario worsens, the improvement would be more significant generally.

4.3. Verification and Validation

The verification and validation is one of the common critical issues in agent-based simulation,
and it is indeed a difficulty in this area. This is because such computational systems or simulations are
difficult to verify in terms of checking program-bugs and their outcomes are also difficult to validate
even when there are no program-bugs [31].

We have adopted a bottom-up approach to model the search and rescue (SAR). Different from
physical phenomena, we cannot experience landslides repeatedly to collect data that show some
relationship between the parameters of rescue operations and the rescue efficiency [23]. Thus we had
interviewed some first responders and experts who specialize in on-site search and rescue for advice
before we built the conceptual model. We built the model step by step, and at each step, we will check
the logic and internal relationships to guarantee its reasonability. Therefore, we can ensure that the
assumptions, logic, and casual relationships in the conceptual model are reasonable, and the model is
an adequate conceptualization of the real world [32].

It is important to validate whether or not the results from the virtual experiments match the
results from the real world. However, we can hardly find a complete record of a landslide. Thus we
will validate it mainly through experts’ knowledge and experience. We have conducted a large number
of repetitions of the simulation, evaluated the simulation through robustness analysis and sensitivity
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analysis, and the simulation results could match the results from experts’ experience. Therefore, this
model is verified and valid to a certain degree.

Moreover, we have calculated the relative error δ of three indicators in three scenarios, shown in
Table 5. Relative error measures the relative difference between an individual value and the true value
(or average value).

Table 5. The relative error of three indicators in three scenarios.

prs pr ta

Fatal
Cooperation 7.5%, [0.7%, 16.2%] 6.9%, [0.5%, 14.9%] 8.7%, [0.8%, 20.3%]

No-cooperation 10.3%, [0.8%, 23.9%] 9.4%, [0.3%, 24.4%] 8.6%, [0.9%, 20.5%]

Serious
Cooperation 5.8%, [0.8%, 13.8%] 5.6%, [0.6%, 14.4%] 8.2%, [0.7%, 20.7%]

No-cooperation 6.6%, [0.2%, 16.1%] 5.9%, [0.5%, 15.2%] 6.8%, [0.4%, 17.1%]

Normal
Cooperation 4.4%, [0.2%, 10.7%] 3.4%, [0.2%, 8.5%] 6.5%, [0.8%, 17.0%]

No-cooperation 4.6%, [0.4%, 12.5%] 4.7%, [0.4%, 12.1%] 6.1%, [0.5%, 15.1%]

Table 5 shows the mean relative error and the interval in which 90% of the sample’s relative error
falls. For instance, the mean relative error of prs under cooperative rescue plan in scenario “Fatal” is
7.5%, and 90% of the relative error of prs falls in interval [0.7%, 16.2%]. As can be seen from Table 5,
the mean relative error of three indicators in three scenarios ranges from 3 to 10%. The results show
that the relative error in our simulation is maintained at a low level, which means our simulation
is quite stable. We can be sure that our simulation results have reflected system behavior and not
simulation errors.

5. Analytical Evaluation

Let E be the evaluation indicator, and it is formulated as E =
pr+psr

2 , where prs is the relative
survival probability, and pr is the ratio of rescued victims, thus E ∈ [0, 1]. The larger the value of E,
the more effective the rescue plan. The evaluation indicator E also represents the rescue efficiency in
the following robustness analysis and sensitivity analysis.

5.1. Robustness Analysis

We present the robustness analysis here in order to consider not only the rescue efficiency of
cooperative rescue plan under normal conditions, but also the reliability under extreme operative
situations. In the robustness analysis, a series of simulations have been executed to measure the rescue
plan’s adaptability to unexpected situations. Let LRS be an indicator to measure robustness of the
model [33], shown in Equation (12).

LRS =
∑ (xi − xi)(Ei − Ei)

∑ (xi − xi)
2 (12)

where xi (i = 1, 2, 3 . . .) denotes specified values of the parameter that we have considered for
variations, Ei denotes the corresponding rescue efficiency, xi and Ei denote the average values.
The more significant the LRS is, the less robust the model becomes, and vice versa.

The parameters that we have considered for variations in robustness analysis are search
radius sr and scope of cooperation sc. Search radius could decrease for severe visibility
conditions. Scope of cooperation could be affected by extreme operating environment and severe
communication conditions.

In Figure 8, x-axis denotes independent variables, i.e., the parameters that have considered for
variations, and y-axis denotes dependent variables. We have explored the impact of varying search
radius from 3 m to 8.1 m with an interval of 0.3 m; the scope of cooperation from 5 m to 125 m with an
interval of 5 m. For every case described here, the simulation was repeated 200 times.
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Figure 8. Robustness analysis of cooperative rescue plan. (a) Effect of search radius on rescue efficiency;
(b) Effect of cooperation scope on rescue efficiency.

The results of robustness analysis show a number of interesting and reasonable dynamics. As the
search radius increases, the rescue efficiency improves significantly, as shown in Figure 8a. When the
rescue operations occur in the night, the search radius would decrease for low visibility, resulting in the
lowering of rescue efficiency. The correlation between search radius and rescue efficiency is significant
at 1% significance level, and the indicator LRS is 0.011, which indicates that rescue efficiency is easily
affected by the variation of visibility conditions.

As can be seen from Figure 8b, the rescue efficiency does not show a regular change with the
scope of cooperation sc, especially when sc is larger than 20 m, the rescue efficiency changes very
little, and falls in [0.60, 0.615] basically. When the scope of cooperation is small, rescue teams’ request
for cooperation cannot be satisfied. However, as the scope of cooperation sc increases to ŝc = 25 m,
the cooperation could be reached within a short time. When sc is larger than 20 m, the indicator
LRS is −3.6× 10−5, indicating no correlation between rescue efficiency and scope of cooperation. To
summarize, when sc falls in [5 m, 20 m], it is not easy to reach cooperation, and the increase of sc could
result in improvement in rescue efficiency. When sc falls in [25 m, 125 m], the increase of sc does not
make a difference to the rescue efficiency, i.e., the cooperative rescue plan is reliable on the condition
that scope of cooperation is larger than a threshold.

5.2. Sensitivity Analysis

We present the sensitivity analysis here in order to test how much the simulation results could
be affected by the variation of parameters, which reflects the sensitivity of the rescue plan to some
parameters. The sensitivity is tested by varying the time limit for completing rescue operations in
each buried site tneed from 10 min to 125 min with an interval of 5 min; the maximum turning angle sa

from π/6 to 2π with an interval of π/12. For every case described here, the simulation was repeated
200 times.

The time limit for completing rescue operations in each buried site tneed is used to estimate the
number of teams required to complete a task ni, shown in Equation (4), the increase of tneed would lead
to decrease of ni. As can be seen from Figure 9a, the rescue efficiency has shown a regular change with
the time limit for completing rescue operations in each buried site tneed. As tneed increases, the rescue
efficiency improves significantly, but when tneed is larger than t̂need = 30 min, the rescue efficiency
lowers with the increase of tneed. When tneed is less than t̂need, the number of teams required to complete
a task ni would be huge, so a large number of rescue teams should be transferred here. As a result,
all the rescue teams would spend a lot of time on the roads, and spare little time on independent
search, which leads to high cost of cooperation and low rescue efficiency. When tneed is larger than
t̂need, the number of teams required to complete a task ni would be small, which makes the cooperative
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behavior hardly seen between rescue teams. Without enough cooperation, the rescue efficiency lowers
significantly, and the result would worsen when tneed gets larger and larger. The relationship between
tneed and rescue efficiency is fitted with a quadratic function, as can be seen from Figure 9a, and
the R-squared statistic is 0.7552. The optimal value t̂need can be derived from the fitting function,
and t̂need is 30 min in our given case. The above analysis shows that there exist a trade-off between
cooperation and independent search; we always need to find the appropriate tneed to ensure the high
rescue efficiency.
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Figure 9. Sensitivity analysis of cooperative rescue plan. (a) Relation between the time limit for rescuing
one site and rescue efficiency; (b) Relation between the maximum turning angle and rescue efficiency.

The relationship between maximum turning angle sa and rescue efficiency is depicted in Figure 9b.
When sa is less than ŝa, the rescue efficiency is low and it improves with the increase of sa. Because sa

is small, the range of search angle would be limited. Thus, a new position is most likely generated
at the same direction as in the previous step, and the search trajectory is like a straight line, which
makes the search coverage incomplete. When sa is larger than ŝa, the rescue efficiency lowers with
the increase of sa. The large value of sa would lead to a wide range of search angle, and too wide a
range would results in aimlessness. Rescue teams might spend a large amount of time searching the
same area, resulting in low efficiency, and the results would worsen when sa gets larger and larger.
The relationship between sa and rescue efficiency is also fitted with a quadratic function, and the
R-squared statistic is 0.8537. The optimal value ŝa is approximately equal to 2π/3 in our given case. To
summarize, there exists a trade-off between directional moves and search coverage, and we need to
balance them and find the appropriate range of the turning angle.

6. Conclusions

This paper aims to use an auction-based task allocation scheme to develop a cooperative rescue
plan, and optimize it through agent-based simulation, which could fully cope with dynamics and
complexities of disaster relief. The disaster search has been integrated with cooperative rescue in this
paper. The proposed cooperative rescue plan outperforms the non-cooperative rescue plan with respect
to rescue efficiency in three scenarios. The robustness analysis shows that the search radius could
affect rescue efficiency significantly, thus we could adjust investments in equipment to increase search
radius, bringing about improvement in rescue efficiency. It is necessary that the scope of cooperation
should be kept larger than a threshold, thus the rescue teams’ request for cooperation can be satisfied
and the rescue efficiency can be maintained at a high level. The sensitivity analysis shows that there
exist optimal values for both the time limit for completing rescue operations in each buried site and the
maximum turning angle. The determination of optimal value is a trade-off, and we need to find the
optimal value for tneed and sa based on actual conditions of disaster environments, which could lead to
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a great improvement in rescue efficiency. In the future work, we will characterize the rescue teams by
specific functions, and study the rescue cooperation between different functional rescue teams.

The parameter calibration is a challenge and a critical issue in modeling and simulation work.
However, we can hardly find a complete record of a landslide. Some parameters cannot be retrieved
from historical data in our simulation, as they are either missing or not recorded. The data scarcity has
limited the classical approaches to calibrate model parameters [34]. One approach to overcome the
limitation of sparse calibration data is to use additional data sources to calibrate model parameter sets.
Another promising strategy is to break down the model into smaller sub-models, and the sub-models
are calibrated separately [34,35]. The approach proposed by Liu et al. [36] may fit well in our case for
the similarity between the two cases. This approach could reduce the effects on calibration brought by
data scarcity to a certain degree, but a lot of samples (input-output pairs) are needed in this approach.
In our research, we have not got enough records currently, and thus we set the parameter and calibrate
it through the empirical data from experienced staff. Certainly the calibration in our work is not
enough. In the future, we will collect a large number of records in reality, and calibrate the parameters
under data scarcity with the idea described in Liu’s work [36].
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