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Abstract: Container ships must pass through multiple ports of call during a voyage. Therefore, forecasting
container volume information at the port of origin followed by sending such information to
subsequent ports is crucial for container terminal management and container stowage personnel.
Numerous factors influence container allocation to container ships for a voyage, and the degree of
influence varies, engendering a complex nonlinearity. Therefore, this paper proposes a model based
on gray relational analysis (GRA) and mixed kernel support vector machine (SVM) for predicting
container allocation to a container ship for a voyage. First, in this model, the weights of influencing
factors are determined through GRA. Then, the weighted factors serve as the input of the SVM model,
and SVM model parameters are optimized through a genetic algorithm. Numerical simulations
revealed that the proposed model could effectively predict the number of containers for container
ship voyage and that it exhibited strong generalization ability and high accuracy. Accordingly, this
model provides a new method for predicting container volume for a voyage.

Keywords: container transportation; prediction of voyage container volume; SVM; GRA

1. Introduction

Container transportation is a highly complicated process and involves numerous parties,
necessitating close cooperation between ports, ships, shipping companies, and other relevant
departments. Therefore, container transportation management is characterized by extremely detailed
planning [1,2]. For example, container terminals must formulate strategies such as berthing plans [3],
container truck dispatch plans, yard planning systems, and yard stowage plans [4–6]. In addition,
ships or shipping companies must formulate voyage stowage plans for container ships at the port of
departure. The number of containers in the subsequent port must be predicted, and such prediction
information forms a crucial basis for the subsequent plan. These processes must be completed before
the development of a stowage system for full-route container ships [7].

Changes in the number of containers allocated to container ships are influenced by several factors,
which are characterized by uncertain information; this thus engenders a complex nonlinear relationship
between the number of allocated containers and influencing factors [8]. The number of allocated
containers is influenced by the port of call, local GDP, port industrial structures, and collection and
distribution systems; by shipping company-related factors such as the capacity of a company, inland
turnaround time of containers, seasonal changes in cargo volume, and quantity of containers managed
by the company; and by ship-related factors such as the transportation capacity of a single ship and
the full-container-loading rate of the ship. Each of these factors exerts distinct effects on the number of
containers allocated to a container ship for one voyage; therefore, describing these factors by using
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an accurate mathematical model is difficult [9]. Traditional methods such as time series forecasting
(including exponential smoothing [10], gray prediction [11], moving average [12], and seasonal periodic
variation [13] approaches) and regression forecasting [14] typically rely on certain mathematical
theories and assumptions and necessitate the establishment of mathematical models through deductive
reasoning without considering influencing factors. By contrast, neural networks—constituting a
nonlinear and nonparametric model—can describe the nonlinear relationship between a premeasured
quantity and influencing factors, and they have self-learning and self-adaptation abilities to effectively
avoid prediction errors caused by assumptions; accordingly, neural networks have been extensively
applied in various project prediction processes. However, neural networks [15] have drawbacks such
as an indeterminable network structure, overfitting, local minimum, and “curse of dimensionality”.
Support vector machines (SVMs) [16] solve the aforementioned drawbacks of neural networks by
minimizing structural risk, and SVMs are highly suitable for predicting the number of containers
allocated to a container ship for one voyage, a problem that involves characteristics such as nonlinearity,
high dimensionality, and a small-scale sample [17–20]. An SVM entails the selection of a kernel function,
thus demonstrating the nonlinear processing ability of the learning machine; because a kernel function
is selected [21], a feature space is defined [22,23]. Nevertheless, a single kernel function cannot afford
learning ability and generalization ability simultaneously in an SVM [24]. This paper proposes mixed
kernels, which can effectively improve the predictive performance of an SVM model with weighted
arrays of polynomial and radial basis kernel functions.

As mentioned, each of the aforementioned factors exerts distinct effects on the various factors
influencing the number of allocated containers in one voyage. If such differences are neglected, the
prediction results would be distorted [25]. Therefore, this paper proposes a model based on gray
relational analysis (GRA) theory [26] and mixed kernel SVM for predicting container allocation to a
container ship. In this model, GRA is applied to obtain the gray relational ordinal of each influencing
factor, thus determining the weight of each factor. Subsequently, the weighted influencing factors serve
as inputs to the SVM model, thus resulting in the mixed kernel SVM prediction model. To solve more
complex parameter optimization problem in the mixed kernel SVM model, a genetic algorithm (GA) is
adopted for SVM parameter optimization [27,28]. Simulations are presented herein to demonstrate the
effectiveness of this method. The novelty of this paper is that it proposes a mixed kernel SVM model
for predicting the number of containers allocated to a container ship for a voyage.

2. Gray Relation Analysis

Gray relation analysis is the serialization and patterning of the gray relation between an operating
mechanism and its physical prototype, which is either not clear at all or certainly lacks a physical
prototype. The “essence” of the analysis is an overall comparison of the measurements with a reference
system [29]. The technical connotation of gray relation analysis is: (i) acquiring information about
the differences between sequences and establishing a difference information space; (ii) establishing
and calculating the differences to compare with the measurements (gray correlation degree); and (iii)
establishing the order of the relation among the factors to determine the weight of each influencing
factor [30]. The calculation steps are as follows [31]:

Step 1: Set a sequence X0 = (x0(1), x0(2), · · · , x0(k), · · · , x0(n)) as the reference sequence, i.e.,
the object of study and Xi = (xi(1), xi(2), · · · , xi(k), · · · , xi(n),)(i = 1, 2, · · · , m) as the comparative
sequence, i.e., the influencing factors.

Step 2: Data conversion or dimensionless processing for which, the initialization conversion
is adopted in this study, wherein the first variable of each sequence is used to remove all the other
variables to obtain the initial value of the image Yi(k):

Yi(k) =
Xi(k)
Xi(1)

(1)

where i = 0, 1, 2, · · · , m and k = 1, 2, · · · , n.
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Step 3: Calculate the gray relation coefficient γ(Y0(k), Yi(k)) of Y0(k) and Yi(k):

γ(Y0(k), Yi(k)) =
min

i
min

k
∆0i (k) + ζ max

i
max

k
∆0i(k)

∆0i(k) + ζ max
i

max
k

∆0i(k)
(2)

∆0i(k) = |Y0(k)−Yi(k)| (3)

where ζ ∈ [0, 1] is the resolution coefficient. The resolution coefficient ζ determines the result of the
correlation analysis. The literature [32] shows that when ζ ≤ 0.05, the resolution of the correlation
degree changes more obviously, so ζ = 0.05 is selected in this paper.

Step 4: Calculate the correlation degree γ(Y0, Yi) of the subsequence Yi(k) of the parent sequence
Y0(k):

γ(Y0, Yi) =
1
n

n

∑
k=1

γ(Y0(k), Yi(k)) (4)

Compare γ(Y0, Yi) with γ
(
Y0, Yj

)
(i 6= j), and if γ(Y0, Yi) > γ

(
Y0, Yj

)
, it is indicated that the ith

factor has a greater impact on the results than the jth factor.
Step 5: Calculate the weight of the various influencing factors:

w(Yi) =
γ(Y0, Yi)

m
∑

i=1
γ(Y0, Yi)

(5)

3. Mixed Kernel Function SVM Prediction Model

3.1. Support Vector Machine for Regression

A support vector machine (SVM) was officially proposed by Cortes & Vapnik in 1995, which
was a significant achievement in the field of machine learning. Vapnik et al. [16,17] introduced an
insensitive loss function ε based on the SVM classification and obtained a support vector machine for
regression (SVR), in an attempt to solve the regression problem. The structural diagram of the SVR is
shown in Figure 1 in which the number of allocated containers of the output container ship for one
voyage, g(x), is a linear combination of intermediate nodes [33]. Each intermediate node corresponds
to a support vector, x1, x2, · · · , xl represents the input variable, α∗i − αi is the network weight, and
K(xi, x) is the inner-product kernel function [34].

The algorithm is as follows:
Step 1: Given a training set, T = {(x1, y1), · · · , (xl , yl)} ∈ (Rn ×Y)l , where xi ∈ Rn, yi ∈ Y =

R, i = 1, · · · , l.
Step 2: Select the appropriate kernel function K(x, x′), the appropriate precision ε > 0 and penalty

parameter C > 0.
The kernel function effects the transformation from space Rn to Hilbert space Φ : x → Φ(x) ,

Φ : x′ → Φ(x′) i.e., it replaces the inner product in the original space, K(x, x′) = (Φ(x) ·Φ(x′ )). The
insensitive loss function. c is as given below:

c(x, y, g(x)) =

{
0,

|y− g(x)| − ε,
|y− g(x)| < ε

others
(6)

ε is a positive number selected in advance and when the difference between the observed value y
and predicted value g(x) of ε point does not exceed a given value set in advance, the predicted value
g(x) at that point is considered to be lossless, although the predicted value g(x) and the observed
value y may not be exactly equal. An image of the insensitive loss function ε is shown in Figure 2.
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Step 3: Construct and solve convex quadratic programming

min
α(∗) ∈ R2l

αi

1
2

l
∑

i,j=1

(
α∗i − αi

)(
α∗j − αj

)
K
(

xi, xj
)
+ ε

l
∑

i=1

(
α∗i + αi

)
−

l
∑

i=1
yi
(
α∗i − αi

)

s.t.
l

∑
i=1

(
α∗i − αi

)
= 0

0 ≤ α
(∗)
i ≤ C, i = 1, · · · , l

(7)

The solution is given by the expression a(∗) =
(

α1, α∗1 , · · · , αl , α∗l

)T
.

Step 4: Calculation of b: Select the component αj or α∗k of a(∗) in the open interval (0, C). If αj is
selected, then

b = yj −
l

∑
i=1

(α∗i − αi)K
(

xi, xj
)
+ ε (8)

and if α∗k is selected, then

b = yk −
l

∑
i=1

(α∗i − αi)K(xi, xk)− ε (9)
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Step 5: Construct the decision function

y = g(x) =
l

∑
i=1

(α∗i − αi)K(xi, x) + b (10)

3.2. Construction of Mixed Kernel Function

The assessment of the learning performance and generalization performance of the SVM depends
on the selection of the kernel functions. Two types of kernel functions are widely used: (1) the q
polynomial kernel function, K(x, x′) = [(x · x′) + 1]q, (q = 1, 2, · · ·) and (2) the Gaussian radial basis
kernel function, K(x, x′) = exp

(
−‖x− x′‖2/σ2

)
, (σ > 0) [35].

The polynomial kernel function is a global kernel function with strong generalization ability
but weak learning ability [36], whereas the Gaussian radial basis kernel function is a local kernel
function with strong learning ability but weak generalization ability. It is difficult to obtain good
results in regression forecasting [37] by using only a single kernel function. Moreover, there are certain
limitations in using the SVM with a single kernel function to predict the non-linear change in the data
of the number of allocated containers of the container ship for one voyage.

A mixed kernel function is a combination of single kernel functions, integrating their advantages
while compensating for the drawbacks, to obtain a performance that can not be achieved by a single
kernel function. The mixed function proposed in this study is based on a comprehensive consideration
of the local and global kernel functions. According to Mercer’s theorem, the convex combination of
two Mercer kernel functions is a Mercer kernel function, and thus, the following kernel functions given
by Equation (11) are also kernel functions:

K
(

x, x′
)
= (1− ρ) exp

(
−‖x− x′‖2/σ2

)
+ ρ
[(

x · x′
)
+ 1
]q (11)

where 0 < ρ < 1, and ρ is the weight adjustment factor.
In Equation (11), the flexible combination of the radial basis kernel function and polynomial

kernel function is obtained by adjusting the value of ρ [38]. When ρ > 0.5, the polynomial kernel
function is dominant and the mixed function shows strong generalization ability and when ρ < 0.5,
the radial basis kernel function is dominant, and the mixed kernel function shows strong learning
ability. Therefore, the mixed kernel function SVM exhibits a better overall performance in predicting
the number of allocated containers of the container ship for one voyage.

3.3. Parameter Optimization

The prediction accuracy of the mixed kernel function SVM is related to the insensitive loss
parameter ε, penalty parameter C, polynomial kernel function parameter q, width of the radial basis
kernel function σ, and the weight adjustment factor ρ. At present, when the SVM is used for regression
fitting prediction, the methods for determining the penalty parameters and kernel parameters mainly
include the experimental method [39], grid method [40], ant colony algorithm [41], and particle swarm
algorithm [42]. Although the relevant parameters for the experiment can be obtained by a large
number of calculations, the efficiency is low and the selected parameters do not necessarily measure
up to the global optimum. By setting the step size for the data within the parameter range, the grid
method sequentially optimizes and compares the results to obtain the optimal parameter values. If the
parameter range is large and the set step size is small, the time spent in the optimization process is too
long, and the result obtained may be a local optimum. As a general stochastic optimization method, the
ant colony algorithm has achieved good results in a series of combinatorial optimization procedures.
However, the parameter setting in the algorithm is usually determined by experimental methods
resulting in a close interdependence between the optimization performance of the method and human
experience, making it difficult to optimize the performance of the algorithm. Due to the loss of diversity
of species in search space, the particle swarm algorithm leads to premature convergence and poor local
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optimization ability [43,44]. Therefore, it is of great importance to apply the appropriate optimization
algorithm for optimal combinatorial results of the parameters of the support vector of the mixed kernel
functions to obtain the SVM with the best performance [45], which will ensure an accurate prediction
of the number of allocated containers of the container ship for one voyage.

The GA [46] is the most widely used successful algorithm in intelligent optimization. It is a
general optimization algorithm with a relatively simple coding technique using genetic operators.
Its optimization is not restrained by restrictive conditions and its two most prominent features are
implicit parallelism and global solution space search. Therefore, GA is used in this study to optimize
the parameter combination (ε C q σ ρ) consisting of 5 parameters.

In the optimization of the SVM parameter combination of the mixed kernel function by using GA,
each chromosome represents a set of parameters and the chromosome species search for the optimal
solution through the GA (including interlace operation and mutation operation) and strategy selection.
As the objective of optimizing the SVM parameters of the mixed kernel function is to obtain better
prediction accuracy, the mixed kernel function (εn Cn qn σn ρn) SVM model is trained and then tested
by 5 × cross validation. Proportional selection is the selection strategy adopted in this study. After the
probability is obtained, the roulette wheel is used to determine the selection operation and hence, the
fitness function is defined as the reciprocal of the prediction error of the mixed kernel function SVM as
given below:

F = 1

/
1
5

5

∑
i=1

[
1
m

NP

∑
j=1

(
P̂ij − Pij

)2
]

(12)

where NP is the number of data in each sample subset, P̂ij is the predicted value, and Pij is the actual
value. Thus, the chromosome with the minimum fitness function value in the whole chromosome
swarm as well as its index among the chromosome swarm is determined.

The step-wise process of optimizing the parameters (ε C q σ ρ) by using GA is given below and
the flow diagram is illustrated in Figure 3.

Step 1: Data preprocessing, mainly including normalization processing and dividing the sample
data into training data and test data.

Step 2: Initialize various parameters of the GA and determine the range of values of the various
parameters of the mixed kernel function SVM. First, set the maximum number of generations (gen = 50),
population size (NP), individual length, generation gap (GGAP = 0.95), crossover rate (Px = 0.7), and
mutation rate (Pm = 0.01). Next, set the range of the parameters (ε C q σ ρ). Since this optimization
model (GA) is not the highlight in this paper, the criteria for parameter selection, i.e., gen = 50, GGAP
= 0.95, Px = 0.7, Pm = 0.01, are not given here in detail, and the selection of parameters is based on the
empirical practice provided in reference [46]. Moreover, the setting of these parameters has achieved
good results in this paper.

Step 3: Encode the chromosomes and generate the initial population. Encode the chromosomes in
a 7-bit binary and randomly generate NP individuals (s1, s2, · · · , sNP) to form the initial population S
(S = {s1, s2, · · · , sNP}).

Step 4: Calculate the fitness of each individual. Find the minimum mean squared error (MSE)
among the GA swarm.

Step 5: If the termination condition is satisfied, the individual with the greatest fitness in S
is the most sought after result which is then decoded to obtain the optimal parameters (ε C q σ ρ).
The optimized parameters (ε C q σ ρ) are used to train the SVM model, which generates the prediction
result. This marks the end of the algorithm.

Step 6: Proportional selection is performed by the roulette wheel method, and the selected
probability is calculated by using Equation (13). 95% of the individuals are selected from the parent
population S to form the progeny population S1 (as GGAP = 0.95). Genetic operations are performed
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on new populations, crossover operations are performed using single tangent points, and mutation
operations are performed using basic bit variation operations.

Pi = Fi

/
NP

∑
i=1

Fi (13)

Step 7: Subsequent to the genetic manipulation, a new population S3 is obtained and the
parameters (ε C q σ ρ) are calculated. The SVM model is then trained with the new parameters.

Step 8: S3 is now considered to be the new generation population, i.e., S is replaced by S3,
gen = gen + 1, and the process is repeated from step 4.
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4. Example Analysis

This study set X0 = (x0(1), x0(2), · · · , x0(k), · · · , x0(n)) as the reference sequence (i.e., the number
of containers for a voyage (the study object)) and Xi = (xi(1), xi(2), · · · , xi(k), · · · , xi(n),)(i = 1, 2, · · · , m)

as the comparative sequence (i.e., factors influencing the number of allocated containers for one voyage
during the voyage period). Parameter n represents the number of samples and m represents the number of
influencing factors; in this study, m = 9. GRA was applied. The weighted influencing factors were then
used as the input of the mixed kernel function SVM.



Algorithms 2018, 11, 193 8 of 15

4.1. Data Samples

To establish a model for forecasting the number of containers allocated to a container ship for one
voyage, factors influencing the number of allocated containers must be analyzed and an index system
for forecasting the number of allocated containers must be established. Numerous factors influence the
number of containers allocated to a container ship for one voyage; such factors include the port of call,
the company (fleet) to which the ship belongs, and the ship itself. A predictive index for forecasting
container allocation is outlined as follows (i represents the ith influencing factor, i = 1, 2, · · · , m):

(1) X1, local GDP of the region in which the port of call is located, which can be calculated on the
basis of the formula actual amount/100 million yuan;

(2) X2, changes in port industrial structures, which can calculated according to the percentage
occupied by the tertiary industry;

(3) X3, completeness of the collection and distribution system, which can calculated according to
the actual annual throughput of containers per million twenty-foot equivalent units (TEU) at the
port of call;

(4) X4, company’s capacity, which can be calculated according to the actual number of
containers/10,000 TEU;

(5) X5, inland turnaround time of containers, which can be calculated according to the actual number
of days;

(6) X6, seasonal changes in cargo volume, which can be calculated as a percentage;
(7) X7, quantity of containers handled by the company, which can be calculated according to the

actual number of containers/10,000 TEU;
(8) X8, transport capacity for a single ship, which can be calculated according to the actual number

of containers/TEU; and
(9) X9, full-container-loading rate of the ship, which can be calculated as a percentage.

For different shipping lines, ports, and container ships, collecting actual data pertaining to the
nine aforementioned factors is difficult. Moreover, information on some of these factors is treated as
confidential by company or ship management teams. To verify the practicality of the model, this study
simulated a set of data. To ensure that the sample data were reasonable and approached real situations,
this study sought information from the literature [8,9], in addition to consulting the department heads
of shipping lines and stowage operators.

The selected training samples are presented in Table 1.

Table 1. Training samples.

No. X1 X2 X3 X4 X5 X6 X7 X8 X9 X0

1 2395 75 2461 10.3 11 20 21 5200 77 1100
2 27,689 66 776 85 38 10 170 1700 85 279
3 29,960 77 2521 102.3 10 15 230 4700 69 1739
4 29,841 82 4123 162 49 13 201 3410 64 177
5 13,562 63 2357 68.9 39 20 150 1200 73 110
6 17,369 59 2037 60.3 22 26 120 800 62 205
7 14,650 71 1521 59 13 29 147 2800 73 347
8 30,550 58 798 47.7 26 15 128 3600 88 561
9 25,103 54 567 110.3 13 10 235 2000 65 850

10 14,650 65 668 85.6 25 12 164 2590 86 496
11 14,023 49 732 77.7 16 30 139 2810 59 594
12 19,776 67 651 56 30 21 98 1400 71 350

4.2. Determining the Weight of Influencing Factors

As indicated by the data in the table, the order of magnitude of the sequences was quite different,
and the two sequences were standardized using Equation (1). The correlation between each influencing
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factor and the number of containers allocated to the container ship for one voyage was calculated
using Equations (2), (3) and(4), and the calculation results are presented in Table 2.

Table 2. Correlation between each influencing factor and study object.

Factors Relevance Factors Relevance Factors Relevance

X1 0.1669 X4 0.1773 X7 0.1770
X2 0.6672 X5 0.3998 X8 0.8345
X3 0.7084 X6 0.6206 X9 0.6232

As shown in Table 2, the correlation degrees of X1, X4, and X7 were all approximately 0.17,
indicating that the three influencing factors had the lowest effect on the number of allocated containers
for one voyage and could be ignored. The correlation degree of X5 was 0.3998, signifying that this
factor had little effect on the number of allocated containers for one voyage; the correlation degrees of
X2, X6, X3, and X9 were higher than 0.6, indicating that these three factors had a significant effect on
the number of allocated containers for one voyage. However, the correlation degree of X8 was 0.8345,
signifying that this factor had the greatest effect on the number of allocated containers for one voyage.
The weight of each influencing factor was calculated using Equation (5), and Table 3 shows the results.

Table 3. Weight of each influencing factor.

Factors Weight Factors Weight Factors Weight

X1 0.038 X4 0.041 X7 0.040
X2 0.153 X5 0.091 X8 0.191
X3 0.162 X6 0.142 X9 0.142

As shown in Table 3, the weight values of X1, X4, and X7 were relatively low (all lower than
0.091), and the weight values of the other influencing factors were higher than 0.14, with no significant
difference. This is mainly because the other factors had greater effects on the number of allocated
containers for one voyage, and their weight values were scattered.

4.3. Prediction of Number of Allocated Containers for One Voyage Using Mixed Kernel SVM

Weighted factors could be derived by multiplying the influencing factors by the
corresponding weights:

Xi = wiXi, i = 1, 2, · · · , 9 (14)

where Xi is the weighted factor influencing the number of allocated containers for one voyage.
When Xi in the composition vector Q =

[
X1, X2, · · · , X9

]T was considered the input variable and X0

was considered the corresponding output variable, a mixed kernel SVM for predicting the number of
allocated containers for one voyage was constructed.

All data were normalized to the interval [0, 1]. The data presented in Table 1 served as training
samples, whereas those presented in Table 4 served as test samples.

Table 4. Test samples.

No. X1 X2 X3 X4 X5 X6 X7 X8 X9 X0

1 4365 76 1596 24 13 18 43 5400 72 1250
2 23,560 69 882 87 29 12 185 1900 83 900
3 9841 81 2143 112 12 17 251 4580 70 750
4 25,590 74 4265 159 50 14 211 3390 66 500
5 18,763 62 1983 73 41 21 163 1080 74 310
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The GA control parameters were as follows: ε, C, q, σ, ρ were binary coded, with the optimal
ranges being set to ε ∈

[
10−10, 10−1], C ∈ [0, 50], q ∈ [0, 20], σ ∈ [0, 500], and ρ ∈ [0, 1], respectively.

The series size was 50, maximum evolution algebra was 50 generations, crossover probability was 0.7,
mutation probability was 0.01, and the judgment termination accuracy was 10−4.

This study applied MSE, mean absolute percentage error (eMAPE), and correlation coefficients
(R) to evaluate the predictive performance of the model. R was set to the interval [0, 1].
Lower MSE and eMRE values and R values approaching 1 were considered to indicate higher model
predictive performance.

MSE = 1
l

l
∑

i=1
(yi − yi)

2

eMAPE = 1
l

l
∑

i=1

∣∣∣ yi−yi
yi

∣∣∣ · 100%

R =

√√√√√√
(

l
l

∑
i=1

yiyi−
l

∑
i=1

yi
l

∑
i=1

yi

)2

(
l

l
∑

i=1
y2

i −
(

l
∑

i=1
yi

)2)(
l

l
∑

i=1
y2

i −
(

l
∑

i=1
yi

)2)
(15)

where l is the number of samples, yi(i = 1, 2, · · · l) is the real value of the ith sample, and
yi(i = 1, 2, · · · l) is the predicted value of the ith sample.

4.4. Simulation Results and Analysis

The parameters
(
ε̂ Ĉ q̂ σ̂ ρ̂

)
of the mixed kernel SVM were obtained through GA optimization,

which was used to establish the mixed kernel SVM model and predict the number of voyage containers
in the test samples. The various input variables affected the predictive performance of the model, and
the specific results are presented in Table 5 and Figure 4.

Table 5. Comparison of predictions for different input variables.

No. Actual
SVM-Mixed GRA-SVM-Mixed GRA-SVM-Mixed-D

Predictive Relative Error Predictive Relative Error Predictive Relative Error

1 1250 1406 12.48 1263 1.04 1264 1.12
2 900 870 −3.33 899 −0.11 781 −13.22
3 750 807 7.60 769 2.53 757 0.93
4 500 526 5.20 479 −4.20 484 −3.20
5 310 328 5.81 314 1.29 325 4.84

MSE 5897 197.6 2977.4
eMAPE 6.88 1.83 4.66

R 0.9908 0.9993 0.9877
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The calculation results revealed that under the same model parameters, changing the
input variables engendered different predictive performance levels. The input variables of the
GRA-SVM-MIXED model were constituted by all the weighted influencing factors (see Table 3 for
weight values); the input variables of the SVM-Mixed model were constituted by all the unweighted
factors. For the GRA-SVM-Mixed-D model, influencing factors with correlation degrees lower
than 0.6 were eliminated, and the remaining influencing factors were considered the model input
variables. As presented in Table 5 and Figure 4, the maximum (minimum) error, MSE, and eMRE
of the GRA-SVM-Mixed model were significantly lower than those of the GRA-SVM-mixed-D and
SVM-mixed models; in addition, the GRA-SVM-Mixed model had the highest correlation coefficient R,
indicating that the GRA-SVM-mixed model exhibited higher predictive performance than did the other
two models. As illustrated in Figures 4 and 5, the GRA-SVM-Mixed model provided closer predictions
to the actual values in the test sample than did the other two models, and no large inflection point was
observed. Furthermore, the maximum relative error observed for the GRA-SVM-Mixed model was
−4.2%, minimum error was −0.11%, and correlation coefficient was as high as 0.9993, showing higher
predictive performance. This is because after the influencing factors were subjected to gray correlation
analysis, different weights were assigned to the input variables, the intrinsic correlation characteristics
between the influencing factors and the number of allocated containers for one voyage were fully
explored, and the influencing factors with low correlation degree were eliminated. The maximum
relative error observed for the GRA-SVM-Mixed-D model was −13.22%, minimum relative error
was 0.93%, and correlation coefficient was 0.9877, which was the smallest among the three models,
and this could be attributed to the elimination of influencing factors with low correlation degrees.
Although eliminating influencing factors with low correlation degrees could simplify the structure of
the prediction model, the predictive performance of the model was relatively poor because it could not
reflect the differences among the factors.

Algorithms 2018, 11, x FOR PEER REVIEW  12 of 15 

models, and this could be attributed to the elimination of influencing factors with low correlation 

degrees. Although eliminating influencing factors with low correlation degrees could simplify the 

structure of the prediction model, the predictive performance of the model was relatively poor 

because it could not reflect the differences among the factors. 

 

Figure 5. Relative prediction error for different input variables. 

On the basis of the same sample in this study, the methods in [8,9] were used to construct models for 

predicting the number of allocated containers for one voyage, which were denoted as BP and SVM, 

respectively. As illustrated in Figure 6, the GRA-SVM-Mixed model had more stable prediction results 

and more accurate predictions than did the BP and SVM models. The test indicators in Table 6 further 

confirm these findings. As presented in Table 6, all the three models could provide good prediction results 

and satisfactory MSE and 
MAPE
e  values. The GRA-SVM-Mixed model exhibited higher predictive 

performance. Moreover, the GRA-SVM-Mixed model was determined to have significant advantages 

over the other two models from a timesaving perspective. 

 

Figure 6. Comparison of values of different models. 

Table 6. Comparison of predictive performance of different models. 

No. 
Relative Error 

BP SVM GRA-SVM-Mixed 

1 −8.88 3.12 1.04 

2 2.22 4.56 −0.11 

3 −13.6 −2.80 2.53 

4 −3.6 9.80 −4.20 

5 4.84 −0.97 1.29 

MES 4734.8 1210.6 197.6 

R  0.9883 0.9969 0.9993 

t/s 57.63 45.61 27.53 

-14

-9

-4

1

6

11

1 2 3 4 5

R
E

L
A

T
IV

E
 E

R
R

O
R

/%

SAMPLE NUMBER

SVM-Mixed GRA-SVM-Mixed GRA-SVM-Mixed-D

-14

-4

6

1 2 3 4 5

R
E

L
A

T
IV

E
 E

R
R

O
R

/%

SAMPLE NUMBER

BP GRA-SVM-Mixed SVM

Figure 5. Relative prediction error for different input variables.

On the basis of the same sample in this study, the methods in [8,9] were used to construct models
for predicting the number of allocated containers for one voyage, which were denoted as BP and
SVM, respectively. As illustrated in Figure 6, the GRA-SVM-Mixed model had more stable prediction
results and more accurate predictions than did the BP and SVM models. The test indicators in Table 6
further confirm these findings. As presented in Table 6, all the three models could provide good
prediction results and satisfactory MSE and eMAPE values. The GRA-SVM-Mixed model exhibited
higher predictive performance. Moreover, the GRA-SVM-Mixed model was determined to have
significant advantages over the other two models from a timesaving perspective.
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Table 6. Comparison of predictive performance of different models.

No.
Relative Error

BP SVM GRA-SVM-Mixed

1 −8.88 3.12 1.04
2 2.22 4.56 −0.11
3 −13.6 −2.80 2.53
4 −3.6 9.80 −4.20
5 4.84 −0.97 1.29

MES 4734.8 1210.6 197.6
R 0.9883 0.9969 0.9993

t/s 57.63 45.61 27.53

The maximum relative errors of the predictions of the three models were−13.6%, 2.53%, and 9.8%,
and the minimum relative errors were −2.22%, −0.11%, and −0.97%. The predictive performance of
a model can be expressed by the MSE and correlation coefficient R. As shown in Table 6, the MSE
of the GRA-SVM-Mixed model was 197.6 and the R was 0.9993, which was closer to 1 compared
with those of the other two models. This is because under small samples, the BP neural network
model adopts empirical risk minimization, whereas the minimum expected risk cannot be guaranteed.
Moreover, the BP neural network model can only guarantee convergence to a certain point in the
optimization process and cannot derive a global optimal solution. By contrast, the SVM model adopts
structural risk minimization and VC dimension theory, which not only minimizes the structural risk
but also minimizes the boundary of the VC dimension under a small sample, effectively narrowing
the confidence interval, thus achieving the minimum expected risk and improving the generalization
ability and promotion ability of the model. The GRA-SVM-Mixed model applies parameter ρ to adjust
the flexible use of radial basis and polynomial kernel functions in order to improve its robustness
and generalization ability. In addition, the model applies gray correlation analysis for weighting
input variables, strengthening the internal feature space structure and reflecting the differences among
influencing factors. In this study, this model exhibited good performance in predicting the number of
containers allocated to a container ship for one voyage.

5. Conclusions

This paper proposes a model for predicting the number of containers allocated to a container
ship for one voyage. First, GRA theory is applied to determine the correlation between influencing
factors and the forecasting sequence. Subsequently, different weights are allocated to each influencing
factor to reflect their differences and highlight their internal characteristics. The weighted influencing
factors serve as the input variables of the SVM prediction model, and a radial basis kernel function and
polynomial kernel function are applied to improve the generalization ability and promotion ability
of the SVM model. Finally, a GA is used to optimize the SVM parameters, and samples are trained
using the optimized parameters to improve the predictive performance of the model. Simulations
revealed that compared with an SVM model with a single kernel function and without gray correlation
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processing, the proposed model exhibited higher performance, with the minimum relative error rates
being −0.11% and −0.97%, respectively. Additionally, compared with a BP neural network model,
the GRA-SVM-Mixed model exhibited superior generalization ability, according to a relative error
analysis. Accordingly, the proposed model provides an effective method for predicting the number of
containers allocated to a container ship for one voyage.
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