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Abstract: This paper presents a global optimization method for structural design optimization, which
integrates subset simulation optimization (SSO) and the dynamic augmented Lagrangian multiplier
method (DALMM). The proposed method formulates the structural design optimization as a series
of unconstrained optimization sub-problems using DALMM and makes use of SSO to find the
global optimum. The combined strategy guarantees that the proposed method can automatically
detect active constraints and provide global optimal solutions with finite penalty parameters.
The accuracy and robustness of the proposed method are demonstrated by four classical truss
sizing problems. The results are compared with those reported in the literature, and show a
remarkable statistical performance based on 30 independent runs.

Keywords: structural optimization; subset simulation optimization; augmented Lagrangian;
truss structures

1. Introduction

In modern design practice, structural engineers are often faced with structural optimization
problems, which aim to find an optimal structure with minimum weight (or cost) under multiple
general constraints, e.g., displacement, stress, or bulking limits, etc. It is theoretically straightforward
to formulate the structural optimization problem as a constrained optimization problem in terms of
equations under the framework of mathematical programming. This, however, is very challenging to
accomplish in practice, at least, due to three reasons: (a) the number of design variables is large; (b) the
feasible region is highly irregular; and (c) the number of design constraints is large.

Flexible optimization methods, which are able to deal with multiple general constraints that
may have non-linear, multimodal, or even discontinuous behaviors, are desirable to explore complex
design spaces and find the global optimal design. Optimization methods can be roughly classified into
two groups: gradient-based methods and gradient-free methods. Gradient-based methods use the
gradient information to search the optimal design starting from an initial point [1]. Although these
methods have been often employed to solve structural optimization problems, solutions may not be
good if the optimization problem is complex, particularly when the abovementioned major difficulties
are involved. An alternative could be the deterministic global optimization methods, e.g., the widely
used DIRECT method [2,3], which is a branch of gradient-free methods. Recently, Kvasov and his
colleagues provided a good guide on the deterministic global optimization methods [4] and carried
out a comprehensive comparison study between the deterministic and stochastic global optimization
methods for one-dimensional problems [5]. One of the main disadvantages of the deterministic
global optimization methods is the high-dimensionality issue caused by the larger number of design
variables [3] or constraints. In contrast, another branch of gradient-free methods (or stochastic
optimization methods), such as Genetic Algorithms (GA) [6–12], Simulated Annealing (SA) [13–15],
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Ant Colony Optimization (ACO) [16–19], Particle Swarm Optimizer (PSO) [17,20–27], Harmony Search
(HS) [28–31], Charged System Search (CSS) [32], Big Bang-Big Crunch (BB-BC) [33], Teaching–Learning
based optimization (TLBO) [34,35], Artificial Bee Colony optimization (ABC-AP) [36], Cultural
Algorithm (CA) [37], Flower Pollination Algorithm (FPA) [38], Water Evaporation Optimization
(WEO) [39], and hybrid methods combining two or more stochastic methods [40,41] have been
developed to find the global optimal designs for both continuous and discrete structural systems.
They have been attracting increasing attention for structural optimization because of their ability to
overcome the drawbacks of gradient-based optimization methods and the high-dimensionality issue.
A comprehensive review of stochastic optimization of skeletal structures was provided by Lamberti
and Pappalettere [42]. All of the stochastic optimization methods share a common feature, that is, they
are inspired by the observations of random phenomena in nature. For example, GA mimics natural
genetics and the survival-of-the-fittest code. To implement a stochastic optimization method, random
manipulation plays the key role to “jump” out local optima, such as the crossover and mutation in GA,
the random velocity and position in PSO, etc. Although these stochastic optimization methods have
achieved many applications in structural design optimization, structural engineers are still concerned
with seeking more efficient and robust methods because no single universal method is capable of
handling all types of structural optimization problems.

This paper aims to propose an efficient and robust structural optimization method that combines
subset simulation optimization (SSO) and the augmented Lagrangian multiplier method [43]. In our
previous studies [44–46], a new stochastic optimization method using subset simulation—the so-called
subset simulation optimization (SSO)—was developed for both unconstrained and constrained
optimization problems. Compared with some well-known stochastic methods, it was found to be
promising for exploiting the feasible regions and searching optima for complex optimization problems.
Subset simulation was originally developed for reliability problems with small failure probabilities, and
then became a well-known simulation-based method in the reliability engineering community [47,48].
By introducing artificial probabilistic assumptions on design variables, the objective function maps
the multi-dimensional design variable space into a one-dimensional random variable space. Due to
the monotonically non-decreasing and right-continuous characteristics of the cumulative distribution
function of a real-valued random variable, the searching process for optimized design(s) in a global
optimization problem is similar to the exploring process for the tail region of the response function in
a reliability problem [44–46].

The general constraints in structural optimization problems should be carefully handled. Since
most stochastic optimization methods have been developed as unconstrained optimizers, common
or special constraint-handling methods are required [49]. A modified feasibility-based rule has been
proposed to deal with multiple constraints in SSO [45]. However, the rule fails to directly detect
active constraints. As an enhancement, the dynamic augmented Lagrangian multiplier method
(DALMM) [25,26,50] is presented and integrated with SSO for the constrained optimization problem
in this study, which can automatically detect active constraints. Based on DALMM, the original
constrained optimization problem is transformed into a series of unconstrained optimization
sub-problems, which subsequently forms a nested loop for the optimization design. The outer loop is
used to update both the Lagrange multipliers and penalty parameters; the inner loop aims to solve the
unconstrained optimization sub-problems. Furthermore, DALMM can guarantee that the proposed
method obtains the correct solution with finite penalty parameters because it already transforms a
stationary point into an optimum by adding a penalty term into the augmented Lagrangian function.

This paper begins with a brief introduction of SSO for the unconstrained optimization problem,
followed by development of the proposed method for structural optimization problems in Section 3.
Then, four classical truss sizing optimization problems are used to illustrate the performance of the
proposed method in Section 4. Finally, major conclusions are given in Section 5.
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2. Subset Simulation Optimization (SSO)

2.1. Rationale of SSO

Subset simulation is a well-known, efficient Monte Carlo technique for variance reduction
in the structural reliability community. It exploits the concept of conditional probability and an
advanced Markov Chain Monte Carlo technique by Au and Beck [48]. It should be noted that
subset simulation was originally developed for solving reliability analysis problems, rather than
optimization design problems. The studies carried out by Li and Au [45], Li [44], and Li and Ma [46]—in
addition to the current one—aim to apply subset simulation in optimization problems. Previous
studies [44–46] have shown that optimization problems can be considered as reliability problems by
treating the design variables as the random ones. Then, along a similar idea of Monte Carlo Simulation
for reliability problems [51], one can construct an artificial reliability problem from its associated
optimization problem. As a result, SS can be extended to solve optimization problems as a stochastic
search and optimization algorithm. The gist of this idea is based on a conceptual link between a
reliability problem and an optimization problem.

Consider the following constrained optimization problem

min W(x)
s.t. gi(x) ≤ 0, i = 1, · · · , ni

hj(x) = 0, j = 1, · · · , ne

xL ≤ x ≤ xU

(1)

where W(x) is the objective function at hand, x is the design variable vector, gi(x) is the ith inequality
constraint, hj(x) is the jth equality constraint, ni is the number of inequality constraints, ne is the number
of equality constraints, and xL and xU are the lower bounds and upper bounds for the design vector.
Here, only the continuous design variables are considered in Equation (1). The following artificial
reliability problem is formulated through randomizing the design vector and applying the conceptual
link between a reliability problem and an optimization problem:

PF = P(F) = P
(
W(x) ≤Wopt

)
(2)

where Wopt is the minimum value of the objective function, F =
{

W(x) ≤Wopt
}

is the artificial failure
event, and PF is its corresponding failure probability. As suggested by Li and Au [45], there is no special
treatment process for the design vector except for using truncated normal distributions to characterize
the design vector and capture its corresponding bounds. The conversion given by Equation (2) maps
the objective function W(x) into a real-valued random variable W. According to the definition of
random variable, a random variable is a real function and its cumulative distribution function (CDF) is
a monotonically non-decreasing and right-continuous function. Thus, it is obvious that the CDF value
at Wopt is 0. This indicates that the failure probability PF in Equation (2) is 0, too. However, of actual
interest are the regions or points of x where the objective function acquires this zero failure probability,
rather than the PF itself. In addition, based on the conversion in Equation (2), it is worthy of note that
local optima can be avoided, at least from a theoretical point of view.

The governing equation for subset simulation optimization is still given by [48]

PF = P(F) = P(F1)
m−1

∏
i=1

P(Fi+1|Fi ) (3)

where Fi(i = 1, . . . , m) are the intermediate failure events and are nested, satisfying F1 ⊃ F2 ⊃ · · · ⊃
Fm = F. The nesting feature of all intermediate events introduces a decomposition of a small probability.
Then, searching for Wopt in an optimization problem is converted to exploring the failure region in a
reliability problem. The most important key step for a successful implementation of subset simulation
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is to obtain conditional samples for each intermediate event to estimate its corresponding conditional
failure probability. Because the probability density functions (PDFs) for intermediate events are
implicit functions, it is not practical to generate samples directly from their respective PDFs. This can
be achieved using Markov Chain Monte Carlo (MCMC). A modified Metropolis–Hastings (MMH)
algorithm has been developed for subset simulation, which employs component-wise proposal PDFs
instead of an n-dimensional proposal PDF so that the acceptance ratio for the next candidate sample
in MMH is significantly increased far away from zero, which is often encountered by the original
Metropolis–Hastings algorithm in high dimensions. More details about MMH are given in [48].

2.2. Implementation Procedure of SSO

Based on subset simulation, an optimization algorithm is proposed that generally comprises
6 steps:

1. Initialization. Define the distributional parameters for the design vector x and determine the
level probability ρ and the number of samples at a simulation level (i.e., N). Let NS = INT[Nρ],
where INT[·] is a function that rounds the number in the bracket down to the nearest integer.
Set iteration counter K = 1.

2. Monte Carlo simulation. Generate a set of random samples {xi, i = 1, 2, . . . N} according to the
truncated normal distribution.

3. Selection. Calculate the objective function W(xi) for the N random samples, and sort them
in ascending order, i.e., W(1) ≤ · · · ≤ W(N). Obtain the first NS samples from the
ascending sequence. Let the sample ρ-quantile of the objective function be Ŵ(1), and set

Ŵ(1) = W(NS), and then define the first intermediate event F1 =
{

W ≤ Ŵ(1)

}
.

4. Generation. Generate conditional samples using the MMH algorithm from the sample
{x1, . . . , xNS}, and set K = K + 1.

5. Selection. Repeat the same implementation as in Step 3.
6. Convergence. If the convergence criterion is met, the optimization is terminated; otherwise,

return to Step 4.

In this study, the stopping criterion is defined as [44,45]

|σ̂k − σ̂k−1| or
∣∣∣∣ σ̂k − σ̂k−1

xU − xL

∣∣∣∣ ≤ ε (4)

where ε is the user-specified tolerance and σ̂k is the standard deviation estimator of the samples at the
kth simulation level. Numerical studies [44–46] suggest that this stopping criterion is preferable to
those defined only using a maximum number of function evaluations or by comparing the objective
function value difference with a specified tolerance between two consecutive iterations, although the
latter ones are frequently used in other stochastic optimization methods. Thus, Equation (4) is adopted
in this study.

3. The Augmented Lagrangian Subset Simulation Optimization

In this study, we propose a new SSO method for constrained optimization problems.
It combines DALMM with SSO and is referred to as “augmented Lagrangian subset simulation
optimization (ALSSO)”. The proposed method converts the original constrained optimization problem
into a series of unconstrained optimization sub-problems sequentially, which are formulated using
the augmented Lagrangian multiplier method. Since the exact values of Lagrangian multipliers and
penalty parameters at the optimal solution are unknown at the beginning of the current iteration,
they are adaptively updated in the sequence of unconstrained optimization sub-problems. The term
“dynamic” in DALMM refers to the automatic updating of the Lagrange multipliers and penalty
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parameters and indicates the difference between the conventional augmented Lagrangian multiplier
method and DALMM.

3.1. The Augmented Lagrangian Multiplier Method

Dealing with multiple constraints is pivotal to applying SSO in a nonlinear constrained optimization.
Although the basic idea of SSO is highly different from other stochastic optimization algorithms,
one can still make use of the constraint-handling strategies used in them. Substantial research studies
have been devoted to GA, PSO, etc. In our previous study [45,46], a modified feasibility-based
rule motivated by Dong et al. [24] in PSO was proposed to handle multiple constraints for SSO,
which incorporates the effect of constraints during the generation process of random samples of
design variables. By this method, the feasible domain is properly depicted by the population of
random samples. However, this rule fails to detect the active constraints directly.

The purpose of this paper is to present an alternative strategy to deal with multiple constraints
in SSO for constrained optimization problems, which makes use of the augmented Lagrangian
multiplier method. Consider, for example, a nonlinear constrained optimization problem with equality
and inequality constraints. It can be converted into an unconstrained optimization problem by
introducing Lagrange multiplier vector λ and penalty parameter vector σ [43] through the Lagrangian
multiplier method. Then, the unconstrained optimization problem is given by

min L(x, λ, σ)

s.t. xL ≤ x ≤ xU (5)

where L(x, λ, σ) is the following augmented Lagrangian function [25,26,50]:

L(x, λ, σ) = W(x) +
ne+ni

∑
i=1

λiθi(x) +
ne+ni

∑
i=1

λiθ
2
i (x) (6)

with

θi =

{
gi(x), i = 1, . . . , ni

max
(

hi(x),
−λi
2σi

)
, i = 1, . . . , ne

. (7)

The advantages of this augmented Lagrangian function in Equation (6) lie in bypassing the
ill-conditioning caused by the need for infinite penalty parameters and transforming a stationary
point in an ordinary Lagrangian function into a minimum point. It can be easily proved that the
Karush–Kuhn–Tucker solution (x∗, λ∗) of the problem in Equation (6) is a solution to the problem in
Equation (1) [26,43]. As a result, SSO for unconstrained optimization [44] can be applied to the problem
in Equation (1) after it has been converted into the problem in Equation (6). It is also well-known
that if the magnitude of penalty parameters is larger than a positive real value, the solution to the
unconstrained problem is identical to that of the original constrained problem [43].

Figure 1 shows a flowchart of the proposed method that contains an outer loop and inner loop.
The outer loop is performed to formulate the augmented Lagrangian function, update the Lagrange
multipliers and penalty parameters, and check the convergence. For the kth outer loop, the Lagrange
multipliers λk and penalty parameters σk are considered as constant in the inner loop. Then, SSO is
applied to solve the global minimum design of the augmented Lagrangian function L

(
x, λk, σk

)
with

the given set of λk and σk in the kth outer loop. This also means that the Lagrange multipliers and
penalty parameters are held at a fixed value in the inner loop.
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3.2. Initialization and Updating

The solution x∗ cannot be obtained from a single unconstrained optimization since the correct
Lagrange multipliers and penalty parameter are unknown and problem-dependent. Initial guesses for
λ0 and σ0 are required, and these are updated in the subsequent iterations. The initial values of the
Lagrange multipliers are set to zero, as suggested by previous studies [25,26,50]. At the kth iteration,
the update scheme of the Lagrange multipliers is given by

λk+1
i = λk

i + 2σk
i θi(x) (8)

where θi(x) are calculated from the solution x = x∗k to the sub-problem in Equation (6) with the
given Lagrange multipliers λk and penalty parameters σk. This updating scheme is based on the first
optimality condition of the kth sub-problem [25,26], i.e.,[

∂W(x)
∂x

+
ne+ni

∑
i=1

λk
i

∂θi(x)
∂x

+
ne+ni

∑
i=1

2θk
i

∂θi(x)
∂x

]
x=x∗k

≈ 0. (9)

The penalty parameters are arbitrarily initialized with 1, i.e., σ0 = {1, . . . , 1}T . Sedlaczek and
Eberhard [26] have proposed a heuristic updating scheme for the penalty parameters. In their scheme,
the penalty parameter of the ith constraint will be doubled when the constraint violation increases,
reduced by half when the constraint violation decreases, or left unchanged when the constraint
violation lies within the same order of the previous iteration. This updating scheme is applicable to
both equality constraints and inequality constraints. For the determination of constraint violation,
user-defined tolerances of acceptable constraint violation for equality constraints and inequality
constraints are required to be specified before starting to solve the problem. It is noted that this updating
scheme often leads to different values of a penalty parameter for a constraint in different iterations.
Based on the authors’ experience, the variation in the penalty parameters may cause instability in
the convergence of the Lagrange multipliers and increase the computational efforts. In this study,
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we prefer to use a modified updating scheme that excludes the reduction part for penalty parameters.
The updating scheme is

σk+1
i =


2σk

i i f g̃i

(
x∗k
)
> g̃i

(
x∗k−1

)
∧ g̃i

(
x∗k
)
> ε

σk
i otherwise

1 i f g̃i

(
x∗k
)
< ε

(10)

where g̃i

(
x∗k
)

is the unified constraint violation measure. For equality constraints, g̃i

(
x∗k
)
=
∣∣∣hi

(
x∗k
)∣∣∣,

and for inequality constraints g̃i

(
x∗k
)
= gi

(
x∗k
)

. Instead of changing the value of a penalty parameter
in each iteration, they are increased only if the search process remains far from the optimum region.
In the updating scheme, the penalty parameter remains equal to 1 when the solution x∗k of the
current sub-problem is feasible. It should be pointed out that one can specify different tolerances for
equality and inequality constraints if necessary. In order to assign an effective change to the Lagrange
multipliers, a lower limit is imposed to all penalty parameters [25,26]:

ri ≥
1
2

√
|λi|

ε
. (11)

This special updating rule is extremely effective for early iterations, where the penalty parameters
may be too small to provide a sufficient change. The automatic update of penalty parameters is an
important feature of the proposed method.

3.3. Convergence Criterion for the Outer Loop

This subsection defines the convergence criterion for the outer loop. It has been suggested that
if the absolute difference between λk+1 and λk is less than or equal to a pre-specified tolerance ε,
then the optimization is considered to have converged. However, when this stopping criterion was
checked for active constraints, both the authors and Jansen and Perez [25] experienced instability on
the convergence properties of the Lagrange multipliers and penalty parameters. Jansen and Perez [25]
proposed a hybrid convergence criterion by combining the absolute difference between the Lagrange
multipliers with that of the objective function. In this study, we add a new convergence standard to
the convergence criterion of Lagrange multipliers or the objective functions. In the new convergence
standard, a feasible design is always preferable, and it possesses a higher priority than the other two
criteria, i.e., the absolute difference criterion or the hybrid one. Suppose that x∗k is the global minimum
obtained from the kth sub-problem in Equation (6) using SSO; the process is terminated if

‖g̃
(

x∗k
)
‖

2
≤ ε (12)

where ε is the user-defined tolerance for feasibility and ‖g̃
(

x∗k
)
‖

2
is the feasibility norm defined by

‖g̃
(

x∗k
)
‖

2
=

√√√√ ne

∑
i=1

h2
i
(
x∗k
)
+

ni

∑
i=1

(
max

{
gi
(
x∗k
)
, 0
})2. (13)

Combining the above three convergence criteria, the proposed ALSSO produces comparable
optimal solutions in most cases. In some cases, however, a maximum number of iterations must be
included in the convergence criterion because the instability of Lagrange multipliers is encountered
even if using all three convergence criteria. If the iterative procedure does not meet the convergence
criteria even at the maximum iteration number, the optimal solution obtained by the proposed ALSSO
shall be considered as an approximate solution to the constrained optimization problem.
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4. Test Problems and Optimization Results

The proposed method was tested in four classical truss sizing optimization problems. The level
sample size was set to N = 100, 200, and 500 with a level probability of 0.1. The maximum number
of simulation levels is set to 20 for the inner loop, while the maximum number of iterations is set
to 50 for the outer loop. The selection of N and level probability has been discussed in the previous
studies related to SSO and SS for reliability assessment. The numbers of iterations of inner and outer
optimization loops are new parameters for the new framework of the structural optimization problem.
We selected their values based on both our implementation experience and the experience of the other
stochastic methods combined with DALMM, e.g., GA and PSO. The stopping tolerance in SSO and all
the constraint tolerances are set to a user-defined tolerance of ε = 10−4. Since the present method is
a stochastic one, 30 independent runs with different initial populations are performed to investigate
the statistical performance of the proposed method, including several measures of the quality of the
optimal results, e.g., the best, mean, and worst optimal weight as well as robustness (in terms of
coefficient of variation, COV) for each optimization case. It should be pointed out that the total number
of samples in the SSO stage (i.e., the inner loop) varies from iteration to iteration, as does the total
number of samples for each structural optimization design case.

The proposed method was implemented in Matlab R2009, and all the optimizations were
performed on a desktop PC with an Intel Core2 CPU@2.83 GHz and 8.0 GB RAM.

4.1. Planar 10-Bar Truss Structure

The first test problem regards the well-known 10-bar truss structure (see Figure 2), which was
previously used as a test problem in many studies. The modulus of elasticity is 10 Msi and the mass
density is 0.1 lb/inch3. The truss structure is designed to resist a single loading condition with 100 kips
acting on nodes 2 and 4. Allowable stresses are tensile stress σU = +25 kip and compressive stress
σL = −25 kip. Displacement constraints are also imposed with an allowable displacement of 2 inch for
all nodes. There is a total of 22 inequality constraints. The cross-sectional areas A1, . . . , A10 are defined
as the design variables with minimum size limit of 0.1 inch2 and maximum size limit of 35.0 inch2.

The optimization results of ALSSO are compared with those available in the literature in Table 1,
including optimal design variables and minimal weight. It should be pointed out that the maximum
displacements evaluated from GA, HA, HPSACO, HPSSO, SAHS, and PSO at the optimum designs
exceed the displacement limits of 2.0 inch. Furthermore, the GA solution also violates the stress limits.
The proposed method and ALPSO converged to fully feasible designs. The present results are in
good agreement with those obtained using PSO and DALMM (i.e., ALPSO) by Jansen and Perez [25].
The optimized design obtained by ALSSO is competitive with the feasible designs from ABC-AP,
TLBO, MSPSO, and WEO.
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Table 1. Comparison of optimized designs for the 10-bar truss problem.

Design Variables GA [12] HPSO [21] HS [28] HPSACO [17] PSO [23] ALPSO [25] HPSACO [40] ABC-AP [36] SAHS [31] TLBO [34] MSPSO [27] HPSSO [41] WEO [39] ALSSO

A1 30.440 30.704 30.150 30.493 33.500 30.511 30.307 30.548 30.394 30.4286 30.5257 30.5838 30.5755 30.4397
A2 0.100 0.100 0.102 0.100 0.100 0.100 0.1 0.1 0.1 0.1 0.1001 0.1 0.1 0.1004
A3 21.790 23.167 22.710 23.230 22.766 23.230 23.434 23.18 23.098 23.2436 23.225 23.15103 23.3368 23.1599
A4 14.260 15.183 15.270 15.346 14.417 15.198 15.505 15.218 15.491 15.3677 15.4114 15.20566 15.1497 15.2446
A5 0.100 0.100 0.102 0.100 0.100 0.100 0.1 0.1 0.1 0.1 0.1001 0.1 0.1 0.1003
A6 0.451 0.551 0.544 0.538 0.100 0.554 0.5241 0.551 0.529 0.5751 0.5583 0.548897 0.5276 0.5455
A7 21.630 20.978 21.560 20.990 20.392 21.017 21.079 21.058 21.189 20.9665 20.9172 21.06437 20.9892 21.1123
A8 7.628 7.460 7.541 7.451 7.534 7.452 7.4365 7.463 7.488 7.4404 7.4395 7.465322 7.4458 7.4660
A9 0.100 0.100 0.100 0.100 0.100 0.100 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1000
A10 21.360 21.508 21.458 21.458 20.467 21.554 21.229 21.501 21.342 21.533 21.5098 21.52935 21.5236 21.5191

Weight (lb) 4987.00 5060.92 5057.88 5058.43 5024.25 5060.85 5056.56 5060.88 5061.42 5060.96 5061.00 5060.86 5060.99 5060.885
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The statistical performance of the proposed algorithm is evaluated in Table 2. The reported results
were obtained from 30 independent optimization runs each including 100, 200, and 500 samples at
each simulation level. The “SD” column refers to the standard deviation on optimized weights, while
the “NSA” column refers to the number of structural analyses. The number in parentheses is the NSA
required by the proposed method for the best design run. It appears that the proposed approach is
very robust for this test problem by checking the SD column.

Table 2. Comparison of statistical performance in the 10-bar truss problem.

Method N Best Mean Worst SD NSA

ALSSO
100 5060.931 5064.559 5079.894 3.363699 48,064 (44,710)
200 5060.931 5062.391 5065.715 0.889472 94,540 (108,600)
500 5060.885 5061.713 5062.291 0.360457 247,828 (253,400)

HPSACO [33] 5056.56 5057.66 5061.12 1.42 10,650
ABC-AP [36] 5060.88 N/A 5060.95 N/A 500,000

SAHS [31] 5061.42 5061.95 5063.39 0.71 7081
TLBO [34] 5060.96 5062.08 5063.23 0.79 16,872

MSPSO [27] 5061.00 5064.46 5078.00 5.72 N/A
HPSSO [41] 5060.86 5062.28 5076.90 4.325 14,118
WEO [39] 5060.99 5062.09 5975.41 2.05 19,540

Figure 3 shows the convergence curve obtained for the last optimization run with N = 500.
ALSSO automatically detects the active constraints by checking values of Lagrange multipliers.
This design problem was dominated by two active displacement constraints. This information can
be utilized to explain why some optimization results reported in the literature tended to violate
displacement constraints.
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4.2. Spatial 25-Bar Truss Structure

The second test problem regards the spatial 25-bar truss shown in Figure 4. The modulus of
elasticity and material density are the same as in the previous test case. The 25 truss members are
organized into 8 groups, as follows: (1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17,
(7) A18–A21, and (8) A22–A25. The cross-sectional areas of the bars are defined as the design variables
and vary between 0.01 inch2 and 3.5 inch2. The weight of the structure is minimized, subject to all
members satisfying the stress limits in Table 3 and nodal displacement limits in three directions of
±0.35 inch. There is a total of 110 inequality constraints. The truss is subject to the two independent
loading conditions listed in Table 4, where Px, Py and Pz are the loads along x-, y- and z-axis, respectively.
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Figure 4. Schematic of the spatial 25-bar truss structure.

Table 3. Stress limits for the 25-bar truss problem.

Design Variables Compressive Stress Limit (ksi) Tensile Stress Limit (ksi)

1 A1 35.092 40.0
2 A2–A5 11.590 40.0
3 A6–A9 17.305 40.0
4 A10–A11 35.092 40.0
5 A12–A13 35.092 40.0
6 A14–A17 6.759 40.0
7 A18–A21 6.957 40.0
8 A22–A25 11.802 40.0

Table 4. Loading conditions acting on the 25-bar truss.

Load Cases Nodes
Loads

Px (kips) Py (kips) Pz (kips)

1 1 0.0 20.0 −5.0
2 0.0 −20.0 −5.0

2 1 1.0 10.0 −5.0
2 0.0 10.0 −5.0
3 0.5 0.0 0.0
6 0.5 0.0 0.0

This truss problem has been previously studied by using deterministic global methods [3] and
many stochastic optimization methods [21,27,28,31,34–39,41,45]. Table 5 compares the best designs
found by ALSSO and the above-mentioned stochastic methods. Among the deterministic global
methods, the Pareto–Lipschitzian Optimization with Reduced-set (PLOR) algorithm is better than the
three DIRECT-type algorithms [3]. Therefore, only the optimized result obtained by PLOR is listed
in Table 5. All the published results satisfy the limits on the stress. To the best of our knowledge,
CA [37] generated the best design for this test problem. The best designs from HM, HPSSO, improved
TLBO, FPA, and WEO slightly violated the nodal displacement constraints. It can be seen from Table 5
that the proposed algorithm produced better designs than PLOR, HS, HPSO, SSO ABC-AP, SAHB,
and MSPSO, and comparable with TLBO.
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Table 5. Comparison of optimized designs for the 25-bar truss problem.

Design Variables HS [28] HPSO [21] SSO [45] PLOR [3] ABC-AP [36] SAHS [31] TLBO [34] MSPSO [27] CA [37] HPSSO [41] TLBO [35] FPA [38] WEO [39] ALSSO

1 A1 0.047 0.010 0.010 0.010 0.011 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01001
2 A2–A5 2.022 1.970 2.057 1.951 1.979 2.074 2.0712 1.9848 2.02064 1.9907 1.9878 1.8308 1.9184 1.983579
3 A6–A9 2.950 3.016 2.892 3.025 3.003 2.961 2.957 2.9956 3.01733 2.9881 2.9914 3.1834 3.0023 2.998787
4 A10–A11 0.010 0.010 0.010 0.010 0.01 0.01 0.01 0.01 0.01 0.01 0.0102 0.01 0.01 0.010008
5 A12–A13 0.014 0.010 0.014 0.010 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.010005
6 A14–A17 0.688 0.694 0.697 0.592 0.69 0.691 0.6891 0.6852 0.69383 0.6824 0.6828 0.7017 0.6827 0.683045
7 A18–A21 1.657 1.681 1.666 1.706 1.679 1.617 1.6209 1.6778 1.63422 1.6764 1.6775 1.7266 1.6778 1.677394
8 A22–A25 2.663 2.643 2.675 2.789 2.652 2.674 2.6768 2.6599 2.65277 2.6656 2.664 2.5713 2.6612 2.66077
Weight (lb) 544.38 545.19 545.37 546.80 545.193 545.12 545.09 545.172 545.05 545.164 545.175 545.159 545.166 545.1057
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Statistical data listed in Table 6 prove that the present algorithm was also very robust for this
test problem.

Table 6. Comparison of statistical performance in the 25-bar truss problem.

N Best Mean Worst SD NSA

ALSSO
100 545.1241 545.2569 545.7793 0.135161 27,009 (23,170)
200 545.1254 545.205 545.4292 0.067821 38,301 (32,580)
500 545.1057 545.185 545.2819 0.044924 86,490 (90,500)

ABC-AP [36] 545.19 N/A 545.28 N/A 300,000
SAHS [31] 545.12 545.94 546.6 0.91 9051
TLBO [34] 545.09 545.41 546.33 0.42 15,318

MSPSO [27] 545.172 546.03 548.78 0.8 10,800
CA [37] 545.05 545.93 N/A 1.55 9380

HPSSO [41] 545.164 545.556 546.99 0.432 13,326
TLBO [35] 545.175 545.483 N/A 0.306 12,199
FPA [38] 545.159 545.73 N/A 0.59 8149

WEO [39] 545.166 545.226 545.592 0.083 19,750

Figure 5 shows the convergence curve obtained for the last optimization run with N = 500.
For both load cases, ALSSO detected the y-displacement constraints of top nodes as active.
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4.3. Spatial 72-Bar Truss Structure

The third test example regards the optimal design of the spatial 72-bar truss structure shown
in Figure 6. The modulus of elasticity and material density are the same as in the previous test cases.
The 72 members are organized into 16 groups, as follows: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18,
(5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54,
(13) A55–A58, (14) A59–A66, (15) A67–A70, and (16) A71–A72. The truss structure is subject to 160
constraints on stress and displacement. A displacement limit within ±0.25 inch is imposed on the
top nodes in both x and y directions, and all truss elements have an axial stress limit within ±25 ksi.
The truss is subject to the two independent loading conditions listed in Table 7.
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Figure 6. Schematic of the spatial 72-bar truss structure.

Table 7. Loading conditions acting on the 72-bar truss.

Node
Case 1 (kips) Case 2 (kips)

Px Py Pz Px Py Pz

17 5.0 5.0 −5.0 0.0 0.0 −5.0
18 0.0 0.0 0.0 0.0 0.0 −5.0
19 0.0 0.0 0.0 0.0 0.0 −5.0
20 0.0 0.0 0.0 0.0 0.0 −5.0

This truss problem has been previously studied using deterministic global methods [3],
a GA-based method [9], HS [28], ACO [16], PSO [23], ALPSO [25], BB-BC [33], SAHS [27], TLBO [34],
CA [37], and WEO [39]. Their best designs are compared against that obtained by the proposed
method, and are shown in Table 8. The proposed method produced a new best design with a weight of
379.5922 lb. Among the deterministic global methods, the DIRECT-l algorithm found the best design
for this test case (Table 8). However, the corresponding structural weight is larger than the structural
weight obtained by the proposed method. It should be noted that the maximum displacements of
GA, HS, ALPSO, BB-BC, and FPA exceed the x- and y-displacement limits on node 17. In particular,
the optimum design found by HS also violates the compressive stress limits of bar members 55, 56, 57,
and 58 under load case 2. The optimum design found by the proposed method satisfies both stress
limits and displacement limits and is better than SAHS, TLBO, and CA.
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Table 8. Comparison of optimized designs for the 72-bar truss problem.

Design Variables GA [11] ACO [16] HS [28] PSO [23] ALPSO [25] DIRECT-l [3] BB-BC [33] SAHS [27] TLBO [34] CA [37] FPA [38] ALSSO

A1–A4 1.910 1.948 1.790 1.743 1.898 1.699 1.9042 1.86 1.8807 1.86093 1.8758 1.900283
A5–A12 0.525 0.508 0.521 0.519 0.513 0.476 0.5162 0.521 0.5142 0.5093 0.516 0.511187
A13–A16 0.122 0.101 0.100 0.100 0.100 0.100 0.1 0.1 0.1 0.1 0.1 0.100084
A17–A18 0.103 0.102 0.100 0.100 0.100 0.100 0.1 0.1 0.1 0.1 0.1 0.100258
A19–A22 1.310 1.303 1.229 1.308 1.258 1.371 1.2582 1.293 1.2711 1.26291 1.2993 1.268814
A23–A30 0.498 0.511 0.522 0.519 0.513 0.547 0.5035 0.511 0.5151 0.50397 0.5246 0.510226
A31–A34 0.100 0.101 0.100 0.100 0.100 0.100 0.1 0.1 0.1 0.1 0.1001 0.100076
A35–A36 0.103 0.100 0.100 0.100 0.100 0.100 0.1 0.1 0.1 0.1 0.1 0.100113
A37–A40 0.535 0.561 0.517 0.514 0.520 0.618 0.5178 0.499 0.5317 0.52316 0.4971 0.519311
A41–A48 0.535 0.492 0.504 0.546 0.518 0.476 0.5214 0.501 0.5134 0.52522 0.5089 0.516303
A49–A52 0.103 0.100 0.100 0.100 0.100 0.100 0.1 0.1 0.1 0.10001 0.1 0.100062
A53–A54 0.111 0.107 0.101 0.110 0.100 0.112 0.1007 0.1 0.1 0.10254 0.1 0.100502
A55–A58 0.161 0.156 0.156 0.162 0.157 0.153 0.1566 0.168 0.1565 0.155962 0.1575 0.156389
A59–A66 0.544 0.550 0.547 0.509 0.546 0.582 0.5421 0.584 0.5429 0.55349 0.5329 0.550278
A67–A70 0.379 0.390 0.442 0.497 0.405 0.405 0.4132 0.433 0.4081 0.42026 0.4089 0.40533
A71–A72 0.521 0.592 0.590 0.562 0.566 0.655 0.5756 0.52 0.5733 0.5615 0.5731 0.563667

Weights (lb) 383.12 380.24 379.27 381.91 379.61 382.34 379.66 380.62 379.632 379.69 379.095 379.59
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Statistical data listed in Table 9 prove that the present algorithm was also very robust for this
test problem.

Table 9. Comparison of statistical performance in the 72-bar truss problem.

N Best Mean Worst SD NSA

ALSSO
100 379.7376 380.1562 382.8799 0.60467 62,292 (77,020)
200 379.6001 379.7373 380.0177 0.100794 131,819 (115,840)
500 379.5922 379.7058 379.981 0.103908 260,928 (307,700)

BBBC [33] 379.66 381.85 N/A 1.201 13,200
SAHS [31] 380.62 382.85 383.89 1.38 13,742
TLBO [34] 379.632 380.20 380.83 0.41 21,542

CA [37] 379.69 380.86 N/A 1.8507 18,460
FPA [38] 379.095 379.534 N/A 0.272 9029

Figure 7 shows the convergence curve obtained for the last optimization run with N = 500.
ALSSO detected the x- and y-displacement constraints of node 17 for load case 1 as active.
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4.4. Planar 200-Bar Truss Structure

The last test example regards the optimal design of the planar 200-bar truss structure shown
in Figure 8. The modulus of elasticity is 30 Msi and the mass density is 0.283 lb/inch3. The stress
limit on all elements is ±10 ksi. There are no displacement constraints. The structural elements are
divided into 29 groups as shown in Figure 8. The minimum cross-sectional area of all design variables
is 0.1 inch2. The structure is designed against three independent loading conditions: (1) 1.0 kip acting
in the positive x-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and 71; (2) 10.0 kips acting in the
negative y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29,30, 31, 32,
33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71, 72, 73, 74,
and 75; (3) loading conditions (1) and (2) acting together.

This truss problem has been previously studied using SAHS [27], TLBO [34], ABC-AP [36],
WEO [39], FPA [38], HPSACO [40], and HPSSO [41]. The optimized designs are compared in Table 10.
SAHS, TLBO, HPSSO, and WEO generated feasible designs while HPSACO, ABC-AP, FPA, and ALSSO
slightly violated the constraints. TLBO produced the best design for this test problem.
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Table 10. Comparison of optimized designs for the 200-bar truss problem.

Element Group HPSACO [40] ABC-AP [36] SAHB [31] TLBO [34] HPSSO [41] FPA [38] WEO [39] ALSSO

1 0.1033 0.1039 0.1540 0.1460 0.1213 0.1425 0.1144 0.132626
2 0.9184 0.9463 0.9410 0.9410 0.9426 0.9637 0.9443 1.004183
3 0.1202 0.1037 0.1000 0.1000 0.1220 0.1005 0.1310 0.100772
4 0.1009 0.1126 0.1000 0.1010 0.1000 0.1000 0.1016 0.104438
5 1.8664 1.9520 1.9420 1.9410 2.0143 1.9514 2.0353 1.969623
6 0.2826 0.293 0.3010 0.2960 0.2800 0.2957 0.3126 0.285843
7 0.1000 0.1064 0.1000 0.1000 0.1589 0.1156 0.1679 0.145089
8 2.9683 3.1249 3.1080 3.1210 3.0666 3.1133 3.1541 3.136798
9 0.1000 0.1077 0.1000 0.1000 0.1002 0.1006 0.1003 0.120883

10 3.9456 4.1286 4.1060 4.1730 4.0418 4.1100 4.1005 4.124644
11 0.3742 0.4250 0.4090 0.4010 0.4142 0.4165 0.4350 0.438346
12 0.4501 0.1046 0.1910 0.1810 0.4852 0.1843 0.1148 0.163695
13 4.9603 5.4803 5.4280 5.4230 5.4196 5.4567 5.3823 5.514607
14 1.0738 0.1060 0.1000 0.1000 0.1000 0.1000 0.1607 0.148495
15 5.9785 6.4853 6.4270 6.4220 6.3749 6.4559 6.4152 6.415737
16 0.7863 0.5600 0.5810 0.5710 0.6813 0.5800 0.5629 0.592158
17 0.7374 0.1825 0.1510 0.1560 0.1576 0.1547 0.4010 0.186473
18 7.3809 8.0445 7.9730 7.9580 8.1447 8.0132 7.9735 8.037395
19 0.6674 0.1026 0.1000 0.1000 0.1000 0.1000 0.1092 0.130935
20 8.3000 9.0334 8.9740 8.9580 9.0920 9.0135 9.0155 9.017311
21 1.1967 0.7844 0.7190 0.7200 0.7462 0.7391 0.8628 0.780634
22 1.0000 0.7506 0.4220 0.4780 0.2114 0.7870 0.2220 0.312574
23 10.8262 11.3057 10.8920 10.8970 10.9587 11.1795 11.0254 11.03076
24 0.1000 0.2208 0.1000 0.1000 0.1000 0.1462 0.1397 0.112562
25 11.6976 12.2730 11.8870 11.8970 11.9832 12.1799 12.0340 12.00723
26 1.3880 1.4055 1.0400 1.0800 0.9241 1.3424 1.0043 1.017312
27 4.9523 5.1600 6.6460 6.4620 6.7676 5.4844 6.5762 6.458830
28 8.8000 9.9930 10.8040 10.7990 10.9639 10.1372 10.7265 10.66930
29 14.6645 14.70144 13.8700 13.9220 13.8186 14.5262 13.9666 13.96069

Best weight (lb) 25,156.5 25,533.79 25,491.9 25,488.15 25,698.85 25,521.81 25,674.83 25,569.98
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Statistical data listed in Table 11 prove that the present algorithm was also robust for this test problem.
Figure 9 shows the convergence curve obtained for the last optimization run with N = 500.

Table 11. Comparison of statistical performance in the 200-bar truss problem.

N Best Mean Worst SD NSA

ALSSO
100 25,722.22 25,938.99 26,743.77 303.5379 89,655 (88,080)
200 25,617.50 25,694.73 25,842.59 57.9310 181,068 (173,280)
500 25,569.98 25,624.89 25,696.47 32.3777 453,465 (447,600)

HPSACO [40] 25,156.5 25,786.2 26,421.6 830.5 9800
ABC-AP [36] 25,533.79 N/A N/A N/A 1,450,000

SAHB [31] 25,491.90 25,610.20 25,799.30 141.85 14,185
TLBO [34] 25,488.15 25,533.14 25,563.05 27.44 28,059

HPSSO [41] 25,698.85 28,386.72 N/A 2403 14,406
FPA [38] 25,521.81 25,543.51 N/A 18.13 10,685

WEO [39] 25,674.83 26,613.45 N/A 702.80 19,410
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5. Conclusions

This paper presented a hybrid algorithm for structural optimization, named ALSSO, which
combines subset simulation optimization (SSO) with the dynamic augmented Lagrangian multiplier
method (DALMM). The performance of SSO is comparable to other stochastic optimization methods.
ALSSO employs DALMM to decompose the original constrained problem into a series of unconstrained
optimization sub-problems, and uses SSO to solve each unconstrained optimization sub-problem.
By adaptively updating the Lagrangian multipliers and penalty parameters, the proposed method
can automatically detect active constraints and provide the globally optimal solution to the problem
at hand.

Four classical truss sizing problems were used to verify the accuracy and robustness of ALSSO.
Compared to the results published in the literature, it is found that the proposed method is able
to produce equivalent solutions. It also shows a remarkable statistical performance based on
30 independent runs. A potential drawback of ALSSO at present is that its convergence rate will slow
down when the search process approaches the active constraints. In the future, we will introduce
a local search strategy into ALSSO to further improve its efficiency and apply ALSSO to various
real-life problems.
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