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Abstract: Gene function prediction is a complicated and challenging hierarchical multi-label classification
(HMC) task, in which genes may have many functions at the same time and these functions are organized
in a hierarchy. This paper proposed a novel HMC algorithm for solving this problem based on the
Gene Ontology (GO), the hierarchy of which is a directed acyclic graph (DAG) and is more difficult
to tackle. In the proposed algorithm, the HMC task is firstly changed into a set of binary classification
tasks. Then, two measures are implemented in the algorithm to enhance the HMC performance by
considering the hierarchy structure during the learning procedures. Firstly, negative instances selecting
policy associated with the SMOTE approach are proposed to alleviate the imbalanced data set problem.
Secondly, a nodes interaction method is introduced to combine the results of binary classifiers. It can
guarantee that the predictions are consistent with the hierarchy constraint. The experiments on eight
benchmark yeast data sets annotated by the Gene Ontology show the promising performance of the
proposed algorithm compared with other state-of-the-art algorithms.
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1. Introduction

In recent years, the diverse applications of hierarchical multi-label classification (HMC) are studied
in several domains, such as text categorization, digital libraries, and gene function prediction [1].
In these real world problems, each instance may have many classes simultaneously. These classes
are organised in a predefined hierarchical structure [2], and an instance associated with one class is
automatically assigned with all its ancestor classes [3]. Gene function prediction is a complicated HMC
problem, as a single gene may have many functions and these functions are structured according to
a predefined hierarchy [4]. A directed acyclic graph (DAG) for the Gene Ontology (GO) and a rooted
tree for the Functional Catalogue (FunCat) are two main hierarchy structures of gene functional
classes [5]. The former one is more complicated to cope with, due to the fact that a node in a DAG can
have many parent nodes [6], so the classification on the GO taxonomy of DAG structure is our focus in
this paper.

The Gene Ontology [7] is a widely used protein function classification scheme. It is made up of
thousands of functional class terms and each term corresponds to a functional class.The hierarchy
structure of the GO is a DAG. The GO contains three separated parts: biological process ontology,
molecular function ontology and cellular component ontology [8]. Each of them is also organized as
a DAG. Figure 1 illustrates a fraction of the Gene Ontology taxonomy.
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Figure 1. A fraction of the Gene Ontology taxonomy.

Some classification algorithms have been designed to solve the HMC tasks, and these algorithms
could be divided into two types: the global approach and the local approach [9].

Only a single model is generated in the global approach, and it predicts all the labels of an
instance during a single run of the classification model [10]. When the size of the data set increases,
the model usually becomes very complex and thus time-consuming [11]. The algorithms proposed in
paper [12,13] are examples of the global approach.

The local approach transforms a HMC task into a separate binary classification task for each
class, and then combines the results of all binary classifiers by considering the hierarchy [14]. It is
easy to solve the complicated HMC problems with high dimensional attributes by using conventional
classification algorithms [15]. Barutcuoglu et al. [16] selected support vector machine (SVM) as
the base classifier for every class in the method they proposed. The results of these base classifiers
were processed via a Bayesian network to guarantee the hierarchy constraint for the final results.
Valentini et al. [17] presented a true path rule (TPR) hierarchical ensemble method to deal with the
tree structure by using probabilistic SVMs for binary classifications. Chen et al. [15] improved the
TPR approach for the tree structure. Robinson et al. [18] proposed a TPR ensemble strategy for the
DAG structure.

There are two major challenges when applying the local approach to tackle the HMC task using
the GO taxonomy. Firstly, as the hierarchy is traversed down to the leaves, classes at lower levels of the
hierarchy usually have very fewer positive instances, requiring base classifiers at these hierarchy levels
to be learned from very skewed data sets [19]. In such imbalanced data set learning scenarios, standard
classifiers might be overwhelmed by the majority class and can not detect the minority one. Secondly,
the prediction result needs to be consistent with the hierarchy constraint. It means an instance should
automatically belong to all the ancestor classes of the class to which it belongs, and an instance should
not belong to any of the descendant classes of the class to which it does not belong [20].

Conventional HMC methods in published papers mainly focus on these challenges for the FunCat
taxonomy because the structure of it is easy to tackle. These days, the Gene Ontology has become the
most popular functional classification scheme for gene and protein function prediction studies [21],
but only a few HMC methods have been proposed for the GO as its DAG structure is more complicated
to handle. In this paper, we deal with these problems based on the GO taxonomy.
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For the gene function prediction problem based on GO, a hierarchical multi-label classification
algorithm is proposed in this paper. Specifically, we make the following contributions. Negative instances
selecting policy and a synthetic minority over-sampling technique (SMOTE) [22] are introduced to
preprocess the imbalanced training data sets; in the proposed algorithm, SVM is chosen as the base
classifier considering its good performance for binary classification; a two-phase approach based on the
Bayesian network is used for combining the outputs of all binary classifiers to guarantee the hierarchy
constraint. All of these techniques together lead to the improvement of the final gene function prediction
results. Experiments are implemented to evaluate the performance of the proposed algorithm on eight
benchmark data sets by comparing it with state-of-the-art algorithms. The experimental results indicate
that the algorithm has better performance than the existing algorithms.

The rest of this paper is organized as follows. Section 2 revisits the definition of hierarchical
multi-label classification and shows the proposed HMC algorithm for the GO. Experimental results on
the eight benchmark GO data sets are given in Section 3. The discussion is presented and then, in the
last section, the conclusions are introduced.

2. The Proposed Algorithm

2.1. Notation and Basic Definitions

Let X be a set of n gene instances, xi be any gene instance with m attributes written as
xi = (a1, a2, ..., am), where xi ∈ X (1 ≤ i ≤ n). Let C be a set of all the GO classes, C = {c1, c2, ..., c|C|}.
The GO hierarchy is a DAG denoted by G =< V, E >. V = {1, 2, ..., |V|} is the set of vertices and
the edges set is E, where e = (k, l) ∈ E, k, l ∈ V means an edge. Each node in V represents a class,
so V = C and the class ck is represented simply by the node k if there is no ambiguity. Each node
represents one gene function, and a direct edge e = (k, l) ∈ E describes the hierarchical relationship
that k is the parent node of l. We further denote the set of children nodes of a node k as child(k), the set
of its parent nodes as par(k), the set of its ancestor nodes as anc(k), the set of its descendant nodes as
desc(k) and the set of its siblings as sib(k).

Given an instance xi ∈ X, if xi has the function the node k presents, the real label at the node k
is 1, and this is also called that this instance xi belongs to the node k. If there is no ambiguity, it is
said that its node k is 1 for short. The result of a binary classifier fk for the class ck is denoted as d∗ik,
where 1 ≤ k ≤ |C|, and it is used to predict the label of xi at node k. d∗ik represents the probability of
the instance xi belonging to the node k given by this classifier fk, which is also written as P∗i (k = 1).

The set of |C| binary classifiers provides a multi-label score d∗i = (d∗i1, d∗i2, ..., d∗i|C|), which is called
the preliminary results. The preliminary predicted label for an instance xi ∈ X with all the classes
is denoted as a vector y∗i = (y∗i1, y∗i2, ..., y∗i|C|) for 1 ≤ k ≤ |C|. It is obtained by selecting a threshold
θ for d∗i . If d∗ik ≥ θ, set y∗ik = 1, the representing xi belongs to class ck; otherwise, set y∗ik = 0 for
1 ≤ k ≤ |C|. We say that this result for an instance xi is consistent with the hierarchy constraint
if and only if d∗ik ≥ d∗il , where k is the parent class of l. The final predicted score at the node k is
written as dik, which is the posterior probability Pi(k = 1). If we get the consistent preliminary result,
then di = d∗i ; otherwise, we need to use other methods to get the final consistent score di. Similarly,
the final prediction vector yi = (yi1, yi2, ..., yi|C|) can be obtained by selecting a threshold θ for di.

2.2. The Main Steps of the Proposed Method

The proposed algorithm contains four steps. Its main processes are described as follows. The first
step is the data set preparing step. In this step, training data set is partitioned into |C| subsets by
utilizing negative instances selecting policy, where |C|means the total number of all the classes in the
GO. The second step is the data set rebalancing step, where the over-sampling technique is applied to
modify the data distribution. Then, |C| binary classifiers, which are also called base classifiers or local
classifiers, are trained by using these training subsets in the third step. The final step is the prediction
step. In the prediction phase, the instances in the test set are first predicted by |C| binary classifiers;
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then, these results are changed into probabilities by the sigmoid method. Finally, these probabilistic
prediction results are combined by the nodes interaction method to ensure the hierarchy constraint.

2.3. Step 1: Training Data Set Preparation

Selecting suitable positive and negative instances to build the training set is very important for
a classifier. To explore the hierarchical structure, according to the paper [23], the siblings policy is
suggested for building the training subset for each class, which is designed as follows. For the training
data set of the class k, instances that belong to k are chosen as the positive instances, and other instances
belonging to the siblings of k are selected as negative instances. In the case that the class k has no
siblings, instances that belong to the siblings of its parent nodes are selected [24].

2.4. Step 2: Data Set Rebalancing

In the HMC problems, from the top to the bottom of the hierarchy, as the specificity of the classes
increases, fewer number of instances are annotated to more specific classes, so there are many more
instances of some classes than others. As the hierarchy level lowers, the number of instances belonging
to the class drops significantly. Most of the binary classifiers need to be learned from strongly skewed
training data sets. Such case is called an imbalanced data set, which leads to difficulty in making
accurate predictions for standard classifiers, since the minority class tends to be overwhelmed by the
majority one [25]. In step 1, a negative instances selecting policy is proposed to alleviate the imbalanced
data set problem.

Even after using the siblings policy to build training subsets for all classes, the training subsets of
some classes are still high degree imbalanced. In order to change the distribution of the training data
set, re-sampling method is used to augment either some positive instances or some negative instances.

SMOTE proposed in [22] is an efficient re-sampling approach. It produces new synthetic
instances along the line between the minority instances and their selected nearest neighbor instances.
The advantage of this method is that it changes the decision domains to be larger and less specific.
SMOTE creates synthetic minority instances to over-sample the minority class. For each minority
instance, a certain number (it is usually set to 5 as a default) of its nearest neighbor instances at the
same class are figured out first; then, some instances are randomly chosen from them according to the
over-sampling rate. After this step, new synthetic instances are produced.

In the GO hierarchy, the classes at higher levels may have more positive instances than negative
ones, and, therefore, the negative class is the minority class. On the contrary, for the lower classes,
there are more negative instances, and the positive class is the minority class. SMOTE is used to
over-simplify the minority instances for each training subset. Then, a balanced data set is provided to
the binary classifier to enhance the detection rate of the minority class.

2.5. Step 3: Base Classifier Training

After the two steps above, we build a particular data set per node, and get |C| different balanced
data sets for |C| classes totally. For each node, an SVM is trained by using the training data set at
this node. The reason for choosing SVM as the base classifier is that it performs best among the
state-of-the-art classifiers, and its good ability to tackle the classification problems that are linearly
inseparable [26].

The result of SVM should be changed into the probability, which is needed by the nodes interaction
method. As the standard SVM does not give such probability, the sigmoid method is often used to
figure out the probabilistic result of SVM [27]. It changes the output of the SVM to probability by
training an additional sigmoid function, which is described as follows:

ps(y = 1|x) = 1
1 + exp(A f (x) + B)

, (1)
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where x is an instance, y represents the class label of x, f (x) is the output of SVM for x, and A
and B are the parameters. To calculate these two parameters A and B, any validated subset with n′

instances of the training data set could be applied to solve the following maximum likelihood problem,
where i = 1, 2, ..., n′:

min
Z=(A,B)

{−
l

∑
i=1

(tilog(psi) + (1− ti)log(1− psi))}, (2)

psi =
1

1 + exp(A f (xi) + B)
, (3)

ti =

{
N+ + 1
N+ + 2 yi = 1,

1
N− + 2 yi = −1.

(4)

2.6. Step 4: Prediction

In this step, the instances that need to be predicted are first classified by |C| base classifiers and
get the probabilistic preliminary results. As the base classifiers are trained separately, these preliminary
results usually violate the TPR rule, so we need some method to ensure that the final results are
consistent with the hierarchy constraint. The TPR rule is also described as the hierarchy constraint,
which guarantees the consistency of the function annotations in the GO [28].

In practice, for a given instance xi, considering a node k, d∗ik is the preliminary result calculated by
the binary classifier at this node, if y∗ik shows that xi has the label 0 at this node k, but some preliminary
results of its children nodes d∗ichild(k) are 1; in this case, the preliminary results for the given instance xi
violate the TPR rule. When such case occurs, we need to use some methods to revise the results of
xi to ensure the final results obey the TPR rule. In this paper, a novel method based on the Bayesian
network is proposed to tackle this problem [29], which is called the nodes interaction method.

The nodes interaction method is designed to resolve the problem that the results of parent
and children nodes are inconsistent with the hierarchy. The key idea of this method is that, when
determining the final predicted labels, the hierarchy of the classes should be considered. As the GO
hierarchy is a DAG structure, the prediction of a node is not only decided by its base classifier, but also
influenced by its adjacent nodes, such as parent or children nodes.

There are two phases in the nodes interaction method: preliminary results correction phase and
final decision determination phase. In the preliminary results correction phase, for each instance,
the DAG is visited from top to bottom across the hierarchy to correct the predictions that violate the
TPR rule. The main purpose of this step is to consider the influence of its parent and children nodes
when making decisions for a node.

As the base classifier of each node provides the probability for which label an instance should
have at this node, this preliminary result can be seen as prior probability of this instance at this node.
These nodes are organized as a DAG, and we want to get the final result of an instance at each node,
which is to calculate the posterior probability of this instance at each node. This circumstance is very
similar to the Bayesian network [30]. Given an instance xi, its preliminary result at node k is d∗ik, and d∗ik
along with the results at parent nodes d∗ipar(k) or at children nodes d∗ichild(k) violate the true path rule.
In the preliminary results’ correction phase, the Bayesian network is used to make the decision at
the node k.

For the instance xi, considering the node k, its parent nodes par(k) and children nodes child(k),
the DAG is detached into two parts: the parent nodes part and the children nodes part. The Bayesian
network is utilized in each part, respectively, to calculate the posterior probability P(k = 1). When only
considering the parent nodes of a particular node k, the posterior probability P(k = 1) is denoted as
Ppar(k), and the formula to get Ppar(k) is:{

Ppar(k = 1) = P∗(k = 1)∏j∈par(i) P∗(j = 1),
Ppar(k = 0) = 1− Ppar(k = 1).

(5)
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Similarly, when considering the children nodes of a particular node k, the formula of Pchild(k) is:{
Pchild(k = 0) = P∗(k = 0)∏j∈par(i) P∗(j = 0),
Pchild(k = 1) = 1− Pchild(k = 0).

(6)

To make the final decision, we compare these two probabilities Ppar(k = 0) and Pchild(k = 1),
and select the bigger one as the decision of this phase. More precisely, for a node k, let ŷk = psk, and ỹk
be the result of x to be calculated in the preliminary results correction phase. It is derived as follows:

ỹk =


Ppar(k = 1), i f Ppar(k = 0) ≥ Pchild(k = 1),

Pchild(k = 1), otherwise.
(7)

The main goal of the preliminary results correction phase is to consider the influence of its parent
and children nodes when making decision for a node, but it cannot ensure the hierarchical consistent
of the predictions. The final decision determination phase is introduced to assure the hierarchical
consistent of the predictions by propagating negative decisions towards the children nodes recursively.
It modifies the results computed in the previous phase by visiting all the nodes again from top to
bottom of the DAG. If ỹk is the prediction computed in the first phase, then the final predictions ȳk for
the class k are calculated as follows:

ȳk =


ỹk, i f k is a root node,

min
j∈par(k)

ȳj, i f ỹk > min
j∈par(k)

ȳj,

ỹk, otherwise.

(8)

3. Experiment

3.1. Data Sets and Experimental Setup

Several real-world databases from the field of functional genomics downloaded from the DTAI
website refer to paper [13] were selected to evaluate the proposed algorithm [31]. Since Saccharomyces
cerevisiae, which is a type of baker’s or brewer’s yeast, is one of the well-studied model organisms
with high-throughput data available, the task is to predict gene functions of the yeast. In this paper,
we worked with eight data sets annotated by the GO structured as a DAG. Each data set describes
a different aspect of the genes in the yeast genome. For example, the data set 8 (seq) contains the
sequence statistics data of each gene, which include the sequence length, molecular weight and so on.
The detailed description of these yeast data sets can be obtained to from paper [13].

The characteristics of the experimental data sets, such as instance number and attribute number
of each data set, are summarized in Table 1.

Table 1. The characteristics of the experimental datasets.

Data Set Attributes Training Instances Testing Instances

D1 Cellcycle 77 2290 1202
D2 eisen 79 2252 1182
D3 derisi 63 1537 817

D4 gasch1 173 2294 1205
D5 gasch2 52 1301 1212
D6 church 27 2289 1202

D7 spo 80 2354 1183
D8 seq 478 2321 1225
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As in [13], two thirds of each data set is used as the training data set and the remaining one third
for testing. In each training set, two thirds of it is used for the actual training and the remaining one
third is for optimizing parameters. In addition, as some of the data sets contain missing features,
the mean of the non-missing values for that feature have managed to replace the missing values of
that feature [32].

We downloaded the GO file from the GO website [21], which includes hierarchical relationships
between different GO terms [33]. The Gene Ontology Annotation (GOA) file of Yeast was obtained
from the European Bioinformatics Institute. The GO terms annotated as ‘obsolete’ were excluded from
the GO file. The GOA file was processed to only include the annotations with evidence codes EXP
(Inferred from Experiment), IDA (Inferred from Direct Assay), IPI (Inferred from Physical Interaction),
IMP (Inferred from Mutant Phenotype), IGI (Inferred from Genetic Interaction), IEP (Inferred from
Expression Pattern), TAS (Traceable Author Statement ) or IC (Inferred by Curator) [34]. Among three
separated ontology in the GO, we focus on the biological process aspect for the experiment in this study.

Assuming that rare classes cannot be reliably induced, only the nodes with more than 100 instances
are considered. The resultant DAG has a depth of 11, and each instance has labels, on average, of 32.
The threshold of each binary classifier SVM is set as 0.5 in all experiments.

3.2. Evaluation Metrics

Due to the hierarchy and multi-label pecularities of the HMC problem, two sorts of metrics are
used to evaluate the proposed algorithm. The first metric category is the classical precision (Prec),
recall (Rec), and F1 [35]. These metrics are mainly designed for the binary classification task with only
two classes. We don’t select the accuracy (Acc) as the evaluation metric because it is not suitable for
the imbalanced data set problem. Precision expresses the ratio of positive predictions that are labelled
correctly, and recall is the percentage of positive instances that are exactly predicted as positive. F1 is
a parameter to combine the tradeoff of Prec and Rec in a single formula. These three metrics are used
to evaluate the binary base classifiers:

Prec =
TP

TP + FP
, (9)

Rec =
TP

TP + FN
, (10)

F1 =
2× Prec× Rec

Prec + Rec
, (11)

where TP is the number of true positives (positive instances that are correctly predicted as positive),
FP is the number of false positives (negative predictions that are incorrectly predicted as positive),
and FN is the number of false negatives (positive instances that are incorrectly predicted as negative).
Note that these measures do not take into account the number of the negative instances that are
predicted correctly.

How to evaluate the performance of hierarchical classification algorithms is an open question.
Some researchers used the above-defined classical metrics as evaluation measures, but these metrics
might not show enough information about which algorithm is really better by not considering the
structure of the hierarchy taxonomy [36]. Some authors proposed their own evaluation measures for
hierarchical classification, but these measures are used by themselves only. Some evaluation measures
such as h-loss are proposed for the tree-structured problems but can not cope with DAGs. Although at
present, for all possible hierarchical classification tasks and applications, no hierarchical classification
measure can be regarded as the best one, a set of relational metrics is proposed and suggested in [23]
to use for evaluation. They are hierarchical precision, hierarchical recall and hierarchical F1, which are
denoted as hPre, hRec and hF1. These metrics are used widely by researchers.
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The hierarchical precision, hierarchical recall and hierarchical F1 for the i-th example hPrei, hReci
and hF1,i are defined as :

hPrei =
|P̂i

⋂
T̂i|

|P̂i|
, (12)

hReci =
|P̂i

⋂
T̂i|

|T̂i|
, (13)

hF1,i =
2× hPrei × hReci

hPre + hRec
, (14)

where, for a test instance i, P̂i is the set containing all of the predicted classes and their ancestor classes,
and T̂i is the set including all of its true classes and their ancestor classes.

These measures are extended versions of the widely used metrics of precision, recall and F1,
and are specially designed for the hierarchical classification problem. Furthermore, they can be
effectively adapted to both the tree and the DAG structures. Supposing the evaluation of the results
measured on a data set with n instances labeled with m hierarchical structured classes, there are
two methods to combine the performance of all instances: the micro-averaging version and the
macro-averaging version [37].

In the micro-averaging version, the precision and recall are figured out by summing over all
individual instances, and these metrics are given as follows:

hPreµ =
∑n

i=1 |P̂i
⋂

T̂i|
∑n

i=1 |P̂i|
, (15)

hRecµ =
∑n

i=1 |P̂i
⋂

T̂i|
∑n

i=1 |T̂i|
, (16)

hFµ
1 =

2× hPreµ × hRecµ

hPreµ + hRecµ . (17)

In the macro-averaging version, the precision and recall are first computed for each instance and
then averaged. The metrics are written as:

hPreM =
∑n

i=1 hPrei

n
, (18)

hRecM =
∑n

i=1 hReci

n
, (19)

hFM
1 =

∑n
i=1 hF1,i

n
. (20)

For all of these metrics, it should be noted that there is a common feature, the higher measure
value means the better performance of a classifier. The hierarchical precision indicates the capability of
a classifier to predict the most general functional classes of an instance, while the hierarchical recall
shows the predictor’s ability to predict the most specific functional classes. The hierarchical F-measure
takes into account both hierarchical precision and hierarchical recall to calculate an overall value [38].

3.3. Experiment Results and Analysis

3.3.1. Experiments for Specific Classes

To observe the performance of the data set rebalance method, which consists of the negative
instances selecting policy and the SMOTE over-sampling method, we implemented binary experiments
for specific classes. A comparative experiment is designed as follows: in step 1, when building
training data set for each class, the positive instances are assigned according to the specified class,
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while the negative instances are all the others not labelled as positive in the data set. As in the
comparative experiment, most of the training data sets are highly imbalanced, so the base classifier
SVM tends to predict all test samples as negative, and these kinds of results show no significance.
The D1 data set is used in this part to show the difference, and SVM is used as the base classifier.
Prec, Rec and F1 are used for evaluation and part of the experimental results are shown in Table 2.
“The original F1” represents the results of the comparative data set and “the improved F1” represents
the results of the rebalanced data set, and NaN means that the result is not a number. The results
show that the negative instances selecting policy associated with the SMOTE approach improved the
performance of the base classifier.

Table 2. The experimental results for specific classes.

GO ID Original Prec Original Rec Original F1 Improved Prec Improved Rec Improved F1

GO:0065007 NaN 0 NaN 0.408 0.454 0.430
GO:0016043 NaN 0 NaN 0.486 0.539 0.511
GO:0044710 0.577 0.121 0.206 0.478 0.433 0.455
GO:0006996 NaN 0 NaN 0.358 0.775 0.490
GO:0044249 0.552 0.181 0.272 0.440 0.630 0.518
GO:0046483 NaN 0 NaN 0.437 0.699 0.538
GO:1901360 0.750 0.013 0.025 0.448 0.734 0.557
GO:1901564 0.591 0.050 0.092 0.373 0.431 0.400
GO:0009059 0.472 0.045 0.082 0.384 0.451 0.415
GO:0019538 0.520 0.040 0.073 0.352 0.489 0.410
GO:0044271 0.500 0.011 0.021 0.344 0.603 0.438
GO:0034645 0.472 0.045 0.082 0.364 0.596 0.452

3.3.2. Experiments on Eight Data Sets

This algorithm is designed to tackle the HMC problem for solving the gene function prediction task
based on GO. To present the performance of this algorithm, it is also necessary to compare with other
state-of-the-art algorithms. Due to the complexity of the HMC problem with DAG structure, only a few
algorithms have been proposed by others. The TPR ensemble method and the CLUS-HMC method are
two typical state-of-the-art algorithms used for gene function prediction. The TPR ensemble method
is the representation of the algorithms that belongs to the local approach. It has better performance
than other local algorithms such as the flat ensemble method and the hierarchical top-down method.
As a representative of global algorithms, the CLUS-HMC method outperforms the HLCS-Multi
algorithm, the HLCS-DAG algorithm and the HMC-LMLP algorithm. Thus, these two algorithms are
selected to be compared with the proposed HMC algorithm. For consistency, we used the same data
sets and the same evaluation scheme for each algorithm we tested. The details of these two methods
are listed below.

The TPR ensemble method: this method integrates the predictions of base classifiers with the
positive results that come from the classifiers at the lower level, together with the negative results that
are given by the higher level classifiers [18]. The TPR ensemble method contains two steps. In the
bottom-up step, the positive predictions are moved towards the parent nodes and gradually towards
the ancestor nodes. In the top-down step, negative predictions are propagated to the children nodes
and the descendant nodes of each node, aiming to ensure the consistency of the final results and also
give more precise predictions [17].

CLUS-HMC [13]: this method belongs to the global approach, and it predicts all class labels at the
same time by inducing a single decision tree. The predictive clustering tree framework is used in this
algorithm. The hierarchy structure is considered by modifying different weights to the labels according
to the level, and the DAG can also be solved by this method. The level parameter is selected through
the cross validation, and the weighted Euclidean distances are designed for the variance reduction.

We computed both the micro-averaged version and macro-averaged version of hPre, hRec and
hF1 to appraise the performance of the proposed algorithm. In Table 3, the micro-averaged version
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values of these algorithms on eight data sets are given. Table 4 compares the different algorithms with
the macro-averaged version values.

Table 3. The micro-averaged version of experimental results on eight data sets.

Dataset Method hPreµ hRecµ hFµ
1

D1 TPR 0.348 0.518 0.416
D1 CLUS-HMC 0.449 0.306 0.364
D1 Proposed 0.333 0.627 0.435
D2 TPR 0.360 0.397 0.377
D2 CLUS-HMC 0.402 0.335 0.365
D2 Proposed 0.331 0.533 0.408
D3 TPR 0.434 0.515 0.471
D3 CLUS-HMC 0.476 0.387 0.427
D3 Proposed 0.396 0.663 0.496
D4 TPR 0.385 0.477 0.426
D4 CLUS-HMC 0.453 0.355 0.398
D4 Proposed 0.358 0.585 0.444
D5 TPR 0.359 0.519 0.425
D5 CLUS-HMC 0.442 0.322 0.373
D5 Proposed 0.333 0.623 0.434
D6 TPR 0.331 0.483 0.393
D6 CLUS-HMC 0.487 0.270 0.348
D6 Proposed 0.314 0.606 0.413
D7 TPR 0.366 0.423 0.393
D7 CLUS-HMC 0.418 0.331 0.369
D7 Proposed 0.339 0.541 0.417
D8 TPR 0.388 0.509 0.441
D8 CLUS-HMC 0.444 0.390 0.415
D8 Proposed 0.372 0.577 0.454

Table 4. The macro-averaged version of experimental results on eight data sets.

Dataset Method hPreM hRecM hFM
1

D1 TPR 0.366 0.548 0.380
D1 CLUS-HMC 0.514 0.362 0.352
D1 Proposed 0.347 0.633 0.405
D2 TPR 0.385 0.441 0.346
D2 CLUS-HMC 0.468 0.392 0.347
D2 Proposed 0.347 0.598 0.385
D3 TPR 0.445 0.544 0.432
D3 CLUS-HMC 0.525 0.423 0.396
D3 Proposed 0.419 0.643 0.457
D4 TPR 0.406 0.514 0.389
D4 CLUS-HMC 0.518 0.408 0.379
D4 Proposed 0.368 0.625 0.413
D5 TPR 0.370 0.544 0.381
D5 CLUS-HMC 0.505 0.379 0.360
D5 Proposed 0.344 0.665 0.403
D6 TPR 0.360 0.521 0.365
D6 CLUS-HMC 0.554 0.335 0.350
D6 Proposed 0.324 0.674 0.390
D7 TPR 0.373 0.491 0.371
D7 CLUS-HMC 0.481 0.379 0.344
D7 Proposed 0.344 0.629 0.397
D8 TPR 0.393 0.536 0.400
D8 CLUS-HMC 0.501 0.438 0.395
D8 Proposed 0.371 0.626 0.418
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In the ideal world, we expect both hierarchical precision and hierarchical recall to have higher
values to show better performance. However, typically, precision and recall are inversely related.
As one increasing leads to the other falling, the hierarchical F-measure is proposed to balance these
two metrics. In this paper, the hierarchical F-measure is used to evaluate the performance of each
algorithms, and the algorithm that has the highest value of F-measure shows the best performance.
The other two values of precision and recall are also listed in the tables as details of the F-measure,
and for whoever is interested in these values. According to these tables, we can come to a conclusion
that the proposed HMC algorithm performs significantly better than the other two algorithms in terms
of both micro-averaged and macro-averaged metrics on all eight data sets.

4. Discussion

We currently proposed a novel algorithm to resolve the gene function prediction task based on
GO. It belongs to the local approach and is composed of many parts. In the current experiments, the
results show that our algorithm has better performance on all eight data sets. In the first part of the
experiment, the performance of the data set rebalance method, which consists of the negative instances
selecting policy and the SMOTE over-sampling method, are shown through specific classification
results. In the second part, the performance of this algorithm is compared with other state-of-the-art
algorithms to show its good performance. It can be found that all of these techniques together lead to
the improvement of the final gene function prediction results.

5. Conclusions

Gene function prediction is an important application area of hierarchical multi-label classification.
In this problem, an instance is assigned to a set of class labels, and the class labels are structured as
a hierarchy. In this paper, we present a novel HMC algorithm for solving the gene function prediction
problem based on the GO, the hierarchy of which is a DAG. On the basis of the characteristics of
the HMC problem, two measures are designed to take into account the hierarchy constraint, and to
improve the performance of the proposed algorithm. First, in order to improve the performance of
base classifiers, a negative instances selecting policy associated with the SMOTE method is proposed to
process the imbalanced training data sets. Second, a nodes interaction method is proposed to integrate
the results of the base classifiers. Experiment results on eight yeast data sets annotated by the GO
show that the proposed algorithm significantly outperforms two state-of-the-art algorithms. Due to its
good performance, the proposed algorithm is expected to be a practical and attractive approach for
gene function prediction based on the Gene Ontology.

In the future work, we will do this experiment on more data sets—not only the data sets of
the yeast, but also data sets of multi-cellular species, such as plants and humans. For the genes in
some data sets that have many features, the appropriate feature selection method should also be
considered and added to this framework. Moreover, from the aspect of the computational method,
we can optimize the algorithm to improve the prediction performance and make contributions to
guiding the biological validation experiments. For instance, better prediction might be achieved by
changing the base classifier, or trying to use different classifiers for different nodes. Furthermore,
when making decisions in the node interaction method, more nodes could take part in this process.
All of the above mentioned perspectives will be considered in our future work.
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