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Abstract: Airborne and spaceborne hyperspectral sensors collect information which is derived from
the electromagnetic spectrum of an observed area. Hyperspectral data are used in several studies and
they are an important aid in different real-life applications (e.g., mining and geology applications,
ecology, surveillance, etc.). A hyperspectral image has a three-dimensional structure (a sort of
datacube): it can be considered as a sequence of narrow and contiguous spectral channels (bands).
The objective of this paper is to present a framework permits the efficient storage/transmission of
an input hyperspectral image, and its protection. The proposed framework relies on a reversible
invisible watermarking scheme and an efficient lossless compression algorithm. The reversible
watermarking scheme is used in conjunction with digital signature techniques in order to permit the
verification of the integrity of a hyperspectral image by the receiver.
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1. Introduction

Hyperspectral imaging sensors obtain information from the electromagnetic spectrum of
an observed area. Spectral imaging techniques cover a significant portion of the electromagnetic
spectrum in which the frequencies are in a range that spans from the ultraviolet to the infrared.
A hyperspectral sensor subdivides the spectrum into different spectral channels (referred to as “bands”).
For such reasons, a hyperspectral image can be considered as a sort of “datacube” [1], since such data
can be structured in a three-dimensional manner.

Hyperspectral images are efficiently used in a wide range of real-life and research applications
(agriculture, mineralogy, physics, surveillance, etc.). Hyperspectral images are often shared among
different entities, sometimes with different purposes (for example different research centres, etc.),
in order to carry out conjunct tasks.

Several scenarios can be drawn in which these data are shared/stored/transmitted for sensitive
objectives (e.g., military applications [2,3], counter-terrorism [4], forensic applications [5], etc.).
Thus, an important concern might be to ensure data protection against tampering, which can occur
even in very sensitive cases (e.g., target-detection applications, etc.). Since these images need to be
efficiently transmitted to a base as soon as they are acquired, and they need to be efficiently stored,
we propose a possible framework for efficient transmission and protection.

The proposed framework relies on two main components: a lossless compression algorithm
and a reversible watermarking scheme. Generally, digital watermarking techniques are used for
ensuring security, content authentication, and copyright protection (e.g., [6–8]). Using watermarking
techniques, the input data (i.e., the hyperspectral images) might become a sort of “carrier” of hidden
information, which can carry important data (e.g., [9,10]). We highlight the key aspects of the proposed
framework, in Section 2, and we outline further details for a possible effective implementation,
in Section 2.1. Regarding the implementation, we considered a reversible invisible watermarking
scheme (Section 2.1.1), designed specifically for hyperspectral images, and the multiband lossless
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compression of hyperspectral images (LMBHI) algorithm [11] (reviewed in Section 2.1.2), which is
a predictive-based lossless compression algorithm that achieves interesting results.

Finally, we report and discuss the obtained experimental results in Sections 3 and 4 draws
our conclusions.

2. An Efficient and Secure Transmission Framework

Figure 1 shows the architecture of the proposed transmission framework. First, the digest h(HI)
of the input hyperspectral image HI is computed, by invoking a cryptographic hash function h(.)
(e.g., SHA-3 Keccak [12], etc.). Subsequently, the obtained digest h(HI) is used as a watermark string
and is embedded into HI, by using a reversible invisible watermarking scheme. As it is observable
from Figure 1, the secret key K, is used for the computation of the digest as well as for the embedding
of the obtained digest h(HI) into HI.

After that, the watermarked hyperspectral image HIW (i.e., the output of the reversible invisible
watermarking scheme) is compressed by using an efficient lossless compression algorithm. The output
of this compression stage, is denoted as HICW and it can be efficiently transmitted.

In the following, we denote as HI′ the hyperspectral image which is reconstructed from HIW

(where HIW is obtained as the output of the decompression of HICW), and as w′ the watermark string
which is extracted from HIW.

The receiver can verify the integrity of HI, in the following manner: if there are no alterations of
HIW, then the value of h(HI′) will be equal to the value of h(HI). Consequently, it is satisfied that
w = h(HI) = h(HI′) = w′ and HI′ is exactly equal to HI.
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2.1. An Effective Implementation of the Proposed Framework

For an effective implementation of the proposed framework, we considered the reversible
watermarking scheme, described in Section 2.1.1, and the multiband lossless compression of
hyperspectral images scheme (LMBHI), the compression algorithm is addressed in Section 2.1.2.
However, other approaches can be efficiently used for an effective implementation of our proposal.

2.1.1. Reversible Invisible Watermarking Scheme for Hyperspectral Images

In [13], we have proposed a preliminary version of a reversible invisible watermarking scheme
for hyperspectral images. This scheme relies on the approaches outlined in [9,14], and belongs to the
category of additive schemes. In the additive scheme, the watermark signal w (i.e., a watermark string)
is directly added to the input signal, namely the pixels of the input hyperspectral image HI. In this
way the output produced (i.e., the watermarked hyperspectral image HIW) contains both the signals
(the one that represents the HI and the one that represents the watermark w). A secret key, K, is used to
perform the embedding phase.

It is important to note that this scheme is reversible. Therefore, it is possible to restore the original
HI and to extract the watermark w. In addition, this scheme is fragile: a simple modification of HIW

might cause the disappearance of the embedded watermark, w.
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The basic objective of our scheme is to spread the bits of w among all the bands of HI.
More precisely, each bit of w—referred to as bw—will be embedded into a set of four pixels
SP = {x(0), x(0), x(2), x(3)}. These pixels are pseudo-randomly selected by means of a pseudo-random
number generator (PRNG) based on the secret key, K.

Since it is possible to have a set SP that cannot be used to carry bw due to the fact that the
extraction algorithm might be unable to extract the hidden bit, it is necessary to classify the sets into
two categories: “carrier sets” and “non-carrier sets”. A carrier set is a set in which a bit, bw, can be
embedded, while a non-carrier set is a set in which a bit, bw, cannot be embedded.

When the algorithm identifies a carrier set SP, a bit bw can be embedded by means of the
“embedWatermarkBit” procedure, reported in Algorithm 1, which returns as output the set Sw

P . Sw
P

represents the set SP in which bw is embedded. To classify a set SP, the relationship between SP and
its estimation SE

P is exploited. This estimation is computed by means of a linear combination of the
pixels of SP, as explained in the “estimate” procedure (see Algorithm 2). By using the estimation,
the extraction algorithm can classify, in two steps, a set SP. Furthermore, the extraction algorithm can
restore the original pixel values of the carrier set by manipulating a watermarked carrier set. In this
manner, the reversibility property is obtained.

Algorithm 1 The “embedWatermarkBit” procedure (pseudo-code from [13])

procedure embedWatermarkBit (SP, bw)
1. if bw == 1 then
2. xw

(0) = x(0) + 1;

3. xw
(1) = x(1) − 1;

4. xw
(2) = x(2) − 1;

5. xw
(3) = x(3) + 1;

6. else
7. xw

(0) = x(0) − 1;

8. xw
(1) = x(1) + 1;

9. xw
(2) = x(2) + 1;

10. xw
(3) = x(3) − 1;

11. endif
12. Sw

P = {xw
(0), xw

(1), xw
(2), xw

(3)};

13. return Sw
P ;

end procedure

Algorithm 3 reports the pseudo-code of the “embed” procedure. This procedure embeds the
watermark string w into the input hyperspectral image HI by using in the embedding process the
secret key K.

In details: the pseudo-random number generator (PRNG) G is initialized by using K as a seed.
Subsequently, w is subdivided into M substrings (where M is the number of bands of HI). The ith
substring, wi, will be embedded into the ith band of HI, denoted as HI(i). Therefore, each band will
carry at least bN/Mc bits, where N denotes the length of w.

The algorithm considers each substring wi and performs the following steps until all the bits
composing wi are embedded into HI(i): four pixels (we denote them as x(0), x(1), x(2), and x(3)) are
randomly selected by using the PRNG G to compose a set SP. Subsequently, the estimation SE

P
(composed by four estimated pixels, that we denote as xE

(0), xE
(1), xE

(2), and xE
(3)) of SP is calculated.

This estimation is computed by a linear combination of the pixels of SP, as it is shown in the
estimate procedure of Algorithm 2. In order to classify the set SP, the difference D, in absolute
value, between x(0) and xE

(0) is computed. In the case D is less than 1, then the set SP is classified as
a carrier set and, therefore, the “embedWatermarkBit” procedure (Algorithm 1) is performed in order
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to embed bw into SP. Thus, the processing of bit bw is complete. The coordinates of the pixels x(0), x(1),
x(2), and x(3) will be no longer selectable and the algorithm proceeds by embedding the next bit of wi.

Algorithm 2 The “estimate” procedure (pseudo-code from [13])

procedure estimate (SP)

1. xE
(0) =

2×x(0)+x(1)+x(2)
4 ;

2. xE
(1) =

2×x(1)+x(0)+x(3)
4 ;

3. xE
(2) =

2×x(2)+x(0)+x(3)
4 ;

4. xE
(3) =

2×x(3)+x(1)+x(2)
4 ;

5. SE
P = {xE

(0), xE
(1), xE

(2), xE
(3)};

6. return SE
P;

end procedure

In case Sp is classified, instead, as a non-carrier set, then the value of the pixels of Sp are modelled
in order to increase the difference, D. In this manner, the extraction algorithm is able to correctly
understand that Sp is a non-carrier set. As a consequence, the bit, bw, cannot be embedded into the
set Sp and other four pixels (different from the ones previously selected) will be selected to compose
a new set Sp, to try the embedding again.

Algorithm 3 The “embed” procedure (pseudo-code from [13])

procedure embed (HI, w, K)

1. Let G be a PRNG;
2. N = lengthO f (w);
3. Subdivide w into {w1, w2, . . . , wM};
4. for i = 1 to M do
5. idx = 1;
6. Ni = lengthO f (wi)

7. repeat
8. bw = wi[idx];
9. By using G along with K, selects x(0), x(1), x(2), x(3) from HI(i);

10. SP = {x(0), x(1), x(2), x(3)};
11. SE

P = estimate(SP);
12. D = |x(0) − xE

(0)|;

13. if D < 1 then
14. Sw

P = embedWatermarkBit(SP, bw);
15. idx ++;
16. else
17. Modifying of SP, by using SP = embedWatermarkBit(SP, 0) or SP = embedWatermarkBit(SP, 1), in order

to increase the value of D;
18. endif
19. Setting of the coordinates of x(0), x(1), x(2) and x(3) no longer selectable;

20. until idx ≤ Ni;
21. end for
22. Copying of all modified and unmodified pixels to HIW ;
23. return HIW ;
end procedure
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2.1.2. Multiband Lossless Compression of Hyperspectral Images

The predictive-based multiband lossless compression for hyperspectral images (LMBHI) [11]
algorithm exploits the inter-band correlation (i.e., the correlation among the neighboring pixels of
contiguous bands) as well as the intra-band correlations (i.e., the correlations among the neighboring
pixels of the same band), by using a predictive coding model.

Each pixel of the input hyperspectral image HI is predicted by using one of the following predictive
structures: the 2-D linearized median predictor (2-D LMP) [15] and the 3-D multiband linear predictor
(3D-MBLP).

2-D LMP considers only the intra-band correlation and it is used only for the pixels of the first
band for which there are no previous reference bands.

3D-MBLP exploits the intra-band and the inter-band correlations instead and is used to predict
the pixels of all the bands except for the first one.

Once the prediction step is performed the prediction error, e, is modelled and coded. In particular,
e is obtained by subtracting the value of the prediction of the current pixel from its effective value.

The 3D-MBLP predictor uses a three-dimensional prediction context which is defined by
considering two parameters: B and N, where B indicates the number of the previous reference bands
and N indicates the number of pixels that will be included in the prediction context that are in the
current band and in the previous B reference bands.

In order to permit an efficient and relative indexing of the pixels that form the prediction context
of the 3D-MBLP, an enumeration, E, is defined. We denote with Ii,j the ith pixel (according to the
enumeration E) of the jth band. In addition, we suppose that the current band is the kth band. In this
manner, I0,j is referred to the pixel that has the same spatial coordinates of the current pixel (denoted as
I0,k), in the jth band.

The 3D-MBLP predictor is based on the least squares optimization technique and the prediction is
computed, as in Equation (1).

Î0,k =
B

∑
i=1

αi × I0,k−i (1)

It is important to point out that the coefficients α0 = [α1, . . . , αB]
T are chosen to minimize the

energy of the prediction error, as in Equation (2).

P =
N

∑
i=1

(
Ii,k − Îi,j

)2
(2)

It should be observable that Equation (2) can be rewritten (by using the matrix notation),
as outlined in the equation

P = (Cα− X)T ·(Cα− X), where C =

 I1,k−1 · · · I1,k−B
...

. . .
...

IN,k−1 . . . IN,k−B

 and X = [I1,k, . . . , IN,k]
T .

Subsequently, by computing the derivate of P and by setting it to zero, the optimal coefficients
can be obtained

(CTC)α0 = (CTX) (3)

Once the coefficients α0, which solve the linear system of Equation (3), are computed,
the prediction Î0,k, of the current pixel I0,k, can be calculated.

3. Experimental Results

To validate the proposed framework, we have experimentally tested our proposed algorithms
on two datasets, which are composed by airborne visible/infrared imaging spectrometer (AVIRIS)
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hyperspectral images. Such data is obtained by AVIRIS hyperspectral sensors (NASA Jet Propulsion
Laboratory (JPL) [16]), which measure the spectrum in the wavelengths ranging from 380 to 2500 nm
(subdivided into 224 spectral bands).

3.1. Description of the Test Datasets

Dataset 1. The first dataset we used in the testing phase is composed by five AVIRIS hyperspectral
images provided by the JPL (Jet Propulsion Laboratory) of NASA. Each hyperspectral image is
subdivided into sub-images which are denoted as scenes. In detail, a scene is composed by 614 columns,
512 lines (except for the last scene that might have a lower number of lines), and 224 bands. Each pixel
is stored as a signed integer and represented with 16 bits.

In Table 1, we report for each hyperspectral image (rows) and the number of its scenes
(second column).

Table 1. Description of the Dataset 1.

Hyperspectral Image Number of Scenes

Cuprite 5
Jasper Ridge 6
Low Altitude 8
Lunar Lake 3

Moffett Field 4

Dataset 2. The second dataset is referred to as the “CCSDS Dataset” and it is composed of five
calibrated and seven uncalibrated AVIRIS hyperspectral images. This dataset is publicly available,
and it is provided by the Consultative Committee for Space Data Systems (CCSDS) Multispectral and
Hyperspectral Data Compression [17].

Table 2 shortly reports the key information describing Dataset 2 by showing the number of
scenes (second column) and the number of columns (third column), concerning the calibrated and
the uncalibrated images (first column). We remark that a pixel of the calibrated and the uncalibrated
images is stored by using 16 bits (16-bit signed integer, for the calibrated, and 16-bit unsigned integer,
for the uncalibrated), except for the Hawaii and Maine hyperspectral images which have pixels stored
by using 12 bits (unsigned) [17]. Each of the hyperspectral images in the Dataset 2 is composed of
512 lines.

Table 2. Description of the Dataset 2.

Hyperspectral Image Number of Scenes Columns

Yellowstone (calibrated) 5 677
Yellowstone (uncalibrated) 5 680

Hawaii (uncalibrated) 1 614
Maine (uncalibrated) 1 680

3.2. Simulation Results Achieved by the Reversible Invisible Watermarking Scheme

This section outlines the experimental results we have achieved by using our reversible invisible
watermarking scheme by considering both Dataset 1 and Dataset 2. Analogously to [18], we have
considered the peak-signal-to-noise-ratio (PSNR) [19], to evaluate the distortion between the original
image HI and the watermarked one (i.e., HIW). The PSNR metric is computed as in Equation (4).

PSNR(HI, HIW) =
1
M

M

∑
i=1

(
10 log10

(
(215 − 1)2

MSE(HI(i), HIW
(i)

))
(4)



Algorithms 2017, 10, 132 7 of 11

The mean squared error (MSE) instead is defined in Equation (5), in which the notation HI(i)(x, y)
is referred to the pixel at the coordinates (x, y) of the ith band.

MSE(HI(i), HIW
(i)) =

1
WH

W

∑
x=1

H

∑
y=1

(
HI(i)(x, y)− HIW

(i)(x, y)
)2

(5)

In all our experiments, we have considered two watermarks:

• w1—Composed by 1120 bits (pseudo-random generated)
• w2—Composed by 2240 bits (pseudo-random generated).

3.2.1. Simulation Results on Dataset 1

In Table 3 we report, in terms of the PSNR metric, the achieved test simulation results by
embedding the watermark w1 into Dataset 1. The PSNR value of the watermarked image with
respect to the original image is reported for each scene (first column) of Cuprite (on the second
column), Jasper Ridge (on the third column), Low Altitude (on the fourth column), Lunar Lake (on the
fifth column), and Moffett Field (on the sixth column) hyperspectral images. In Table 4, we report the
achieved simulation results by embedding the watermark w2.

Table 3. Achieved results in terms of PSNR, by embedding w1 (Dataset 1).

Scenes Cuprite Jasper Ridge Low Altitude Lunar Lake Moffett Field

Scene 01 124.45 123.21 123.40 125.21 123.34
Scene 02 123.03 123.28 122.89 125.13 125.32
Scene 03 124.36 122.45 124.11 124.27 127.09
Scene 04 124.58 122.41 123.75 - 123.28
Scene 05 124.83 122.81 123.72 - -
Scene 06 - 122.60 123.96 - -
Scene 07 - - 123.67 - -
Scene 08 - - 123.09 - -
Average 124.25 122.79 123.57 124.87 124.76

Table 4. Achieved results in terms of PSNR, by embedding w2 (Dataset 1). Notice that by “/”, we refer
to the fact that the algorithm failed the embedding process (due to the limited dimensions of the
hyperspectral image).

Scenes Cuprite Jasper Ridge Low Altitude Lunar Lake Moffett Field

Scene 01 121.18 119.88 119.96 121.85 120.12
Scene 02 119.91 120.37 119.72 121.77 122.18
Scene 03 121.23 119.06 120.60 121.26 123.93
Scene 04 121.44 119.09 120.63 - 120.24
Scene 05 121.76 119.54 120.50 - -
Scene 06 - / 120.75 - -
Scene 07 - - 120.14 - -
Scene 08 - - 119.77 - -
Average 121.10 119.59 120.26 121.63 121.62

Figure 2 synthetizes the average PSNR results we have achieved by embedding the watermark w1

(columns in red) and the watermark w2 (columns in blue), by considering Dataset 1.
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3.2.2. Simulation Results on the Dataset 2

In Tables 5 and 6, the achieved simulation results are reported, in terms of the PSNR metric by
embedding the watermark w1 and the watermark w2, respectively. The value assumed by the PSNR
metric is reported for each scene (first column) of the Yellowstone calibrated (on the second column)
and uncalibrated (on the third column), Hawaii (on the fourth column), and Maine (on the sixth
column) hyperspectral images.

Table 5. Achieved results in terms of PSNR, by embedding w1 (Dataset 2).

Scenes Yellowstone (Calibrated) Yellowstone (Uncalibrated) Hawaii (Uncalibrated) Maine (Uncalibrated)

Scene 00 125.75 119.42 - -
Scene 03 128.84 122.77 130.45 -
Scene 10 132.42 126.63 - 131.92
Scene 11 127.19 120.36 - -
Scene 18 125.17 118.55 - -
Average 127.87 121.55 130.45 131.92

Table 6. Achieved results in terms of PSNR, by embedding w2 (Dataset 2).

Scenes Yellowstone (Calibrated) Yellowstone (Uncalibrated) Hawaii (Uncalibrated) Maine (Uncalibrated)

Scene 00 122.55 116.18 - -
Scene 03 125.59 119.45 127.28 -
Scene 10 129.44 123.46 - 128.55
Scene 11 123.63 117.30 - -
Scene 18 122.11 115.15 - -
Average 124.66 118.31 127.28 128.55

Figure 3 reports the average PSNR results we have achieved by embedding the watermark w1

(columns in red) and the watermark w2 (columns in blue), by considering Dataset 2.
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3.3. Simulation Results Achieved by the LBMHI Algorithm

In this section, we focus on the simulation results achieved by the LBMHI algorithm, on Dataset 1
and on Dataset 2, which are comparable with the other state-of-the-art predictive-based approaches [11].
Moreover, it is important to note that the parameters of the LBMHI algorithm can be configured.

Table 7 reports the simulations results, in terms of bits per pixel (BPP), achieved by the LMBHI
compression algorithm, for each hyperspectral image of the Dataset 1 (rows from the second to the
sixth), by considering the following configurations of the parameters: N = 8 and B = 1 (second column),
N = 8 and B = 2 (third column), and N = 16 and B = 2 (fourth column). In Table 8, we report the
experimental results achieved with Dataset 2 in the same manner of the ones reported in Table 7.

Table 7. Achieved results in terms of BPP (Dataset 1).
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N = 8, B = 1 N = 8, B = 2 N = 16, B = 2

Cuprite 5.0165 4.9886 4.8958
Jasper Ridge 5.0722 5.0271 4.9535
Low Altitude 5.3442 5.2995 5.2166
Lunar Lake 5.0207 4.9796 4.8850

Moffett Field 5.1012 5.0313 4.9594

Table 8. Achieved results in terms of BPP (Dataset 2).

Hyperspectral Image
Average BPP

N = 8, B = 1 N = 8, B = 2 N = 16, B = 2

Yellowstone (calibrated) 3.9511 3.8280 3.9511
Yellowstone (uncalibrated) 6.5262 6.2328 6.5262

Hawaii (uncalibrated) 2.9533 2.8748 2.9533
Maine (uncalibrated) 3.0746 2.9528 3.0746
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4. Conclusions and Future Works

Hyperspectral data are involved in real-life and sensitive applications (e.g., geoscience or military
applications). In addition, the acquisition of such data is onerous and expensive. By considering such
aspects, it is important to protect them by allowing the verification of the inalterability of these data by
a receiver (since such data are often exchanged among several entities).

In this paper, we have focused on the protection and the efficient transmission of hyperspectral
data by revisiting a framework for the secure and efficient transmission of hyperspectral images.
This framework combines a reversible invisible watermarking scheme and the LMBHI algorithm.

In future work, we will consider the possible design of a hybrid approach which provides
protection and compression at the same time, as well as the extension of the proposed framework to
other typologies of 3-D data: e.g., 3-D medical images [15], etc.
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