
algorithms

Article

On Application of the Ray-Shooting Method for LQR
via Static-Output-Feedback

Yossi Peretz

Department of Computer Sciences, Lev Academic Center, Jerusalem College of Technology,
P.O. Box 16031, 93721 Jerusalem, Israel; yosip@g.jct.ac.il; Tel.: +972-2-675-1016; Fax: +972-2-675-1046

Received: 29 October 2017; Accepted: 4 January 2018; Published: 16 January 2018

Abstract: In this article we suggest a randomized algorithm for the LQR (Linear Quadratic Regulator)
optimal-control problem via static-output-feedback. The suggested algorithm is based on the recently
introduced randomized optimization method called the Ray-Shooting Method that efficiently solves
the global minimization problem of continuous functions over compact non-convex unconnected
regions. The algorithm presented here is a randomized algorithm with a proof of convergence in
probability. Its practical implementation has good performance in terms of the quality of controllers
obtained and the percentage of success.

Keywords: optimal control; state-space models; randomized algorithms; continuous-time systems

1. Introduction

Let a continuous-time system be given by{
ẋ (t) = Ax (t) + Bu (t)

y (t) = Cx (t)
(1)

where A ∈ Rp×p, B ∈ Rp×q, C ∈ Rr×p and x, u, y are the state, the input and the measurement,
respectively. We assume that (A, B) and

(
AT , CT) are controllable (see [1] for a new reduction from

the case where (A, B) and
(

AT , CT) are only stabilizable). Let

J (x0, u) :=
∫ ∞

0

(
x (t)T Qx (t) + u (t)T Ru (t)

)
dt, (2)

denote the cost functional, where Q > 0 and R ≥ 0. Assuming that x0 = x (0) is given, the LQR
problem is to attenuate the disturbance x0 using minimal control cost, i.e., to design a regulation
input u (t) that minimizes J (x0, u), subject to the constraints given by (1). Let u = −Ky be the
static-output-feedback (SOF) with the closed-loop matrix Ac` (K) := A− BKC. Let C− denote the
left-half plane, let α > 0 and let Cα denote the set of all z ∈ C with < (z) ≤ −α, where < (z) is the real
part of z. Let Sq×r denote the set of all matrices K ∈ Rq×r, such that Ac` is stable, i.e., σ (Ac`) ⊂ C−
(where σ (Ac`) is the spectrum of Ac`). By Sq×r

α , we denote the set of all matrices K ∈ Rq×r, such that
σ (Ac`) ⊂ Cα. In this case, we say that Ac` is α-stable. Below, we will occasionally write Sα instead of
Sq×r

α , when it is clear what the size of the related matrices is.
Let K ∈ Sq×r

α be given. Substitution of u = −Ky = −KCx into (2) gives

J (x0, K) :=
∫ ∞

0
x (t)T

(
Q + CTKT RKC

)
x (t) dt. (3)

Since Q + CTKT RKC > 0 and since Ac` (K) is stable, it follows that the Lyapunov equation

Algorithms 2018, 11, 8; doi:10.3390/a11010008 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a11010008
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 8 2 of 11

Ac` (K)
T P + PAc` (K) = −

(
Q + CTKT RKC

)
(4)

has a unique solution P > 0, given by

P = −mat
((

Ip ⊗ Ac` (K)
T + Ac` (K)

T ⊗ Ip

)−1
· vec

(
Q + CTKT RKC

))
, (5)

where vec puts all the columns of the given matrix in a single column and mat is the inverse of vec.
Let us denote the solution (5) as P (K). Substitution of (4) into (3) and noting that ẋ (t) = Ac` (K) x (t)
with Ac` (K) stable, leads to

J (x0, K) = −
∫ ∞

0
x (t)T

(
Ac` (K)

T P (K) + P (K) Ac` (K)
)

x (t) dt

= −
∫ ∞

0

d
dt

(
x (t)T P (K) x (t)

)
dt = xT

0 P (K) x0.

Thus, we look for K ∈ Sq×r
α that minimizes the functional J (x0, K) = xT

0 P (K) x0. When x0 is
unknown, we seek K ∈ Sq×r

α for which

σmax (K) := max (σ (P (K))) (6)

is minimal. In this case, we get a robust LQR via SOF, in the sense that it minimizes J (x0, K) for the
worst possible (unknown) x0. Note that

xT
0 P (K) x0 =

∥∥∥P (K)
1
2 x0

∥∥∥2
≤
∥∥∥P (K)

1
2

∥∥∥2
‖x0‖2 = ‖P (K)‖ ‖x0‖2 = σmax (K) ‖x0‖2 ,

and that there exists x0 6= 0 for which equality holds. Therefore J(x0,K)
‖x0‖2 ≤ σmax (K), where equality

holds in the worst case.
Note that the functionals J (x0, K) and σmax (K) are generally not convex since their domain of

definition Sq×r (and therefore Sq×r
α) is generally non-convex. Necessary conditions for optimality were

given as three quadratic matrix equations in [2–5]. Necessary and sufficient conditions for optimality,
based on linear matrix inequalities (LMI), were given in [6–8]. However, algorithms based on these
formulations are generally not guaranteed to converge, seemingly because of the non-convexity of the
coupled matrix equations or inequalities, and when they converge, it is to a local optimum only.

The application of SOFs in LQRs is appealing for several reasons: they are reliable and cheap, and
their implementation is simple and direct. Moreover, the long-term memory of dynamic-feedbacks is
useless for systems subject to random disturbances, to fast dynamic loadings or to impulses, and the
application of state-feedbacks is not always possible, due to unavailability of full-state measurements
(see [9], for example). On the other hand, in practical applications, the entries of the needed SOFs are
bounded, and since the problem of SOFs with interval constrained entries is NP-hard (see [10,11]),
one cannot expect the existence of a deterministic polynomial-time algorithm to solve this problem.
Randomized algorithms are thus natural solutions to this problem. The probabilistic and randomized
methods for the constrained SOF problem and robust stabilization via SOFs (among other hard
problems) are discussed in [12–15]. The Ray-Shooting Method was recently introduced in [16], where it
was utilized to derive the Ray-Shooting (RS) randomized algorithm for the minimal-gain SOF problem
with regional pole-assignment, where the region can be non-convex and unconnected. For a survey of
the SOF problem see [17] and for a recent survey of the robust SOF problem see [18].

Algorithms 2018, 11, 8 3 of 11

The contribution of this research is as follows:

1. The suggested algorithm is based on the Ray-Shooting Method (see [16]), which, as opposed
to smooth optimization methods, has the potential of finding a global optimum of continuous
functions over compact non-convex and unconnected regions.

2. The suggested algorithm has a proof of convergence (in probability) and explicit complexity.
3. Experience with the algorithm shows good quality of controllers, high percent of success and

good run-time for real-life systems. Thus, the suggested practical algorithm efficiently solves the
problem of LQR via SOF.

4. The algorithm does not need to solve any Riccati equations and thus can be applied to
large systems.

5. The suggested algorithm is one of the few that deals with LQR via SOF and has the ability to deal
with discrete-time systems under the same formulation.

The reminder of the article is organized as follows:
In Section 2, we introduce the practical randomized algorithm for the problem of LQR via SOF.

In Section 3, we give the results of the algorithm for some real-life systems and we compare its
performance with the performance of a well known algorithm that has a proof of convergence to local
minimum (under some reasonable assumptions). Finally, in Section 4 we conclude with some remarks.

2. The Practical Algorithm for the Problem of LQR via SOF

Assume that K(0) ∈ int (Sα) was found by the RS algorithm (see [16]) or by any other
method (see [19–21]). Let h > 0 and let U(0) be a unit vector w.r.t. the Frobenius norm, i.e.,∥∥∥U(0)

∥∥∥
F

= 1. Let L(0) = K(0) + h · U(0) and let L be the hyperplane defined by L(0) + V,

where
〈

V, U(0)
〉

F
= 0. Let r∞ > 0 and letR∞ denote the set of all F ∈ L, such that

∥∥∥F− L(0)
∥∥∥

F
≤ r∞.

Let R∞ (ε) = R∞ +B (0, ε), where B (0, ε) denotes the closed ball centered at 0 with radius ε

(0 < ε ≤ 1
2), with respect to the Frobenius norm on Rq×r. Let D(0) = CH

(
K(0),R∞ (ε)

)
denote

the convex-hull of the vertex K(0) with the basis R∞ (ε). Let S (0)α = Sα ∩ D(0) and note that S (0)α is
compact (but generally not convex). We wish to minimize the continuous function σmax (K) (or the
continuous function J (x0, K), when x0 is known) over the compact set Sα ∩B

(
K(0), h

)
. Let K∗ denote

a point in Sα ∩B
(
K(0), h

)
where the minimum of σmax (K) is accepted. Obviously, K∗ ∈ D(0), for some

direction U(0), as above.
The suggested algorithm in Algorithm 1 works as follows:
We start with a point K(0) ∈ int (Sα), found by the RS algorithm.
Assuming that K∗ ∈ D(0), the inner-loop (j = 1, . . . , n) uses the Ray-Shooting Method in order to

find an approximation of the global minimum of the function σmax (K) over S (0)α —the portion of Sα

bounded in the cone D(0). The proof of convergence in probability of the inner-loop and its complexity
(under the above mentioned assumption) can be found in [16] (see also [22]). In the inner-loop,
we choose a search direction by choosing a point F inR∞ (ε)—the base of the cone D(0). Next, in the
most inner-loop (k = 1, . . . , s) we scan the ray K (t) := (1− t)K(0) + tF and record the best controller
on it. Repeating this a sufficient number of times (as is given in (7) and in the discussion right after),
we reach K∗ (or an ε- neighborhood of it) with high probability, under the assumption that K∗ ∈ D(0).

The outer-loop (i = 1, . . . , m) is used as a substitution for restarting the RS algorithm again and
again, by taking K(best) as the new vertex of the search cone instead of K(0) and by choosing a different
direction U(0). The choice of a different direction is made as a backup to the case where the above
mentioned assumption didn’t hold in the previous iterations (see Remark 1 below). The replacement of
K(0) by K(best) can be considered as a heuristic step, which is made instead of running the RS algorithm
many times in order to generate “the best starting point”, which is relevant only if we actually evaluate
σmax (K) on each such point and take the point with the best value as the best starting point. Since we,

Algorithms 2018, 11, 8 4 of 11

in any case, evaluate σmax (K) in the main algorithm, we could avoid the repeated execution of the
RS algorithm. The outer-loop is similar to what is done in the Hide-And-Seek algorithm (see [23,24]).
The convergence in probability of the Hide-And-Seek algorithm can be found in [25].

Remark 1. The volume of B
(
K(0), h

)
is given by π`/2

Γ(`/2+1) · h
` where ` := qr and Γ is the known Γ-function.

The volume of D(0) is given approximately (and exactly when ε = 0) by h
` ·

π(`−1)/2

Γ((`−1)/2+1) · r
`−1
∞ . Thus,

by taking r∞ = h, the portion of B
(
K(0), h

)
covered by D(0) (i.e., the probability that K∗ ∈ D(0)) is

given by Γ(`/2+1)
`·
√

π·Γ((`−1)/2+1) . Let Θ denote the known relation between functions f , g : N → R defined by

f (n) = Θ (g (n)) if and only if limn→∞
f (n)
g(n) = 1. Since Γ (`/2 + 1) = Θ

(
√

2πe−`/2
(
`
2

) `+1
2

)
and since(

`−1
`

)`/2
→ e−1/2 when `→ +∞, it follows that

Γ (`/2 + 1)
` ·
√

π · Γ ((`− 1) /2 + 1)
= Θ

(
1

e ·
√

2π`

)
.

Therefore, by taking m =
⌈

e ·
√

2π`
⌉

iterations in the outer-loop, we have K∗ ∈ D(0) almost surely.

Specifically, when ` ≥ 12, we suggest taking m = 2` and `× ` orthogonal matrix U =
[

u1 u2 · · · u`

]
,

and to take the directions U(0)
j = ±mat

(
uj
)

, j = 1, . . . , ` in the outer-loop.

The complexity of the suggested practical algorithm measured as the number of its arithmetic
operations is given as follows:

• computing the matrix P (K (t)) as in (5) takes O
((

p2)3
)
= O

(
p6), since the dominant operation

is the inversion of the p2 × p2 matrix there.
• checking K (t) ∈ Sα by checking the α-stability of Acl (K (t)) (as well as computing σ (K (t))),

takes O
(

p3) for computing the characteristic polynomial of Ac` (K (t)) (of P (K (t)), respectively)

and O
(

p log2
2 (p)

(
log2

2 (p) + log2
2 (b)

))
for computing approximations λ̃j for all the eigenvalues

λj, j = 1, . . . , p of Ac` (K (t)) (of P (K (t)), respectively), with accuracy
∣∣λ̃j − λj

∣∣ < 22− b
p where

b ≥ p log2 (p). The approximated eigenvalues can be computed to the accuracy 22− b
p = ε,

with b =
(

2 + log2

(
1
ε

))
p, by the algorithm of V. Y. Pan (see [26]). We end up with O

(
p3) for

these operations.

• computing uniformly distributed q× r matrix takes O
(

max (q, r)3
)

operations.

We therefore have a total complexity of O
(

mns
(

max (q, r)3 + p6
))

.

Let a closed ε-neighborhood of K∗ in D(0) be defined by

S (0)α (ε) =
{

K ∈ S (0)α | σ (K) ≤ σ (K∗) + ε
}

.

Let the idealized algorithm be the algorithm that samples the search space D(0) until hitting
S (0)α (ε), where the sampling is according to a general p.d.f. g and a related generator G. For 0 < β < 1,
the number of iterations needed to guarantee a probability of at least 1− β to hit S (0)α (ε) is given by

MgVo`
(

D(0)
)

mgVo`
(
S (0)α (ε)

) |ln (β)|

 , (7)

Algorithms 2018, 11, 8 5 of 11

where Vo` denotes the volume of the related set and Mg, mg are the essential-supremum and
essential-infimum of g over D(0), respectively (see [16]). Similarly to what is done in [16], one can

show that the last is O
(|ln(β)|hMg

εmg

(
r∞
rε

)qr)
, where rε is a radius of a ball of a basis of a cone with

height ε and vertex K∗ that has a volume that equals to Vo`
(
S (0)α (ε)

)
. This results in an exponential

number of iterations, but if we restrict the input of the algorithm to systems with q, r satisfying

q ≤ q0, r ≤ r0 when q0, r0 are fixed, then, the number of iterations would be O
(|ln(β)|hMg

εmg

(
r∞
rε

)q0r0
)

,

i.e., polynomial in
(

r∞
rε

)
—which can be considered as the true size of the problem (for a fixed p, q, r).

In this sense we can say that the algorithm is efficient. The total number of arithmetic operations of
the idealized algorithm that guarantees a probability at least 1− β to hit S (0)α (ε) is therefore given by

O
(
|ln(β)|h

ε

(
r∞
rε

)q0r0
(

max (q, r)3 + p6
))

, since sampling points according to the uniform distribution

g (and therefore mg = Mg = 1) and the related generator G, takes O
(

max (q, r)3
)

.
For the sake of comparison, which will be presented in the next section, we bring here,

in Algorithm 2, the algorithm of D. Moerder and A. Calise (see [5]) adjusted to our formulation
of the problem, which we call: the MC Algorithm. To the best of our knowledge, this is the best
algorithm for LQR via SOF published so far.

Algorithm 1: The practical randomized algorithm for the LQR via static-output-feedback
(SOF) problem.

Input: 0 < ε ≤ 1
2 , α, h, r∞ > 0, integers: m, n, s > 0,

controllable pairs (A, B) and
(

AT , CT),
matrices Q > 0, R ≥ 0 and K(0) ∈ int (Sα).

Output: K ∈ Sα close as possible to K∗.

1. compute P
(

K(0)
)

as in (5)

2. P(best) ← P
(

K(0)
)

3. σ
(best)
max ← max

(
σ
(

P(best)
))

4. for i = 1 to m do

4.1. choose U(0) such that
∥∥∥U(0)

∥∥∥
F
= 1,

uniformly at random
4.2. let L(0) ← K(0) + h ·U(0)

4.3. for j = 1 to n do
4.3.1. choose F ∈ R∞ (ε) uniformly at random
4.3.1.1. for k = 1 to s do
4.3.1.1.1. t← k

s
4.3.1.1.2. K (t)← (1− t)K(0) + tF
4.3.1.1.3. if K (t) ∈ Sα then
4.3.1.1.3.1. compute P (K (t)) as in (5)
4.3.1.1.3.2. σmax (K (t))← max (σ (P (K (t))))

4.3.1.1.3.3. if
(

σmax (K (t)) < σ
(best)
max

)
then

4.3.1.1.3.3.1. K(best) ← K (t)
4.3.1.1.3.3.2. P(best) ← P (K (t))

4.3.1.1.3.3.3. σ
(best)
max ← σmax (K (t))

4.4. K(0) ← K(best)

5. return K(best), P(best), σ
(best)
max

Algorithms 2018, 11, 8 6 of 11

Algorithm 2: The MC Algorithm.

Input: 0 < ε, α, integers: m, s > 0,
controllable pairs (A, B) and

(
AT , CT),

matrices Q > 0, R > 0 and K0 ∈ int (Sα).
Output: K ∈ Sα close as possible to K∗.

1. j← 0
2. A0 ← A− BK0C

3. P0 ← −mat

((
Ip ⊗ AT

0 + AT
0 ⊗ Ip

)−1 ·
vec
(
Q + CTKT

0 RK0C
))

4. S0 ← −mat
((

Ip ⊗ A0 + A0 ⊗ Ip
)−1 · vec

(
Ip
))

5. σmax (K0)← max (σ (P0))

6. ∆K0 ← R−1BT P0S0CT (CS0C)−1 − K0

7. f lag← 0
8. for k = 1 to s do
8.1. t← k

s
8.2. K (t)← (1− t)K0 + t∆K0

8.3. if K (t) ∈ Sα then
8.3.1. A (t)← A− BK (t)C

8.3.2. P (t)← −mat

 (
Ip ⊗ A (t)T + A (t)T ⊗ Ip

)−1
·

vec
(

Q + CTK (t)T RK (t)C
)

8.3.3. S (t)← −mat

((
Ip ⊗ A (t) + A (t)⊗ Ip

)−1 · vec
(

Ip
))

8.3.4. σmax (K (t))← max (σ (P (t)))
8.3.5. if σmax (K (t)) < σmax (K0) then
8.3.5.1. K1 ← K (t)
8.3.5.2. A1 ← A− BK1C
8.3.5.3. P1 ← P (t)
8.3.5.4. S1 ← S (t)
8.3.5.5. σmax (K1)← σmax (K (t))
8.3.5.6. f lag← 1
9. if f lag == 1 then

9.1. while
(∣∣∣σmax

(
Kj+1

)
− σmax

(
Kj

)∣∣∣ ≥ ε
)

and (j < m) do

9.1.1. ∆Kj ← R−1BT PjSjCT
(

CSjC
)−1
− Kj

9.1.2. for k = 1 to s do
9.1.2.1. t← k

s
9.1.2.2. K (t)← (1− t)Kj + t∆Kj
9.1.2.3. if K (t) ∈ Sα then
9.1.2.3.1. A (t)← A− BK (t)C

9.1.2.3.2. P (t)← −mat

 (
Ip ⊗ A (t)T + A (t)T ⊗ Ip

)−1
·

vec
(

Q + CTK (t)T RK (t)C
)

9.1.2.3.3. S (t)← −mat

((
Ip ⊗ A (t) + A (t)⊗ Ip

)−1 · vec
(

Ip
))

9.1.2.3.4. σmax (K (t))← max (σ (P (t)))
9.1.2.3.5. if σmax (K (t)) < σmax

(
Kj

)
then

9.1.2.3.5.1. Kj+1 ← K (t)
9.1.2.3.5.2. Aj+1 ← A− BKj+1C
9.1.2.3.5.3. Pj+1 ← P (t)
9.1.2.3.5.4. Sj+1 ← S (t)

9.1.2.3.5.5. σmax

(
Kj+1

)
← σmax (K (t))

9.1.2.3.5.6. j← j + 1

10. return K(best) ← Kj, Aj, Pj, Sj, σ
(best)
max ← σmax

(
K(best)

)

Algorithms 2018, 11, 8 7 of 11

3. Experiments

In the following experiments we applied the Algorithm 1 and Algorithm 2, on systems taken from
the liberaries [27–29]. We took only the systems with controllable (A, B) ,

(
AT , CT) pairs, for which

the RS algorithm succeeded in finding SOFs (see [16], Table 8, p. 231). In order to initialize the
MC Algorithm, we also used the RS algorithm to find a starting α-stabilizing static-output-feedback,
for known optimal value for α. In all the experiments for the suggested algorithm we used m = 100,
n = 100, s = 100, h = 100, r∞ = 100, ε = 10−16, and for the MC Algorithm we used m = 10,000, s = 100
(in order to get the same number of 106 overall iterations and the same number s = 100 of iterations
for the local search). In every case, we took Q = Ip, R = Iq. The Stability Margin column of Table 1
relates to α > 0 for which the real part of any eigenvalue of the closed-loop is less than or equal to −α.
The values of α in Table 1 relates to the largest α for which the RS algorithm succeeded in finding K(0).
The reason is that if λ is an eigenvalue of Ac` (K) with corresponding eigenvector v then, (4) implies

< (λ) = −
v∗
(
Q + CTKT RKC

)
v

2v∗P (K) v
≤ − v∗Qv

2v∗P (K) v
.

It follows that minimizing σmax (K) results in a larger abscissa. Thus, it is worth searching for
a starting point K(0) that maximizes the abscissa α. This can be done efficiently by running a binary
search on the abscissa and using the RS algorithm as an oracle. Note that RS CPU time appearing
in the third column of Table 1 relates to running the RS algorithm for known optimal value of the
abscissa. The RS algorithm is sufficiently fast also for this purpose, but other methods such as the
HIFOO algorithm (see [19]) can be applied for this purpose as well.

Let σmax (F) denote the functional (6) for the system
(

A, B, Ip
)
, where A − BF is stable, i.e.,

F ∈ Sq×p. Let P (F) denote the unique solution of (4) for the system
(

A, B, Ip
)

with F as above.
Let σmax (K) denote the functional (4) for the system (A, B, C) with K ∈ Sq×r and related Lyapunov
matrix P = P (K). Now, if A− BKC is stable for some K then, A− BF is stable for F = KC (but there
might exist a F such that A − BF is stable, but which cannot be defined as KC for some q × r
matrix K). Therefore

σmax (F∗) = min
F∈Sq×p

σmax (F) ≤ min
K∈Sq×r

α ∩B(K(0),h)
σmax (K) = σmax (K∗) , (8)

where F∗ is an optimal LQR state-feedback controller for the system
(

A, B, Ip
)
. We conclude that

σmax (F∗) ≤ σmax (K∗) ≤ σmax

(
K(best)

)
. Thus, σmax (F∗) is a lower-bound for σmax

(
K(best)

)
and can

serve as a good estimator for it (as is evidently seen from Table 1 in many cases) in order to stop the
algorithm earlier, since σmax (F∗) can be calculated in advance.

The fourth column of Table 1 represents σmax

(
K(0)

)
. The fifth column stands for σmax

(
K(best)

)
,

where the number in the parentheses is the relative improvement over σmax

(
K(0)

)
, in percent. The sixth

column is for σmax (F∗) and the seventh column is for the CPU time of the suggested algorithm, given in
seconds. The eighth column stands for σmax

(
K(best)

)
found by the MC Algorithm and finally, the ninth

column stands for the CPU time of the MC Algorithm.
Regarding the suggested algorithm, note that the relative improvement of σ

(best)
max over σ

(0)
max is at

least 1000% for the systems: AC6, AC11, AC12, DIS4, REA1, TF1, NN9, NN15 and NN17 (i.e., in 9 out
of 29 systems). The AC12 should be noted, for which the improvement is 7.55 · 1017%! Note also that
for the (13 out of 29) systems: AC1, AC2, AC6, AC11, AC12, AC15, HE3, DIS4, REA1, REA2, HF2D10,
HF2D11 and NN15, the value of σ

(best)
max for (A, B, C) is very close to the value of σmax (F∗) for (A, B).

Algorithms 2018, 11, 8 8 of 11

Table 1. Results of the suggested randomized algorithm for LQR via SOF compared with the results of
the MC Algorithm.

System Stability
Margin

RS
CPU
Time

σ
(0)
max for

(A, B, C)

σ
(best)
max for

(A, B, C)
Suggested
Algorithm

σmax (F∗)
for
(A, B)

Suggested
Algorithm
CPU
Time

σ
(best)
max for

(A, B, C)
MC Algorithm

MC
Algorithm
CPU
Time

AC1 0.1 0.0625 20.9727
13.3987
(56.52%)

13.0686 43.1718 16.2315 0.1562

AC2 0.1 0.0312 20.9727
13.4217
(56.25%)

13.0686 42.3906 16.2315 0.2500

AC5 0.875 0.0625 2.2821× 106 2.2208× 106

(2.76%)
8.4264× 105 56.8125 2.0608× 106 0.1093

AC6 0.875 0.1093 463.8502
6.2413
(7.33× 103%)

5.9721 43.8125 91.3276 0.0625

AC11 0.1 0.1093 1.0661× 103 7.4244
(1.42× 104%)

5.8648 31.6406 1.0661× 103 0.0625

AC12 0.1 <10−4 4.1640× 1019 5.5149× 103

(7.55× 1017%)
2.7690× 103 46.3437 2.9950× 103 3.0625

AC15 0.25 <10−4 112.0500
106.1312
(5.57%)

104.8458 42.0000 111.9781 0.1562

HE1 0.1 <10−4 26.7550
9.1169
(1.93× 102%)

2.9961 44.8125 12.9412 0.1250

HE3 0.25 0.0312 944.3921
632.1294
(49.39%)

611.8468 100.7812 668.0894 0.4218

HE4 0.01 0.0625 4.7440× 103 474.7121
(8.99× 102%)

229.9171 152.9531 4.7440× 103 <10−4

ROC1 10−16 0.0468 1.4211× 104 1.1368× 104

(25%)
1.1207× 103 81.2500 1.4211× 104 0.0937

ROC4 10−16 0.1875 1.7688× 104 8.6513× 103

(1.04× 102%)
8.5454× 102 79.7968 1.7688× 104 0.0468

DIS4 1 <10−4 3.2208× 107 1.7529
(1.83× 109%)

1.7504 68.2812 2.0166 0.7031

DIS5 0.1 0.0312 3.9985× 105 2.3800× 105

(68%)
9.0756× 104 109.8906 2.8304× 105 0.3593

REA1 0.75 0.0468 9.3478× 105 2.2790
(4.10× 107%)

2.2265 58.3906 2.7385 0.5156

REA2 0.1 0.0312 9.8349
2.2640
(3.34× 102%)

2.2443 69.9843 2.7770 0.3125

TMD 0.05 0.0312 45.0958
27.2080
(65.74%)

16.7680 37.2031 27.6023 0.8281

TF1 10−16 0.1093 9.1632× 103 193.2880
(4.64× 103%)

58.1296 51.3750 9.1632× 103 0.0312

HF2D10 10−16 0.0312 1.8090
1.4032
(28.91%)

1.3832 118.2656 1.4269 2.0781

HF2D11 10−16 0.0312 0.4315
0.3699
(16.65%)

0.3676 154.0312 0.3784 1

NN1 10−16 0.0312 7.4631× 103 1.6144× 103

(3.62× 102%)
106.7801 50.4375 2.3561× 103 0.2500

NN5 0.01 0.0468 3.9123× 104 9.6741× 103

(3.04× 102%)
2.8787× 103 129.2812 9.8102× 103 0.3125

NN9 0.01 0.0312 4.0577× 103 295.6797
(1.27× 103%)

21.2937 40.6093 3.7349× 103 0.0937

NN12 0.01 0.0937 934.5127
236.4467
(2.95× 102%)

30.3714 35.3281 934.5127 0.0625

NN13 0.1 0.0312 6.4782
1.7094
(2.66× 102%)

0.6299 33.9218 1.8055 0.4531

NN14 0.1 0.0312 4.8907
1.6664
(1.93× 102%)

0.6299 33.4687 1.7922 0.1718

NN15 0.01 <10−4 1.3309× 105 387.3778
(3.42× 104%)

386.5741 94.2031 387.4183 0.3281

NN16 0.1 0.1093 35.9487
6.0864
(4.90× 102%)

2.3276 45.0468 5.9982 0.7343

NN17 0.1 0.0312 2.6404× 103 36.7664
(7.08× 103%)

3.1308 28.3281 666.7218 0.0937

Algorithms 2018, 11, 8 9 of 11

Regarding the comparison with the MC Algorithm, we conclude that the MC algorithm actually
failed in finding any improvement of σ

(best)
max over σ

(0)
max for the systems: AC11, HE4, ROC1, ROC2, TF1

and NN12. The suggested algorithm performs significantly better regarding this key of performance
for the systems: AC6, AC11, AC15, HE3, HE4, TF1, ROC4, NN9 and NN12. The suggested algorithm
performs slightly better for the systems: AC1, AC2, DIS4, DIS5, HE1, HF2D10, HF2D11, REA1, REA2,
ROC1, TMD, NN1, NN5 and NN13. Finally, the MC algorithm performs slightly better only for
the systems: AC5, AC12 and NN16. We conclude that the suggested algorithm outperforms the
MC Algorithm regarding the above-mentioned key of performance, although the MC Algorithm
outperforms the suggested algorithm in terms of CPU time.

The MC Algorithm seems to perform better locally, while the suggested algorithm seems to
perform better globally. Thus, practically, the best approach would be to apply the suggested algorithm
in order to find a close neighborhood of a global minimum and then to apply the MC Algorithm on
the result, for the local optimization.

4. Concluding Remarks

For a discrete-time system {
xk+1 = Axk + Buk

yk = Cxk
(9)

and cost functional

J (x0, u) :=
∞

∑
k=0

(
xT

k Qxk + uT
k Rxk

)
, (10)

let uk = −Kyk be the SOF, and let Ac` (K) := A− BKC be the closed-loop matrix. Let D denote the
open unit-disk, let 0 < α < 1 and let Dα denote the set of all z ∈ D with |z| ≤ 1− α (where |z|
is the absolute value of z). Let Sq×r denote the set of all matrices K ∈ Rq×r such that σ (Ac`) ⊂ D
(i.e., stable in the discrete-time sense), and let Sq×r

α denote the set of all matrices K ∈ Rq×r such
that σ (Ac`) ⊂ Dα. In this case we say that Ac` is α-stable. Let K ∈ Sq×r

α be given. Substitution of
uk = −Kyk = −KCxk into (10) yields

J (x0, K) :=
∞

∑
k=0

xT
k

(
Q + CTKT RKC

)
xk. (11)

Since Q + CTKT RKC > 0 and since Ac` (K) is stable, it follows that the Stein equation

P− Ac` (K)
T PAc` (K) = Q + CTKT RKC (12)

has a unique solution P > 0, given by

P (K) = mat
((

Ip ⊗ Ip − Ac` (K)
T ⊗ Ac` (K)

T
)−1
· vec

(
Q + CTKT RKC

))
.

Substitution of (12) into (11) and noting that xk = Ac` (K)
k x0 with Ac` (K) stable, leads to

J (x0, K) =
∞

∑
k=0

xT
k

(
P− Ac` (K)

T PAc` (K)
)

xk

=
∞

∑
k=0

xT
0 Ac` (K)

Tk
(

P− Ac` (K)
T PAc` (K)

)
Ac` (K)

k x0 = xT
0 P (K) x0.

Thus, we look for K ∈ Sq×r
α that minimizes the functional J (x0, K) = xT

0 P (K) x0,
and when x0 is unknown, we seek K ∈ Sq×r

α for which σmax (K) := max (σ (P (K))) is minimal.
Similarly to the continuous-time case, we have J(x0,K)

‖x0‖2 ≤ σmax (K) with equality in the worst case.

Algorithms 2018, 11, 8 10 of 11

Finally, if λ is an eigenvalue of Ac` (K) and v is a corresponding eigenvector then (12) yields

1− |λ|2 =
v∗(Q+CTKT RKC)v

v∗P(K)v ≥ v∗Qv
v∗P(K)v . Therefore |λ|2 ≤ 1− v∗Qv

v∗P(K)v , and thus, minimizing σmax (K)
results in larger abscissa. Now, the suggested algorithm can be readily applied to discrete-time systems.
As to the MC Algorithm, we are not aware of any discrete-time analogue of it.

We conclude that the Ray-Shooting Method is a powerful tool, since it practically solves the
problem of LQR via SOF, for real-life systems. The suggested algorithm has good performance, and is
proved to converge in probability. The suggested method can similarly handle the problem of LQR via
SOF for discrete-time systems. Obviously, this enlarges the scope and usability of the Ray-Shooting
Method and we expect to receive more results in this direction.

Acknowledgments: I wish to dedicate this article to the memory of my beloved father Pinhas Peretz and to the
memory of my beloved wife and friend Rivka Rimonda Peretz.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Peretz, Y. A characterization of all the static stabilizing controllers for LTI systems. Linear Algebra Its Appl.
2012, 437, 525–548.

2. Johnson, T.; Atahns, M. On the design of optimal dynamic compansators for linear constant systems.
IEEE Trans. Autom. Control 1970, 15, 658–660.

3. Levine, W.; Athans, M. On the determination of the optimal constant output feedback gains for linear
multivariables systems. IEEE Trans. Autom. Control 1970, 15, 44–48.

4. Levine, W.; Johnson, T.L.; Athans, M. Optimal limited state variable feedback controllers for linear systems.
IEEE Trans. Autom. Control 1971, 16, 785–793.

5. Moerder, D.; Calise, A. Convergence of numerical algorithm for calculating optimal output feedback gains.
IEEE Trans. Autom. Control 1985, 30, 900–903.

6. Iwasaki, T.; Skelton, R. All controllers for the general H∞ control problem: LMI existance conditions and
stste space formulas. Automatica 1994, 30, 1307–1317.

7. Iwasaki, T.; Skelton, R.E. Linear quadratic suboptimal control with static output feedback. Syst. Control Lett.
1994, 23, 421–430.

8. Peres, P.L.D.; Geromel, J.; de Souza, S. Optimal H2 control by output feedback. In Proceedings of the 32nd
IEEE Conference on Decision and Control, San Antonio, TX, USA, 15–17 December 1993; pp. 102–107.

9. Camino, J.F.; Zampieri, D.E.; Peres, P.L.D. Design of A Vehicular Suspension Controller by Static Output
Feedback. In Proceedings of the American Control Conference, San Diego, CA, USA, 2–4 June 1999.

10. Blondel, V.; Tsitsiklis, J.N. NP-hardness of some linear control design problems. SIAM J. Control Optim. 1997,
35, 2118–2127.

11. Nemirovskii, A. Several NP-hard problems arising in robust stability analysis. Math. Control Signals Syst.
1993, 6, 99–105.

12. Arzelier, D.; Gryazina, E.N.; Peaucelle, D.; Polyak, B.T. Mixed LMI/randomized methods for static
output feedback control. In Proceedings of the American Control Conference, Baltimore, MD, USA,
30 June–2 July 2010; pp. 4683–4688.

13. Tempo, R.; Calafiore, G.; Dabbene, F. Randomized Algorithms for Analysis and Control of Uncertain Systems;
Springer: London, UK, 2005.

14. Tempo, R.; Ishii, H. Monte Carlo and Las Vegas Randomized Algorithms for Systems and Control.
Eur. J. Control 2007, 13, 189–203.

15. Vidyasagar, M.; Blondel, V.D. Probabilistic solutions to some NP-hard matrix problems. Automatica 2001,
37, 1397–1405.

16. Peretz, Y. A randomized approximation algorithm for the minimal-norm static-output-feedback problem.
Automatica 2016, 63, 221–234.

17. Syrmos, V.L.; Abdallah, C.; Dorato, P.; Grigoradis, K. Static Output Feedback: A Survey. Automatica 1997, 33,
125–137.

18. Sadabadi, M.S.; Peaucelle, D. From static output feedback to structured robust static output feedback:
A survey. Annu. Rev. Control 2016, 42, 11–26.

Algorithms 2018, 11, 8 11 of 11

19. Gumussoy, S.; Henrion, D.; Millstone, M.; Overton, M.L. Multiobjective Robust Control with HIFOO 2.0.
In Proceedings of the IFAC Symposium on Robust Control Design, Haifa, Israel, 16–18 June 2009.

20. Yang, K.; Orsi, R. Generalized pole placement via static output feedback: A methodology based on projections.
Automatica 2006, 42, 2143–2150.

21. Henrion, D.; Loefberg, J.; Kočvara M.; Stingl, M. Solving Polynomial static output feedback problems with
PENBMI. In Proceedings of the IEEE Conference on Decision and Control, Sevilla, Spain, 15 December 2005.

22. Peretz, Y. On applications of the Ray-Shooting method for structured and structured-sparse
static-output-feedbacks. Int. J. Syst. Sci. 2017, 48, 1902–1913.

23. Zabinsky, Z.B. Stochastic Adaptive Search for Global Optimization; Kluer Academic Publishers:
Dordrecht, The Netherlands, 2003.

24. Romeijn, H.E.; Smith, R.L. Simulated Annealing for Constrained Global Optimization. J. Glob. Optim. 1994,
5, 101–126.

25. Bélisle, C.J.P. Convergence Theorems for a Class of Simulated Annealing Algorithms on Rd. J. Appl. Probab.
1992, 29, 885–895.

26. Pan, V.Y. Univariate polynomials: Nearly optimal algorithms for numerical factorization and root-finding.
J. Symb. Comput. 2002, 33, 701–733.

27. Leibfritz, F. COMPleib: Constrained Matrix-Optimization Problem Library—A Collection of Test Examples for
Nonlinear Semidefinite Programs, Control System Design and Related Problems; Technical Report; Department of
Methematics, University of Trier: Trier, Germany, 2003.

28. Leibfritz, F. Description of the Benchmark Examples in COMPleib 1.0; Technical Report; Department of
Methematics, University of Trier: Trier, Germany, 2003.

29. Leibfritz, F.; Lipinski, W. COMPleib 1.0—User Manual and Quick Reference; Technical Report; Department of
Methematics, University of Trier: Trier, Germany, 2004.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Practical Algorithm for the Problem of LQR via SOF
	Experiments
	Concluding Remarks
	References

