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Abstract: Class function/shape function transformation (CST) is an advanced geometry
representation method employed to generate airfoil coordinates. Aiming at the morbidity of the
CST coefficient matrix, the pivot element weighting iterative (PEWI) method is proposed to improve
the condition number of the ill-conditioned matrix in the CST. The feasibility of the PEWI method
is evaluated by using the RAE2822 and S1223 airfoil. The aerodynamic optimization of the S1223
airfoil is conducted based on the Isight software platform. First, the S1223 airfoil is parameterized
by the CST with the PEWI method. It is very significant to confirm the range of variables for the
airfoil optimization design. So the normalization method of design variables is put forward in the
paper. Optimal Latin Hypercube sampling is applied to generate the samples, whose aerodynamic
performances are calculated by the numerical simulation. Then the Radial Basis Functions (RBF)
neural network model is trained by these aerodynamic performance data. Finally, the multi-island
genetic algorithm is performed to achieve the maximum lift-drag ratio of S1223. The results show
that the robustness of the CST can be improved. Moreover, the lift-drag ratio of S1223 increases by
2.27% and the drag coefficient decreases by 1.4%.

Keywords: class function/shape function transformation; morbidity; pivot element weighting
iterative method; airfoil optimization design; normalization

1. Introduction

Shape parameterization, which can represent the geometries by the coefficients of the
parameterization, is a crucial step in the airfoil aerodynamic optimization [1]. The range of the
design variables and the order of the parameterization have a significant effect on the design space
which can determine the optimum geometries obtainable. Therefore, it is very important for the
designer to choose a proper shape parameterization method.

The Bezier polynomial method [2,3], the B-spline method [4], and the class function/shape
function transformation method [1,5–8] are widely used in the airfoil parameterization design. In order
to fit the curves of airfoils, the least square method is generally adopted to obtain control parameters
in these three methods. The CST method is based on analytical expressions to represent and modify
the various shapes [9]. The CST method is widely used in the airfoil aerodynamic optimization.

For the symmetric NACA0012 airfoil and small camber RAE2822 airfoil, the low order Bernstein
polynomials (BPO) can reach the requirement of the airfoil fitting accuracy. But for some large camber
airfoils, it is necessary to increase the order of Bernstein polynomials. Because the fitting errors of
low order Bernstein polynomials are large. Ceze [10] found that the coefficient matrix was obviously
ill-conditioned for the 36th Bernstein polynomial of CST. Guan et al. [11,12] analyzed the coefficient
matrix of the Bernstein polynomial and found that the higher the order of control parameters of the
polynomial was, the worse the mathematic behavior of control parameters was. Wang et al. [13]
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discovered that the higher the order of the Bernstein polynomial was, the closer the coefficient matrix
was to morbidity.

Essentially the parameterization equation of the CST method is a linear equation. The coefficient
matrix of the parameterization equation is ill-conditioned in most cases. And the higher the order
of the coefficient matrix is, the larger the condition number is. The larger the condition number of
the coefficient matrix is, the closer the coefficient matrix is to morbidity. The solution of the linear
equation is very sensitive to the preturbations of the coefficient matrix. These preturbations can lead to
the inaccurate solution. Therefore, an inaccurate Bernstein coefficient solution of the CST method can
be obtained for the morbidity.

Aiming at the ill-conditioned linear equation, Wu et al. [14] proposed a new iterative improvement
which was more effective for the ill-conditioned equation. The ill-conditioned problem could be
converted into a series of relatively well-conditioned problems. Salkuyeh et al. [15] put forward a
new iterative refinement to solve the ill-conditioned problem and the two-step iterative method could
refine the ill-conditioned equation.

The CST method is adopted to reproduce the NACA0012, RAE2822, and S1223 airfoils in this paper.
When the number of control parameters for the S1223 airfoil increase, the Bernstein coefficient matrix
is close to ill-conditioned and the condition number of this matrix increases. The slight fluctuations
of the control point coordinates or the Bernstein coefficient matrix can lead to the huge change of
Bernstein coefficients. So two similar shape airfoils have entirely different control parameters and it is
unfavorable for the global optimization of airfoils to select the control parameters.

The CST with the pivot element weighting iterative method is proposed to improve the
ill-conditioned Bernstein coefficient matrix. And the ill-conditioned Bernstein coefficient matrix
trends to be well-conditioned. So accurate control parameters can be calculated and the robustness
of the CST method is also improved. The range of control parameters has a great influence on the
airfoil optimization. Therefore normalization method is put forward to control the range of parameters.
Genetic algorithm is adopted in the S1223 airfoil optimization.

2. Airfoil Parameterization

2.1. Airfoil Parameterization Based on the PEWI Method

The CST method, proposed by Kulfan [16–18], is widely used in the airfoil optimization.
The universal parameterization for the complex aircraft components is developed by using this
CST method, which is not limited only to the airfoils. For the normal airfoil with a rounded leading
edge and pointed trailing edge, the difficulties in representing it mathematically are due to the infinite
slope and second derivative requirement at the leading edge and large variations of curvature over the
shape. The CST method can overcome these limits and represent the different types of geometries in a
generic way. The general mathematical expression of the two-dimensional airfoil is as follows
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c
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This form can be rewritten as

ζ(ψ) = C(ψ)S(ψ) + ψζT (2)

where ψ = x/c, ξ = z/c, ξT = ∆zte/c, C(ψ) is the class function and S(ψ) is the shape function

C(ψ) = (ψ)a(1− ψ)b (3)

S(ψ) =
ξ(ψ)− ψξT√
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The class parameters a and b for the general airfoil with a rounded leading edge and pointed
trailing edge are set to 0.5 and 1.0. The Bernstein polynomial is employed as the shape function to
describe the detailed shape as

BPi,n(ψ) = Kiψ
i(1− ψ)n−i (5)

where Ki is the binomial coefficient and n is the order of Bernstein polynomial. The shape function is

S(ψ) =
n

∑
i=0

AiBPi,n(ψ) (6)

The first weight coefficient of the Bernstein polynomial A0 is directly related to the airfoil leading
edge radius by the relation:

S(0) = A0 =

√
2Rle

c
(7)

The last weight coefficient of the Bernstein polynomial An is directly related to the airfoil boattail
angle and trailing edge thickness by the relation:

S(1) = An = tan(θ) +
∆zte

c
(8)

Therefore, A0 and An are two intuitive parameters of the CST method. The other coefficients of
the CST method are nonintuitive. Equation (2) can be written as follows:

C(ψ)
n

∑
i=0

Ai ×
n!

i!(n− i)!
× ψi × (1− ψ)n−i = ζ(ψ)− ψζT (9)

S0(ψ) = C(ψ)× n!
i!(n− i)!

× ψi × (1− ψ)n−i (10)

To solve for the Bernstein coefficients Ai to represent a given airfoil, Equation (9) can be built
as follows: 

S0(ψ0) S1(ψ0) · · · Sn(ψ0)

S0(ψ1) S1(ψ1) · · · Sn(ψ1)
...

. . .
...

S0(ψn) S1(ψn) Sn(ψn)

 ·


A0

A1
...

An

 =


ζ(ψ0)− ψ0ζT
ζ(ψ1)− ψ1ζT

...
ζ(ψn)− ψnζT

 (11)

S =


S0(ψ0) S1(ψ0) · · · Sn(ψ0)

S0(ψ1) S1(ψ1) · · · Sn(ψ1)
...

. . .
...

S0(ψn) S1(ψn) Sn(ψn)

 A =


A0

A1
...

An

 Z =


ζ(ψ0)− ψ0ζT
ζ(ψ1)− ψ1ζT

...
ζ(ψn)− ψnζT

 where the linear

equation is given by:
SA = Z (12)

This is an ill-conditioned linear equation. If S or Z matrix had a slight fluctuation, such as δS or
δZ, A might appear obvious errors. The condition number of S matrix can be used to weigh multiple
of error. When the coefficient matrix S is obviously ill-conditioned, the condition number of S matrix is
much larger than 1.

The PEWI method [14,15] is used to improve the condition number of S.

S + αE (13)

where S is the (n + 1)th order positive matrix, E is the (n + 1)th order unit matrix and α is the
weight coefficient.
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When α > 0, the condition number of (S + αE) is proved smaller than S. It is very important to
choose the appropriate α value. If α is too small, (S + αE) matrix is still ill-conditioned and A matrix
calculated by Equation (11) is inaccurate. And if α is too large, the convergence rate of the linear
equation is very slow and the solution might be distorted. Therefore, we need choose the suitable α.

Taking Equation (13) into (12), this equation can be obtained.

(S + αE)A = Z + αA (14)

Bernstein coefficient matrix A can be calculated by the iterative algorithms. The iterative formula
is as follows:

(S + αE)A(i+1) = Z + αA(i) (15)

where A(i+1) = A(i) + e(i), so

(S + αE)(A(i) + e(i)) = Z + αA(i) ⇒
(S + αE)A(i) + (S + αE)e(i) = Z + αA(i) ⇒
(S + αE)e(i) = Z− SA(i)

(16)

Obviously, we can gain the optimal solution of Equation (16) as long as 2-norm of e(i) reaches the
setting precision. The iterative process is presented in Figure 1. i is the number of iterations of 2-norm
and j is the number of iterations of the PEWI method. ε1 and ε2 are the setting errors. ∆ is the step size
of every iteration.
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Figure 1. Iterative process of the pivot element weighting iterative method. RMSE: root mean square
error; CST: class function/shape function transformation method.

2.2. Fitting Airfoil by the CST Method

Three typical airfoils RAE2822, NACA0012, and S1223 are chosen in this study. These airfoils
are fitted by the CST method. The fitting residuals are represented in Figures 2 and 3. As the
order of Bernstein polynomial increases, the residuals of RAE2822 and NACA0012 airfoil decrease.
When the Bernstein polynomial is below 8th order, the root mean square error (RMSE) of RAE2822 and
NACA0012 airfoil can meet the requirement of the typical wind-tunnel model tolerance. When BPO
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is 8, the RMSE of the RAE2822 airfoil can reach 2.2224 × 10−5 m. When BPO is 3, the RMSE of the
NACA0012 airfoil can reach 7.7413 × 10−5 m.Algorithms 2018, 11, x FOR PEER REVIEW  5 of 21 

 

Figure 2. CST parameterization residuals of the RAE2822 airfoil. 

 

Figure 3. CST parameterization residuals of the NACA0012 airfoil. 

The comparison between the CST parametric airfoil and the original RAE2822 airfoil is 

represented in Figure 4a. When the 6th order Bernstein polynomial is applied in the CST method, 

the fitting airfoil curve has in good agreement with the initial RAE2822 airfoil. When BPO = 6, the 

RAE2822 airfoil second derivatives are shown in Figure 4b. The upper and lower airfoils have no 

obvious fluctuations for BPO = 6. The NACA0012 airfoil has a finite thickness at the trailing edge. 

When BPO is 3, the fitting airfoil of CST method is closer to the initial NACA0012 airfoil in Figure 

5a. When BPO = 3, the NACA0012 airfoil second derivatives are shown in Figure 5b. The upper and 

lower airfoils have no fluctuations for BPO = 3. 

Figure 2. CST parameterization residuals of the RAE2822 airfoil.

Algorithms 2018, 11, x FOR PEER REVIEW 5 of 21 

Figure 2. CST parameterization residuals of the RAE2822 airfoil. 

Figure 3. CST parameterization residuals of the NACA0012 airfoil. 

The comparison between the CST parametric airfoil and the original RAE2822 airfoil is 

represented in Figure 4a. When the 6th order Bernstein polynomial is applied in the CST method, 

the fitting airfoil curve has in good agreement with the initial RAE2822 airfoil. When BPO = 6, the 

RAE2822 airfoil second derivatives are shown in Figure 4b. The upper and lower airfoils have no 

obvious fluctuations for BPO = 6. The NACA0012 airfoil has a finite thickness at the trailing edge. 

When BPO is 3, the fitting airfoil of CST method is closer to the initial NACA0012 airfoil in Figure 

5a. When BPO = 3, the NACA0012 airfoil second derivatives are shown in Figure 5b. The upper and 

lower airfoils have no fluctuations for BPO = 3. 

Figure 3. CST parameterization residuals of the NACA0012 airfoil.

The comparison between the CST parametric airfoil and the original RAE2822 airfoil is represented
in Figure 4a. When the 6th order Bernstein polynomial is applied in the CST method, the fitting airfoil
curve has in good agreement with the initial RAE2822 airfoil. When BPO = 6, the RAE2822 airfoil
second derivatives are shown in Figure 4b. The upper and lower airfoils have no obvious fluctuations
for BPO = 6. The NACA0012 airfoil has a finite thickness at the trailing edge. When BPO is 3,
the fitting airfoil of CST method is closer to the initial NACA0012 airfoil in Figure 5a. When BPO = 3,
the NACA0012 airfoil second derivatives are shown in Figure 5b. The upper and lower airfoils have
no fluctuations for BPO = 3.
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Figure 5. (a) Comparison between the CST parametric airfoil and the NACA0012 airfoil (b) NACA0012
airfoil second derivatives when BPO = 3.

On the basis of the above analysis, we can conclude that low order Bernstein polynomial can
accurately fit the small camber airfoil, such as RAE2822. And the RMSE can reach the requirement of
typical wind-tunnel model tolerances.

2.3. Parameter Matrix Analysis of the CST Method

The CST method is used to analyze the parameterization matrix of RAE2822 airfoil. As the
order of Bernstein polynomial increases, the condition number of the parameterization matrix rapidly
increases in Figure 6. The distribution of eigenvalue moduli of the parameterization matrix is presented
in Figure 7. When the numbers of parameters change from 1 to 15, maximum eigenvalue has no
obvious change. But minimum eigenvalue quickly approaches 0. So the parameterization matrix is
close to extraordinary. The larger the condition number of the parameterization matrix is, the closer
the parameterization matrix is to morbidity. The slight fluctuations of control point coordinates or the
parameterization matrix can lead to the huge change of the solution vectors and vice versa. Therefore,
two completely different solution vectors may generate quite close geometry and the difference
between them may be less than the size of one grid cell.
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Figure 7. Eigenvalue moduli of the parameterization matrix.

CST method is selected to fit the high altitude laminar S1223 airfoil. Due to the large camber of
S1223, the fitting airfoil has obvious deformation, especially the location of leading and trailing edge
in Figure 8a. When BPO = 8, the S1223 airfoil second derivatives are shown in Figure 8b. The upper
and lower airfoils have the obvious fluctuations. So it is necessary to increase the order of Bernstein
polynomial. As mentioned above: the larger the order of the parameterization matrix is, the closer the
parameterization matrix is to morbidity. And the slight fluctuations of the parameterization matrix or
control point coordinates can lead to the large change of the solution vectors, which may go against
the global optimum design of the airfoil. At the same time the more the parameters are, the lower the
optimization efficiency is. Therefore, it is necessary to weigh the order of Bernstein polynomial and
time consumed by the airfoil optimization.
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Figure 8. (a) Comparison between the CST parametric airfoil and the S1223 airfoil (b) S1223 airfoil
second derivatives when BPO = 8.

The fitting residuals with different order Bernstein polynomial are presented in Figure 9. As the
order of the polynomial parameterization increases, the residuals of S1223 airfoil decrease. So PEWI
method is used to improve the coefficient matrix of the CST method. When BPO is 14, the RMSE can
reach the requirement of typical wind-tunnel model tolerances. Meanwhile the variables are too many
in BPO = 20. Hence, BPO = 14 is chosen.
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Figure 9. CST parameterization residuals of the S1223 airfoil.

When BPO is 14, the condition number of the coefficient matrix from the parameterization of the
upper airfoil is 1.5819 × 108 and the lower airfoil is 2.1266 × 108. The coefficient matrix is obviously
morbid. Any two elements of Z matrix change a little, such as: z3 = z3 + 0.00001, z10 = z10 + 0.00001,
the element value of the parameterization matrix is shown in Figure 10. The amplitudes of the
parameterization matrix have the huge changes. So it is disadvantageous for the optimization design
of S1223 airfoil.
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Aiming at the above problem, PEWI method is used to change the condition number of the
coefficient matrix. When ε1 and ε2 are set as 0.000001 in Figure 1, α = 100 of the upper airfoil and α = 50
of the lower airfoil can be obtained. So the condition number of the upper airfoil change to 1.0154 and
the lower is 1.0284. The Bernstein coefficients of the original CST method and the modified CST with
PEWI method are showed in Figures 11 and 12. The RMSE of the upper airfoil for the CST without
PEWI is 4.4638 × 10−4 and the RMSE of the lower airfoil is 7.0917 × 10−4. And the RMSE of the upper
airfoil for the CST with PEMI is 5.5753 × 10−4 and the RMSE of the lower airfoil is 7.3029 × 10−4.
The fitting precision of the CST with PEWI is a little larger than the CST without PEWI. The essence of
the CST method is to solve the linear equation by the least square method. The least square method
is the unbiased estimate to obtain the minimum variance. Moreover, the PEWI method is a biased
estimate which sacrifices the fitting precision to obtain the more stable linear equation and accurate
solution. Because the linear equation is more stable, the fitting precision can be improved by increasing
the order of the Bernstein polynomial.

Algorithms 2018, 11, x FOR PEER REVIEW  9 of 21 

 

Figure 10. Comparison of the parameterization matrix using CST. 

Aiming at the above problem, PEWI method is used to change the condition number of the 

coefficient matrix. When ε1 and ε2 are set as 0.000001 in Figure 1, α = 100 of the upper airfoil and α = 50 of 

the lower airfoil can be obtained. So the condition number of the upper airfoil change to 1.0154 and the 

lower is 1.0284. The Bernstein coefficients of the original CST method and the modified CST with PEWI 

method are showed in Figures 11 and 12. The RMSE of the upper airfoil for the CST without PEWI is 

4.4638 × 10−4 and the RMSE of the lower airfoil is 7.0917 × 10−4. And the RMSE of the upper airfoil for the 

CST with PEMI is 5.5753 × 10−4 and the RMSE of the lower airfoil is 7.3029 × 10−4. The fitting precision of 

the CST with PEWI is a little larger than the CST without PEWI. The essence of the CST method is to 

solve the linear equation by the least square method. The least square method is the unbiased estimate 

to obtain the minimum variance. Moreover, the PEWI method is a biased estimate which sacrifices the 

fitting precision to obtain the more stable linear equation and accurate solution. Because the linear 

equation is more stable, the fitting precision can be improved by increasing the order of the Bernstein 

polynomial. 

 

Figure 11. Comparison between the CST method and the PEWI method of the upper airfoil. Figure 11. Comparison between the CST method and the PEWI method of the upper airfoil.



Algorithms 2018, 11, 163 10 of 21Algorithms 2018, 11, x FOR PEER REVIEW  10 of 21 

 

Figure 12. Comparison between the CST method and the PEWI method of the lower airfoil. 

When BPO is 14, coefficient matrix of S1223 airfoil is analyzed. Any two elements of Z matrix 

change small, such as: z3 = z3 + 0.00001, z10 = z10 + 0.00001, the element value of the parameterization 

matrix is shown in Figure 13. The parameterization matrix slightly changes, when using the modified 

CST with PEWI method. Therefore it is favorable for the optimization design of S1223 airfoil. 

  

Figure 13. Comparison of parameterization matrix using the PEWI method. 

3. Aerodynamic Optimization Design of Airfoil 

3.1. Normalization of the Design Parameters 

S1223 is chosen as the aerodynamic optimum airfoil. 30 control parameters are used for the 

upper and lower airfoil. The keyword of optimization is to set up the scope of the parameter matrix. 

Normalization of the design parameters is proposed in the paper. 

Parameter matrix is 

 1 2, , ,X nx x x   (14) 

The maximum absolute value of parameter matrix element is 

Figure 12. Comparison between the CST method and the PEWI method of the lower airfoil.

When BPO is 14, coefficient matrix of S1223 airfoil is analyzed. Any two elements of Z matrix
change small, such as: z3 = z3 + 0.00001, z10 = z10 + 0.00001, the element value of the parameterization
matrix is shown in Figure 13. The parameterization matrix slightly changes, when using the modified
CST with PEWI method. Therefore it is favorable for the optimization design of S1223 airfoil.
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3. Aerodynamic Optimization Design of Airfoil

3.1. Normalization of the Design Parameters

S1223 is chosen as the aerodynamic optimum airfoil. 30 control parameters are used for the
upper and lower airfoil. The keyword of optimization is to set up the scope of the parameter matrix.
Normalization of the design parameters is proposed in the paper.

Parameter matrix is
X = {x1 , x2, · · · , xn} (17)

The maximum absolute value of parameter matrix element is

xmax = max{|x1|, |x2|, · · · , |xn|} (18)
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So the matrix of absolute value is

X1 = {|x1| , |x2|, · · · , |xn|} (19)

Multiple matrix is

X2 =

{
xmax

|x1|
,

xmax

|x2|
, 1, · · · ,

xmax

|xn|

}
(20)

The value of ith element in X2 is 1. Multiple matrix is used as the criterion to enlarge and shrink
the other elements. The range of the criterion is [−k1, k2]. And k1, k2 > 0. So the range of every element
in X2 is

x1 ∈ [x1(1− k1
xmax
|x1|

), x1(1 + k2
xmax
|x1|

)]

x2 ∈ [x2(1− k1
xmax
|x2|

), x2(1 + k2
xmax
|x2|

)]

...

...
xi ∈ [xi(1− k1), x2(1 + k2)]

...

...
xn ∈ [xn(1− k1

xmax
|xn | ), xn(1 + k2

xmax
|xn | )]

(21)

Parameter matrix values of normalization are represented in Figure 14. Assuming that k1 and k2

are the value of upper and lower airfoil. The boundary change of S1223 can be obtained, when k2upper

is 0.04, k1lower is 0.04 and k1upper is 0.04, k2lower is 0.04. Figures 15 and 16 show that the leading edge
and trailing edge of S1223 have the obvious changes which expand the species of S1223 airfoil.
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3.2. Design of Experiment

The approximation model is established by the sample data and the design of experiment (DOE)
method is adopted to sample the design space. DOE methods include the orthogonal arrays (OA) [19],
the full factorial design (FFD), the latin hypercube design (LHD) [20] and the optimal Latin hypercube
design (Opt LHD) [21]. By comparison with the LHD, the experiment data of the Opt LHD are
uniformly distributed in the design space. And the Opt LHD has good space filling and equilibration
ability [22]. So the Opt LHD is selected to obtain the sample data.

3.3. Radial Basis Functions Neural Network Model

The Kriging [23], RSM [24], and RBF [25] methods are widely used in the surrogate model.
The disadvantage of the Kriging is that model construction can be very time-consuming and
complex [26]. The RSM is not suitable to create a global metamodel for a highly nonlinear response [27].
The RBF is suitable for the highly nonlinear problems and these problems can be modelled with limited
number of samples [27]. And when BPO is 14, the least samples of the quadratic RSM and the Kriging
with the quadratic regression model are 496. It is a huge computation for the airfoil optimization.
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The neural network consists of three layers: the input layer, the hidden layer and the output
layer, which has the ability to approximate the complex nonlinear function. So the RBF neural network
model [5] is used to establish the approximation model of the airfoil aerodynamic data.

Firstly, the RBF neural network is trained by the sample data of DOE. The approximation
relationship between aerodynamic coefficients and design parameters can be obtained. Secondly, it is
necessary to evaluate the prediction precision, in order to ensure the adaptability of the approximation
model. There are two indicators to assess the precision of the approximation model and they are the
root mean square error (RMSE) and correlation coefficient (R2). The closer the RMSE is to 0, the higher
the precision of the approximation model is. Generally, the range of R2 is from 0 to 1. The closer R2 is to
1, the better the fitting precision is. The value of R2 is larger than 0.9 [28]. In this paper, the thresholds
of the RMSE and R2 are set as 0.03 and 0.98. The number of initial sample data is 100 and 50 random
samples are used to analyze the errors of the approximation model. If the RMSE and R2 cannot reach
the requirements of thresholds, 100 new samples are added into the initial samples until the RMSE
and R2 satisfy the setting values. When the number of the samples is increase to 300, the RMSE and R2

of the lift coefficients are 0.00485 and 0.99955. And the RMSE and R2 of the drag coefficients are 0.03
and 0.98619.

In the paper the experimental data of the Opt LHD are 300 samples for the S1223 airfoil.
The approximation model based on the RBF neural network is established to calculate aerodynamic
coefficients of the S1223 airfoil. 50 samples are used to analyze the errors of the approximation model.

3.4. Genetic Algorithms

Genetic algorithms are search-optimization methods which use principles of natural genetics
and natural selection. In such methods, the possible solutions for a certain problem are represented
by some form of biological population, which evolves over generations to adapt to an environment
by selection, crossover, and mutation. Instead of working with a single solution at each iteration of
the process, a genetic algorithm (GA) works with a number of solutions, known as a population [2].
The traditional GA only has one population. The multi-island genetic algorithm (MIGA) has several
sub-populations. Then the selection, crossover, and mutation operations are executed for the every
sub-population like the traditional GA. And the individuals of the sub-populations are exchanged by
the migration operation. The calculation speed of MIGA can be faster than those of traditional genetic
algorithms [29]. The MIGA parameters of S1223 airfoil optimization are presented in Table 1.

Table 1. Parameters of MIGA.

Parameters Value

Number of generations 25
Number of sub-populations 10

Number of individuals on each sub-population 20
Interval generations of migration 4

Crossover rate 0.9
Mutation rate 0.01
Migration rate 0.3

3.5. Optimization Process

The design process is represented in Figure 17. It is divided into 4 parts, namely initialization
and normalization of the design parameters, DOE, RBF approximation model and CFD simulation of
airfoil, and GA optimization.



Algorithms 2018, 11, 163 14 of 21

Algorithms 2018, 11, x FOR PEER REVIEW  14 of 21 

Initial airfoil

Opt LHD Design of 

Experiments

Airfoil 

parameterization 

(CST)

Grid division of airfoil

Airfoil aerodynamic 

characteristics analysis

MIGA Global 

Optimization

Optimization 

airfoil

NO

Normalization of 

design parameters

Increase 

samples

YES

Initialization and 

Normalization

DOE

RBF 

Approximation 

model and CFD 

simulation of 

airfoil

GA Optimization

RMSE≤0.03  

and R2≥0.98

Establish RBF 

approximation models

 

Figure 17. Optimization process of airfoil. LHD: Latin hypercube design; RBF: radial basis functions. 

As we all know, the stratosphere low speed aircrafts include the stratosphere airship and 

long-endurance solar unmanned aerial vehicle. At the height of 20 km, the air density is 0.088 kg/m3, 

the viscosity is 1.4216 × 10−5 kg/(m·s). The speed of these aircrafts ranges from 20 m/s to 80 m/s and 

the range of Reynolds number fall between 105 and 106. The S1223 airfoil is the laminar and high lift 

airfoil, which has the good aerodynamic performance under the condition of the low Reynolds 

number [30,31]. So it can be used in the design of the high altitude propeller and the solar wing. The 

aerodynamic characteristics of the S1223 airfoil are analyzed in this paper. The optimization goal is 

to raise the lift–drag ratio of S1223. The aerodynamic constraints are the lift coefficient and drag 

coefficient. The geometric constraint is the area of the S1223 airfoil. The design conditions are that 

Ma = 0.1, α = 4°, Re = 1.86 × 105. The objective function is 

5

0

0

0

max /

s.t . 0.1 1.86 10 4

0.95

0.95

L D

L L

D D

K C C

Ma Re α

C C

C C

S S



   





  

 

where 0LC  is the lift coefficient of the intial airfoil, 0DC  is the drag coefficient of the intial airfoil, 

K is the lift-drag ratio and 0S  is the initial area. 

3.6. Validation of CFD Model 

The numerical simulations are validated by considering the experiment data of the low-speed 

and low-Reynolds number E387 airfoil [31]. C-type structure grids are generated by the Gambit 

software in Figure 18. The number of grids is 500 × 100. The first layer mesh height is set as 1.08 × 10−4 

Figure 17. Optimization process of airfoil. LHD: Latin hypercube design; RBF: radial basis functions.

As we all know, the stratosphere low speed aircrafts include the stratosphere airship and
long-endurance solar unmanned aerial vehicle. At the height of 20 km, the air density is 0.088 kg/m3,
the viscosity is 1.4216 × 10−5 kg/(m·s). The speed of these aircrafts ranges from 20 m/s to 80 m/s
and the range of Reynolds number fall between 105 and 106. The S1223 airfoil is the laminar and high
lift airfoil, which has the good aerodynamic performance under the condition of the low Reynolds
number [30,31]. So it can be used in the design of the high altitude propeller and the solar wing.
The aerodynamic characteristics of the S1223 airfoil are analyzed in this paper. The optimization goal
is to raise the lift–drag ratio of S1223. The aerodynamic constraints are the lift coefficient and drag
coefficient. The geometric constraint is the area of the S1223 airfoil. The design conditions are that
Ma = 0.1, α = 4◦, Re = 1.86 × 105. The objective function is

max K = CL/CD
s.t. Ma = 0.1 Re = 1.86× 105 α = 4◦

CL ≥ 0.95CL0

CD ≤ CD0

S ≥ 0.95S0

where CL0 is the lift coefficient of the intial airfoil, CD0 is the drag coefficient of the intial airfoil, K is
the lift-drag ratio and S0 is the initial area.

3.6. Validation of CFD Model

The numerical simulations are validated by considering the experiment data of the low-speed and
low-Reynolds number E387 airfoil [31]. C-type structure grids are generated by the Gambit software
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in Figure 18. The number of grids is 500 × 100. The first layer mesh height is set as 1.08 × 10−4

m which can ensure y plus is close to 1. Aerodynamic coefficients of the E387 airfoil are obtained
by the Fluent software. The governing equations are Reynolds-Averaged Navier–Stokes equations.
The boundary condition is the pressure far field. The turbulence model is the Spalart–Allmaras model.
The S–A model is the single equation turbulence model which is widely used in the airfoil aerodynamic
simulation. The simulation conditions are: Re = 2 × 105, µ = 1.7894 × 10−5 kg/(m·s), ρ = 1.225 kg/m3.

The airfoil performance predicted for Re = 2 × 105 by S-A turbulence model is compared to
the University of Illinois Urbana-Campaign (UIUC) [31] wind-tunnel measurements in Figure 19.
The results show that the CFD simulations are in good agreement with the experiments. So the CFD
model is feasible and accurate.
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4. Results

There are 15 design variables of the upper airfoil. The range of them is from −0.0339 to
+0.0339. The lower airfoil also has 15 design variables whose range is from −0.0263 to +0.0263.
300 different-shaped airfoil samples are generated by the Opt LHD. The lift and drag coefficients of
every sample airfoil are calculated by the numerical simulation using the SA model. These aerodynamic
data are trained as the samples of the RBF approximation model. Moreover the errors of RBF are
analyzed using 50 additional Opt LHD samples. The results are listed in Table 2.
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Table 2. Evaluation of the approximation model.

Aerodynamic Coefficient RMSE R2

CL 0.00485 0.99955
CD 0.03 0.98619

The initial and optimized airfoils are shown in Figure 20. The leading edge radius of S1223 airfoil
decreases and the camber of the whole airfoil increases. It leads to the increase of the lift coefficient
and decrease of the drag coefficient. Optimization results are represented in Table 3.
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Table 3. Optimization results.

Upper Airfoil
Variables Min Max Optimum Lower Airfoil

Variables Min Max Optimum

Aup1 −0.0339 0.0339 −0.02188 Alow1 −0.0263 0.0263 0.01346
Aup2 −0.0339 0.0339 −0.0246 Alow2 −0.0263 0.0263 0.00836
Aup3 −0.0339 0.0339 0.01508 Alow3 −0.0263 0.0263 0.00994
Aup4 −0.0339 0.0339 −0.00465 Alow4 −0.0263 0.0263 0.02331
Aup5 −0.0339 0.0339 0.0144 Alow5 −0.0263 0.0263 −0.01926
Aup6 −0.0339 0.0339 −0.01463 Alow6 −0.0263 0.0263 0.0073
Aup7 −0.0339 0.0339 0.01213 Alow7 −0.0263 0.0263 0.00906
Aup8 −0.0339 0.0339 −0.03027 Alow8 −0.0263 0.0263 0.02173
Aup9 −0.0339 0.0339 0.02574 Alow9 −0.0263 0.0263 −0.02401
Aup10 −0.0339 0.0339 0.02347 Alow10 −0.0263 0.0263 0.01487
Aup11 −0.0339 0.0339 −0.00374 Alow11 −0.0263 0.0263 9.00×10−5

Aup12 −0.0339 0.0339 −0.02438 Alow12 −0.0263 0.0263 −0.0015
Aup13 −0.0339 0.0339 −0.02732 Alow13 −0.0263 0.0263 0.00396
Aup14 −0.0339 0.0339 −0.03367 Alow14 −0.0263 0.0263 9.70×10−4

Aup15 −0.0339 0.0339 −0.02324 Alow15 −0.0263 0.0263 0.00871

Aerodynamic characteristics of the optimized airfoil are compared with the initial airfoil under
the condition of Ma = 0.1 and Re = 1.86 × 105. The results are shown in Figure 21.
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Figure 21. Comparisons of aerodynamic characteristics between the optimized airfoil and the initial
S1223 airfoil.

It can be seen from Figure 21 that the lift coefficient of optimized airfoil maximumly increases by
about 1%, the drag coefficient maximumly decreases by about 1.57% and the lift-drag ratio maximumly
increases by about 2.57% when angle of attack changes from 0◦ to 8◦. When angle of attack is greater
than 8◦, the lift coefficient of the optimized airfoil reduces and drag coefficient increases. Because the
leading edge radius of the optimized airfoil decreases and the trailing edge thickness becomes thin,
compared with the initial airfoil. Therefore, it leads to the expansion of the laminar flow separation
area for the optimized airfoil.

Velocity streamlines of the optimized and initial airfoils under the condition of 12◦ are presented in
Figure 22. It indicates that the laminar flow area of the initial airfoil is larger than the optimized airfoil.
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In the case of 12◦, the wall shear stresses in x axis direction of the initial and optimized airfoil
are shown in Figure 23. τx of the initial airfoil is less than 0 in the location of 0.7196 chord. So the
coordinate of the laminar flow separation point is 0.7196 chord of the initial S1223 airfoil. And τx

of the optimized airfoil is less than 0 in the location of 0.6695 chord. It indicates that the coordinate
of the laminar flow separation point is 0.6695c for the optimized airfoil. Therefore, the laminar flow
separation area of the optimized airfoil is bigger than the initial airfoil. And the lift coefficient of the
optimized airfoil reduces and drag coefficient increases at the large angle of attack compared with the
initial S1223 airfoil.
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The optimum results that lift-drag ratio increases by 2.27% and the drag coefficient decreases by
1.4% are listed in Table 4. The aerodynamic data of the RBF model obtained by GA optimization are
similar with CFD simulation.

The velocity streamlines of the optimized and initial airfoils under the condition of 4◦ are presented
in Figures 24 and 25. Pressure coefficient distribution of the initial and optimized airfoil is represented
in Figure 26. It is obvious that the optimized airfoil has the larger laminar zone than the initial airfoil.
In Figure 25 the reverse flow zone of the initial airfoil is bigger. So the drag of the optimized airfoil is
smaller than the initial airfoil. And the optimized airfoil has the larger velocity than the initial airfoil at
the upper airfoil. So the dynamic pressure of the optimized airfoil is bigger and the lift is larger than
the initial airfoil. From Figure 26, though the pressure of the upper airfoil increases near the trailing
edge for the optimized airfoil, the pressure of the upper airfoil from 15% to 70% chord decreases.
And the pressure of the lower airfoil from 5% to 90% chord increases. So the lift of the optimized airfoil
is larger than the initial airfoil.
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Table 4. Aerodynamic performances of the initial and optimized airfoils.

CL CD CL/CD ∆CL ∆CD ∆CL/CD

Initial airfoil 1.5119 0.0321 47.1
Optimized airfoil (RBF) 1.5247 0.03165 48.17 0.85% −1.40% 2.27%

CFD 1.5244 0.03165 48.16 0.83% −1.40% 2.25%

5. Conclusions

The CST method is widely used in the airfoil parameterization for the airfoil aerodynamic design.
The low order Bernstein polynomial, which can reach the requirement of the fitting precision, can be
applied to fit the symmetric NACA0012 airfoil and small camber RAE2822 airfoil. But the low order
Bernstein polynomial cannot reach the fitting precision for the large camber S1223 airfoil. So the
number of control parameters needs to be added. The more the number of control parameters is,
the closer the coefficient matrix of CST is to morbidity. Therefore, the PEWI method is proposed to
improve the ill-conditioned matrix and this method is suitable for the optimization design of airfoil.
And the robustness of the CST method can be enhanced.
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Setting the range of design parameters is the crucial step for the airfoil optimization. So the
normalization method of design variables is put forward in this paper and it is helpful for the airfoil
optimization to obtain the suitable design parameters.

The samples of aerodynamic coefficients for the S1223 airfoil are generated by the optimal Latin
hypercube design method. The RBF neural network is trained by these samples. The S1223 airfoil is
optimized to obtain the maximum lift-drag ratio by GA. The optimum airfoil has the higher camber by
comparison with the initial airfoil. The optimum results in which the lift-drag ratio increases by 2.27%
and the drag coefficient decreases by 1.4% are good values for the airfoil design.
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