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Abstract: In the paper, we tackle the least squares estimators of the Vasicek-type model driven by
sub-fractional Brownian motion:

dXt = (µ + θXt)dt + dSH
t , t ≥ 0

with X0 = 0, where SH is a sub-fractional Brownian motion whose Hurst index H is greater than 1
2 ,

and µ ∈ R, θ ∈ R+ are two unknown parameters. Based on the so-called continuous observations,
we suggest the least square estimators of µ and θ and discuss the consistency and asymptotic
distributions of the two estimators.

Keywords: least squares method; sub-fractional Brownian motion; Vasicek-type model; Young’s
integration; asymptotic distribution

1. Introduction

Statistical inference for stochastic equations is a main research direction in probability theory and
its applications. When the noise is a standard Brownian motion or a Lévy process, such problems
have been extensively studied. Some surveys and complete literature for this direction could be found
in Bishwal [1], Iacus [2], Kutoyants [3], Liptser and Shiryaev [4], Prakasa Rao [5], and the references
therein. However, in contrast to the extensive studies on semimartingale types, other statistical
inferences associated with some Gaussian processes are very limited, and a common denominator
in all these works is that it is assumed that the equation admits only an unknown parameter. Let us
consider the parameter estimates of the Vasicek-type model driven by a Gaussian process G:

dXt = (µ + θXt)dt + dGt, t ≥ 0, (1)

where µ ∈ R, θ ∈ R+ are two parameters.
When µ = 0 and G is a fractional Brownian motion with Hurst index H ∈ (0, 1), the question

has been studied by many authors. We mention the works of Berzin et al. [6], Es-Sebaiy [7], Es-Sebaiy
and Nourdin [8], Hu and Nualart et al. [9,10], Kleptsyna and Le Breton [11], Prakasa Rao [12],
and the references therein for results on parameter estimation of stochastic equations driven by
the fractional Brownian motion (fBm). When G is not a fractional Brownian motion, the research
for this question is very limited. For µ = 0 and G a sub-fractional Brownian motion, Mendy [13]
considered the least squares estimation of θ and studied the consistency and asymptotic behavior.
For µ = 0 and G a Gaussian process, El Machkouri et al. [14] showed the strong consistency and
the asymptotic distribution of the least squares estimator θ̂ of θ based on the properties of G, and as
some examples, the authors also studied the three Vasicek-type models driven by fractional Brownian
motion, sub-fractional Brownian motion, and bi-fractional Brownian motion, respectively.
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Motivated by these above results and for simplicity, in this paper, we consider the least squares
estimation of Equation (1) when G is a sub-fractional Brownian motion SH with Hurst index H ∈ ( 1

2 , 1)
and both µ and θ > 0 are unknown. That is, the parameter estimation of the so-called Vasicek-type
model driven by sub-fractional Brownian motion:

dXt = (µ + θXt)dt + dSH
t , t ≥ 0, (2)

where SH is a sub-fractional Brownian motion and µ ∈ R, θ ∈ R+ are two unknown parameters.
On the other hand, there exists still a practical motivation for studying the parameter estimation, that
is to provide optional tools to understand volatility modeling in finance. In fact, any mean-reverting
model in continuous or discrete observations can be regarded as a model for stochastic volatility.
We can consult the research monograph [15] for this modeling idea. Since stochastic volatility is not
observed for many financial markets and the sub-fractional Brownian motion is a process without
ergodicity, the discussions on the parameter estimation based on discrete observations are beyond
the scope of this article. For the sake of simplicity, we focus on tackling the least squares estimation
of Equation (2) based on the so-called continuous observations.

The so-called sub-fractional Brownian motion (sub-fBm in short) SH = {SH
t , t ≥ 0} with index

H ∈ (0, 1) is introduced by Bojdecki et al. [16], which arises from occupation time fluctuations of
branching particle systems with the Poisson initial condition. It is a mean zero Gaussian process with
SH

0 = 0 and:

RH(t, s) ≡ E
[
SH

t SH
s

]
= s2H + t2H − 1

2

[
(s + t)2H + |t− s|2H

]
(3)

for all s, t ≥ 0. For H = 1/2, SH coincides with the standard Brownian motion B. Sub-fBm SH is
neither a semimartingale nor a Markov process unless H = 1/2. The sub-fBm has many properties
analogous to those of fractional Brownian motion such as self-similarity, long/short-range dependence,
and Hölder paths. However, it has no stationary increments. Moreover, it admits the estimates:

[(2− 22H−1) ∧ 1](t− s)2H ≤ E
[(

SH
t − SH

s

)2
]
≤ [(2− 22H−1) ∨ 1](t− s)2H . (4)

More works for sub-fractional Brownian motion can be found in Bojdecki Y et al. [17,18], Li
and Xiao [19], Shen and Yan [20], Sun and Yan [21,22], Tudor [23–26], Yan et al. [27,28], and the
references therein. On the other hand, in contrast to the extensive studies on fractional Brownian
motion, there has been little systematic investigation on other self-Gaussian processes. The main
reason for this is the complexity of dependence structures, and in general, these Gaussian processes
have no stationary increments and the representation based on Wiener integral with respect to a
Brownian motion. Therefore, it seems interesting to study the asymptotic behavior associated with
other self-Gaussian processes.

Now, we consider Equation (2) with 1
2 < H < 1 and θ > 0. Clearly, we have:

Xt =
µ

θ
(eθt − 1) + eθt

∫ t

0
e−θsdSH

s

for all t ≥ 0, and the trajectory of X is γ-Hölder continuous for all γ < H (see Section 3). As an
immediate result, we see that the Young integral

∫ T
0 XtdXt is well defined for all 1

2 < H < 1. Let now
the system Equation (2) be observed continuously, and let H be known. By using the least squares
method due to Hu and Nualart [10], the least squares estimators of θ and µ can be motivated by
minimizing the contrast function:

ρ(µ, θ) =
∫ T

0

∣∣Ẋt − (µ + θXt)
∣∣2 dt.
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Minimizing the above contrast function (µ, θ) 7→ ρ(µ, θ), we introduce estimators of θ and µ

as follows:

θ̂T =
T
∫ T

0 XsdXs − XT
∫ T

0 Xsds

T
∫ T

0 Xs
2ds− (

∫ T
0 Xsds)2

(5)

and:

µ̂T =
1
T

(
XT − θ̂T

∫ T

0
Xsds

)
=

XT
∫ T

0 Xs
2ds− 1

2 (XT)
2
∫ T

0 Xsds

T
∫ T

0 Xs
2ds− (

∫ T
0 Xsds)2

, (6)

where the stochastic integral
∫ T

0 XtdXt is a Young integral for 1
2 < H < 1. Our main statement is

as follows:

• The least squares estimators θ̂T and µ̂T are strong consistent, and we have:

eθT(θ̂T − θ) −→ 2θλH
λH − ϑH

· ξ

η + µ
θ (λH − ϑH)−1

,

T
(

µ̂T − µ− 1
T

SH
T

)
−→ 2λHξ,

and:
T1−H (µ̂T − µ) −→ ζ

in distribution, as T tends to infinity, where ξ, η ∼ N(0, 1) are mutually independent,
ζ ∼ N(0, 2− 22H−1), λH = HΓ(2H), and:

ϑH = H(2H − 1)
∫ ∞

0

∫ ∞

0
e−(s+r)(s + r)2H−2dsdr.

This paper is organized as follows. In Section 2, we present some preliminaries for sub-fBm.
In Section 3, we prove the consistence of µ̂T and θ̂T . In Section 4, we investigate the asymptotic
distribution of estimators µ̂T and θ̂T .

2. Preliminaries

In this section, we briefly recall some basic definitions and results of sub-fBm. Throughout
this paper, we assume that 0 < H < 1 is arbitrary, but fixed, and let SH = {SH

t , 0 ≤ t ≤ T} be a
one-dimensional sub-fBm with Hurst index H and defined on (Ω,FH , P). SH can be written as a
Volterra process, and it is also possible to construct a stochastic calculus of variations with respect to
the Gaussian process SH , which will be related to the Malliavin calculus. Some surveys and complete
literature for Malliavin calculus of the Gaussian process could be found in Alòs et al. [29], Nualart [30],
and Tudor [25,26].

Recall that a mean zero Gaussian process SH = {SH
t , t ≥ 0} with Hurst index H ∈ (0, 1) is called

the sub-fractional Brownian motion (sub-fBm) if SH
0 = 0 and the covariance:

RH(t, s) ≡ E
[
SH

t SH
s

]
= s2H + t2H − 1

2

[
(s + t)2H + |t− s|2H

]
(7)

for all s, t ≥ 0. Consider the kernel QH(t, s) by:

QH(t, s) =
√

π

2H− 1
2

I
1
2−H
T−,2, 3−2H

4

(
uH− 1

2 1[0,t)

)
(s),
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where IH− 1
2

T−,2, 3−2H
4

denotes the Erdély–Kober-type fractional integral operator defined by:

(Iα
T−,σ,η f )(s) =

σsση

Γ(α)

∫ T

s

tσ(1−α−η)−1 f (t)
(tσ − sσ)1−α

dt, s ∈ [0, T], α > 0, (8)

(Iα
T−,σ,η f )(s) = sση

(
−d

σsσ−1ds

)n
sσ(n−η)

(
Iα+n
T−,σ,η−n f

)
(s), s ∈ [0, T], α > −n (9)

for all measurable functions f : [0, T] 7→ R, α ∈ R, σ, η ∈ R. Some basic properties of this fractional
integral can be found in Samko et al. [31]. By using the kernel QH , we have the Wiener integral
representation (in distribution) of sub-fBm SH as follows:

SH
t = κH

∫ 1

0
QH(t, s)dBs, t ∈ [0, T] (10)

for some standard Brownian motion, where:

κH =
1
π

Γ(2H) sin H.

Let E be the family of elementary functions f : [0, T] 7→ R of the form:

f =
n

∑
j=1

aj1[tj−1,tj)
, 0 = t0 < t1 < t2 < · · · < tn = T, aj ∈ R (11)

and letH be the completion of the linear space E with respect to the inner product:

〈1[0,s], 1[0,t]〉H = RH(t, s).

When 1
2 < H < 1, we can characterizeH as:

H =

{
ϕ | ‖ϕ‖2

H :=
∫ T

0

∫ T

0
ϕ(t)ϕ(s)φ(t, s)dsdt < ∞

}
with φ(t, s) = H(2H − 1)

(
|t− s|2H−2 − |t + s|2H−2). When 0 < H < 1

2 , we have:

H =

{
f | ∃ϕ f ∈ L2([0, T]), I

1
2−H
T−,2, 2H+1

4

(
2H− 1

2
√

π
ϕ f

)
(t) = tH− 1

2 f (t)

}

and ‖ f ‖2
H =

∫ T
0 ϕ f (t)2dt, and:

ϕ f (t) = IH− 1
2

T−,2, 3−2H
4

( √
π

2H− 1
2

uH− 1
2 f
)
(t).

As usual, we define the linear mapping ϕ 7→ SH( f ) on E by:

1[0,t] 7→ SH(1[0,t]) = SH
t ≡

∫ T

0
1[0,t](s)dSH

s

for all t ∈ [0, T]. Then, the linear mapping is an isometry from E to the Gaussian space generated by
SH , and it can be extended toH and:

‖ f ‖2
H = E

[
SH( f )

]2
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for any f ∈ H, which is called the Wiener integral with respect to SH , denoted by:

SH( f ) =
∫ T

0
f (t)dSH

t (12)

for any f ∈ H. If the Wiener integral
∫ T

0 f (t)dSH
t is well defined for every T > 0, we then can define

the integral: ∫ ∞

0
f (t)dSH

t

for any ϕ satisfying:

‖ f ‖2
H :=

∫ ∞

0

∫ ∞

0
f (t) f (s)φ(t, s)dsdt < ∞.

Thus, we can call Equation (12) the indefinite Wiener integral. Denote by S the set of smooth
functionals of the form:

F = f (SH(ϕ1), SH(ϕ2), . . . , SH(ϕn)), (13)

where f ∈ C∞
b (Rn) ( f and all its derivatives are bounded) and ϕi ∈ H. Denote by DH and δH the

Malliavin derivative and divergence integral operator associated with sub-fractional Brownian motion
SH , respectively. Then, we have:

DH F =
n

∑
j=1

∂ f
∂xj

(SH(ϕ1), SH(ϕ2), . . . , SH(ϕn))ϕj.

We denote by D1,2 the closure of S with respect to the norm:

‖F‖1,2 :=
√

E|F|2 + E‖DH F‖2
H

for F ∈ S . The divergence integral δH is the adjoint of derivative operator DH and:

E
[

FδH(u)
]
= E

[
〈DH F, u〉H

]
= E

[∫ T

0
ϕu(s)ϕDH F(s)ds

]
(14)

for F ∈ D1,2. We will use the notation:

δH(u) =
∫ T

0
usδSH

s

to express the Skorohod integral of an adapted process u, and the indefinite Skorohod integral is
defined as

∫ t
0 usδSH

s = δH(u1[0,t]). Clearly, the divergence integral is closed in L2.
Finally, we recall Young’s integration and some results established in Bertoin [32] and Föllmer [33].

A Borel function f on [a, b] is said to be of bounded p-variation with p ≥ 1 if:

vp( f , [a, b]) := sup
4n

n

∑
j=1
| f (xj)− f (xj−1)|p < ∞,

where the supremum is taken over all partitions 4n = {a = x0 < x1 < · · · < xn = b} of
[a, b]. The estimates Equation (4) and the normality imply that the sub-fractional Brownian motion
t 7→ SH

t admits almost surely a bounded 1
H−θ -variation on any finite interval for any sufficiently small

θ ∈ (0, H). That is, we have:
vpH (S

H , [0, t]) < ∞

for all t > 0 and pH > 1
H . The definition of p-variation for processes is slightly different. We say

that the continuous adapted process Z has a locally-bounded p-variation if there exists an increasing
sequence of stopping times {Tn, n ≥ 0} such that Tn ↑ ∞, a.s., as n → ∞ and ZTn has a bounded
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p-variation for all n. It is easy to prove that if Y is an adapted continuous process, such that for P-a.s.
ω ∈ Ω and all positive t ≥ 0, the function t 7→ Yt(ω) has a bounded p-variation on [0, t], then the
process Y has a locally-bounded p-variation.

Let X and Y be two adapted continuous processed with locally-bounded p and q variations,
respectively, such that 1/p + 1/q > 1, then one can define (see, for example, Bertoin [32]):

Zt :=
∫ t

0
YsdXs, t ≥ 0,

as the limit in probability of a Riemann sum, which generalizes the usual integral when X or Y are
semimartingales, and Z has a locally-bounded p-variation. Moreover, Bertoin [32] showed that Y′Y
has a locally-bounded q-variation and:

∫ t

0
Y′sYsdXs =

∫ t

0
Y′sdZs,

provided Y′ is an adapted continuous process with locally-bounded q-variation.

Lemma 1 (Föllmer [33]). Let U and V be two continuous adapted processes with locally-bounded p-variation
(1 ≤ p < 2). Then, ∂

∂x f (Us, Vs) and ∂
∂y f (Us, Vs) have locally-bounded two-variations, and It’s formula:

f (Ut, Vt) = f (U0, V0) +
∫ t

0

∂

∂x
f (Us, Vs)dUs +

∫ t

0

∂

∂y
f (Us, Vs)dVs (15)

holds for all f ∈ C2×2(R2). In particular, we have the integration by parts formula:

UtVt −U0V0 =
∫ t

0
UsdVs +

∫ t

0
VsdUs (16)

for all t ≥ 0.

Corollary 1. Let 1
2 < H < 1. If u is a continuous adapted process with bounded q-variations with 1 ≤ q < 2,

then Young’s integral: ∫ t

0
usdSH

s

is well-defined and:

utSH
t =

∫ t

0
usdSH

s +
∫ t

0
SH

s dus

for all t ≥ 0.

Corollary 2 (Alós et al. [29]). Let 1
2 < H < 1. If u is a continuous adapted process with bounded q-variations

with 1 ≤ q < 2 and u ∈ Dom(δH), we then have:

∫ t

0
usdSH

s =
∫ t

0
usδSH

s +
∫ t

0

∫ t

0
DH

r usφ(s, r)drds (17)

for all t ≥ 0.

3. The Consistency of the Least Squares Estimator

In this section, our main objective is to expound and to prove the next theorem, which gives the
consistency of the estimators given by Equations (5) and (6).

Theorem 1. For H ∈ ( 1
2 , 1), we have:

(1) θ̂T → θ, as T tends to infinity, almost surely.
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(2) µ̂T → µ, as T tends to infinity, almost surely.

From Equation (2), one can easily get:

Xt =
µ

θ
(eθt − 1) + eθt

∫ t

0
e−θsdSH

s =
µ

θ
(eθt − 1) + SH

t + θeθtZt (18)

for all t ≥ 0, where Zt =
∫ t

0 e−θsSH
s ds. For convenience, we denote:

f (t) =
µ

θ
(eθt − 1) and Yt =

∫ t

0
e−θsdSH

s .

Then, Equation (18) can be rewritten as below:

Xt = f (t) + eθtYt = f (t) + SH
t + θeθtZt.

It follows from the above equation that:

Yt = e−θtSH
t + θZt, (19)

for all t ≥ 0.

Lemma 2 (Lemma 2.1 in El Machkouri et al. [14]). Let H ∈ ( 1
2 , 1). Then, the sub-fractional OUprocess is

γ-Hölder continuous for all γ < H, and the Young integral:

∫ t

0
usdXs = utXt − u0X0 −

∫ t

0
Xsdus

is well-defined for all t ≥ 0 if u is an adapted continuous process with bounded p-variation with 1 ≤ p < 1
1−H+ϑ

for any sufficiently small ε ∈ (0, H). Moreover,

ZT −→ Z∞ =
∫ ∞

0
e−θrSH

r dr

almost surely and in L2(Ω), as T tends to infinity. Thus, as T → ∞,

YT −→ Y∞ = θZ∞

almost surely and in L2(Ω).

Lemma 3 (Hu-Nualart [10]). For all 1
2 < H < 1, we have:

∫ ∞

0

∫ ∞

0
e−θ(u+v)|u− v|2H−2dudv =

θ−2H

(2H − 1)
Γ(2H). (20)

Lemma 4. Let H ∈ ( 1
2 , 1). We then have that:

lim
T→∞

e−2θT
∫ T

0
f 2(s)ds =

µ2

2θ3 (21)

Proof of Lemma 4. This is a simple calculus exercise.
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Corollary 3. Let H ∈ ( 1
2 , 1). We then have that:

e−θT
∫ T

0
Xsds −→ µ

θ2 +
1
θ

Y∞ (22)

e−2θt
∫ t

0
X2

s ds −→ 1
2θ

(µ

θ
+ Y∞

)2
(23)

almost surely, and in L2(Ω), as T tends to infinity.

Proof of Corollary 3. By Lemma 2, Equation (21), and L’Hôpital’s rule, we get that:

e−2θT
∫ T

0
e2θsY2

s ds −→ 1
2θ

(Y∞)2 ,

e−2θT
∫ T

0
eθs f (s)Ysds −→ µ

2θ2 Y∞,

e−2θT
∫ T

0
X2

s ds −→ 1
2θ

(µ

θ
+ Y∞

)2
,

almost surely, as T tends to infinity. Thus, the lemma follows from Equation (18).

Lemma 5. Let H ∈ ( 1
2 , 1). Then, the convergence:

1
T

SH
T ,

1
T

e−θT
∫ T

0
SH

t Yteθtdt,
1
T

e−θT
∫ T

0
eθtdSH

t −→ 0

hold almost surely and in L2, as T tends to infinity.

Proposition 1. Let H ∈ ( 1
2 , 1). We have that:

1
T

e−θT
(∫ T

0
X2

s ds− 1
2

XT

∫ T

0
Xsds

)
−→ µ2

2θ2 +
µ

2θ
Y∞ (24)

almost surely, as T tends to infinity.

Proof of Proposition 1. By Equation (18) and Lemma 1, we have:

1
T

e−θT
(∫ T

0
X2

t dt− 1
2

XT

∫ T

0
Xtdt

)
=

1
T

e−θT
(∫ T

0

(
f (t) + eθtYt

)2
dt− 1

2

(
f (T) + eθTYT

) ∫ T

0

(
f (t) + eθtYt

)
dt
)

=
1
T

e−θT
(∫ T

0
f (t)2dt− 1

2
f (T)

∫ T

0
f (t)dt

)
+

1
T

e−θT
(∫ T

0
e2θtY2

t dt− 1
2

eθTYT

∫ T

0
eθtYtdt

)
+

1
T

e−θT
(

2
∫ T

0
f (t)eθtYtdt− 1

2
eθTYT

∫ T

0
f (t)dt− 1

2
f (T)

∫ T

0
eθtYtdt

)
≡ Λ1(T) + Λ2(T) + Λ3(T)

(25)
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for all T > 0. Clearly, an elementary calculus can show that:

Λ1(T) =
1
T

e−θT
(∫ T

0
f (t)2dt− 1

2
f (T)

∫ T

0
f (t)dt

)
=

µ2

θ2T
e−θT

(∫ T

0
(eθt − 1)2dt− 1

2
(eθT − 1)

∫ T

0
(eθt − 1)dt

)
=

µ2

θ2T
e−θT

(
1
θ
− 1

θ
eθT +

1
2

T +
1
2

TeθT
)
−→ µ2

2θ2 ,

as T tends to infinity. For Λ2(T), we have:

∫ T

0
eθtYtdt =

1
θ

∫ T

0
Ytdeθt

=
1
θ

(
YTeθT −

∫ T

0
eθtdYt

)
=

1
θ

(
YTeθT − SH

T

)
by integration by parts, which gives:

∫ T

0
e2θtY2

t dt =
∫ T

0
eθtYtd

(∫ t

0
eθsYsds

)
=

1
θ

∫ T

0
eθtYtd

(
Yteθt − SH

t

)
=

1
θ

∫ T

0
eθtYtd

(
Yteθt

)
−
∫ T

0
eθtYtdSH

t

=
1
2θ

(
eθTYT

)2
− eθTYTSH

T +
∫ T

0
SH

t d
(

eθtYt

)
=

1
2θ

(
eθTYT

)2
− eθTYTSH

T + θ
∫ T

0
SH

t Yteθtdt +
∫ T

0
SH

t dSH
t

=
1
2θ

(
eθTYT

)2
− eθTYTSH

T + θ
∫ T

0
SH

t Yteθtdt +
1
2
(SH

T )2

for all T > 0 by integration by parts. It follows from Lemma 1 and Lemma 5 that:

Λ2(T) =
1
T

e−θT
(∫ T

0
e2θtY2

t dt− 1
2

eθTYT

∫ T

0
eθtYtdt

)
=

1
T

e−θT
(
−eθTYTSH

T + θ
∫ T

0
SH

t Yteθtdt +
1
2
(SH

T )2 +
1
θ

SH
T eθTYT

)
−→ 0,

almost surely, as T tends to infinity. For Λ3(T), we have:

Λ31(T) : = 2
∫ T

0

(
eθt − 1

)
eθtYtdt = 2

∫ T

0
e2θtYtdt− 2

∫ T

0
eθtYtdt

=
1
θ

(
e2θTYT −

∫ T

0
e2θtdYt

)
− 2

∫ T

0
eθtYtdt

=
1
θ

(
e2θTYT −

∫ T

0
eθtdSH

t

)
− 2

∫ T

0
eθtYtdt
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and:

Λ32(T) : =
1
2

eθTYT

∫ T

0

(
eθt − 1

)
dt +

1
2

eθTYT

∫ T

0

(
eθt − 1

)
dt

=

(
1
2θ

e2θTYT −
T
2

eθTYT

)
+

(
1
2

eθT
∫ T

0
eθtYtdt− 1

2

∫ T

0
eθtYtdt

)
=

(
1
2θ

e2θTYT −
T
2

eθTYT

)
+

(
1
2θ

e2θTYT −
1
2θ

eθT
∫ T

0
eθtdYt −

1
2

∫ T

0
eθtYtdt

)
=

1
θ

e2θTYT −
T
2

eθTYT −
1
2θ

eθTSH
T −

1
2

∫ T

0
eθtYtdt

for all T > 0 by integration by parts. It follows from Lemma 1 and Lemma 5 that:

Λ3(T) =
1
T

e−θT
(

2
∫ T

0
f (t)eθtYtdt− 1

2
eθTYT

∫ T

0
f (t)dt− 1

2
f (T)

∫ T

0
eθtYtdt

)
=

µ

θT
e−θT

(
2
∫ T

0

(
eθt − 1

)
eθtYtdt− 1

2
eθTYT

∫ T

0

(
eθt − 1

)
dt− 1

2

(
eθT − 1

) ∫ T

0
eθtYtdt

)
=

µ

θT
e−θT (Λ31(T)−Λ32(T))

=
µ

θT
e−θT

(
−1

θ

∫ T

0
eθtdSH

t − 2
∫ T

0
eθtYtdt +

T
2

eθTYT +
1
2θ

eθTSH
T +

1
2

∫ T

0
eθtYtdt

)
−→ µ

2θ
Y∞,

almost surely, as T tends to infinity. Thus, we have showed that:

1
T

e−θT
(∫ T

0
X2

t dt− 1
2

XT

∫ T

0
Xtdt

)
= Λ1(T) + Λ2(T) + Λ3(T)

−→ µ2

2θ2 +
µ

2θ
Y∞

by Equation (25), almost surely, as T tends to infinity.

Now, we can prove Theorem 1.

Proof of Theorem 1. Denote:

Ψt = t
∫ t

0
Xs

2ds−
(∫ t

0
Xsds

)2

for t > 0. By Equation (18) and Lemma 1, we obtain:

e−θTXT =
µ

θ
e−θT(eθT − 1) +

∫ T

0
e−θsdSH

s −→
µ

θ
+ Y∞,

1
T

e−2θTXT

∫ T

0
Xsds =

1
T

(
e−θTXT

)(
e−θT

∫ T

0
Xsds

)
−→ 0

and:
1
T

e−2θTΨT = e−2θT
∫ T

0
Xs

2ds− 1
T

e−2θT
(∫ T

0
Xsds

)2

−→ 1
2θ

(µ

θ
+ Y∞

)2
(26)

almost surely, as T tends to infinity, which imply that:

θ̂T =
1
2 e−2θT(XT)

2 − 1
T e−2θTXT

∫ T
0 Xsds

1
T e−2θTΨT

−→ θ, (27)

almost surely, as T tends to infinity.
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On the other hand, we have:

e−θTXT = e−θT
(
(eθT − 1) + eθT

∫ T

0
e−θtdSH

t

)
−→ µ

θ
+ Y∞,

almost surely, as T tends to infinity. Combining this with Proposition 1 and Equation (26), we get:

µ̂T =
(

e−θTXT

) 1
T e−θT

(∫ T
0 Xs

2ds− 1
2 XT

∫ T
0 Xsds

)
1
T e−2θTΨT

−→ µ,

almost surely, as T tends to infinity. Thus, we have completed the proof.

4. Asymptotic Distribution of the Least Squares Estimator

In this section, we consider the asymptotic normality of the LSE µ̂ and θ̂. We start with some
preliminaries and let H > 1

2 .

Lemma 6 (El Machkouri et al [14]). Let F be any F H = σ({SH
t , t ≥ 0})-measurable random variable such

that P(F < ∞) = 1. Then, we have:(
F, e−θT

∫ T

0
eθsdSH

s

)
law−→ (F, θ−2HλHξ),

as T → ∞, where ξ ∼ N (0, 1) is independent of SH and λH = HΓ(2H).

Proof of Lemma 6. The lemma is introduced in El Machkouri et al. [14]. In fact, we need to check that:

E
(

e−θT
∫ T

0
eθsdSH

s

)2

−→ `(H) = θ−2HλH

and:

E
(

e−θTSH
T

∫ T

0
eθsdSH

s

)2

−→ 0

for all fixed s ≥ 0, as T tends to infinity. However, the proof of the first convergence given by them
is incomplete.

In order to introduce the first convergence, by Lemma 3, we have that:

`(H) = H(2H − 1) lim
T→∞

∫ T

0

∫ T

0
e−θ(T−s)e−θ(T−r)

(
|s− r|2H−2 − |s + r|2H−2

)
dsdr

= H(2H − 1) lim
T→∞

∫ T

0

∫ T

0
e−θ(T−s)e−θ(T−r)|s− r|2H−2dsdr

− H(2H − 1) lim
T→∞

∫ T

0

∫ T

0
e−θ(T−s)e−θ(T−r)|s + r|2H−2dsdr

= Hθ−2HΓ(2H)− H(2H − 1) lim
T→∞

∫ T

0

∫ T

0
e−θ(T−s)e−θ(T−r)|s + r|2H−2dsdr.
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Notice that:∫ T

0

∫ T

0
e−θ(T−s)e−θ(T−r)|s + r|2H−2dsdr =

∫ T

0

∫ T

0
e−θxe−θy|2T − x− y|2H−2dxdy

≤
∫ T

0

∫ T

0
e−θxe−θy(T − x)2H−2dxdy

=
1
θ

∫ T

0
e−θx(T − x)2H−2dx

(
1− e−θT

)
≤ 1

θ
e−θT

∫ T

0
eθss2H−2ds

−→ 0,

as T tends to infinity. We get `(H) = Hθ−2HΓ(2H) = θ−2HλH , and the lemma follows.

Lemma 7 (I. Mendy [13]). Suppose that H > 1
2 . Then, as t→ ∞,

e
−θT

2

∫ T

0
δSH

s e−θs
∫ s

0
δSH

r eθr −→ 0 (28)

in L2(Ω) and:

e
−θT

2

∫ T

0
dse−θs

∫ s

0
dreθrφH(s, r) −→ 0, (29)

as T → ∞.

Theorem 2. For 1
2 < H < 1, the convergence:

eθT(θ̂T − θ) −→ 2θλH
λH − ϑH

· ξ

η + µ
θ (λH − ϑH)−1

, (30)

T
(

µ̂T − µ− 1
T

SH
T

)
−→ 2λHξ (31)

and:
T1−H (µ̂T − µ) −→ ζ (32)

hold in distribution, as T tends to infinity, where ξ, η ∼ N(0, 1) are mutually independent, ζ ∼ N(0, 2−
2H−1), and:

ϑH = H(2H − 1)
∫ ∞

0

∫ ∞

0
e−(s+r)(s + r)2H−2dsdr.

Remark 1. It is not difficult to show that the density of ϑ = ξ
η+α is:

fϑ(x, α) =
1

2π
e
− x2

2(1+x2)
α2 ∫

R
e−

1
2 (1+x2)y2

∣∣∣∣y +
α

1 + x2

∣∣∣∣ dy,

where ξ, η ∼ N(0, 1) are mutually independent and α ∈ R. In particular, as we know that ξ
η admits a

standard Cauchy distribution, provided α = 0, when α 6= 0, we have:

fϑ(x, α) =
α2

2π(1 + x2)2 e
− x2

2(1+x2)
α2 ∫

R
e
− α2

2(1+x2)
y2

|1 + y|dy.

The next figures give the plots of the density functions fϑ(x, α) with α = 0, 0.25, 0.5, 0.75, 1, respectively,
and in Figure 1f, we give the graphs of the five density functions in a common coordinat system.
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(a) α = 0. (b) α = 0.25. (c) α = 0.5.

(d) α = 0.75. (e) α = 1. (f) α = 0, 0.25, 0.5, 0.75, 1.

Figure 1. The graphs of the density function fϑ(x, α) with different α.

Proof of Theorem 2. We first introduce the convergence Equation (30). Recall that:

Ψt = t
∫ t

0
Xs

2ds−
(∫ t

0
Xsds

)
for t > 0. It follows from the identities:

XT

∫ T

0
Xsds =

(
SH

T + µT + θ
∫ T

0
Xsds

) ∫ T

0
Xsds

and: ∫ T

0
XsdXs =

∫ T

0
XsdSH

s + µ
∫ T

0
Xsds + θ

∫ T

0
(Xs)

2ds

that:

θ̂ − θ =
T
∫ T

0 XsdXs − XT
∫ T

0 Xsds
ΨT

− θ

=
1

ΨT

(
T
∫ T

0
XsdXs − XT

∫ T

0
Xsds− θT

∫ T

0
X2

s ds + θ

(∫ T

0
Xsds

)2
)

=
1

ΨT

(
T
∫ T

0
XsdSH

s − SH
T

∫ T

0
Xsds

)
=

1
ΨT

(
T
∫ T

0
( f (s) + eθsYs)dSH

s − SH
T

∫ T

0
Xsds

)
=

T
ΨT

∫ T

0

(
eθsYs + f (s)

)
dSH

s −
1

ΨT

(
SH

T

∫ T

0
Xsds

)
=

T
ΨT

(∫ T

0
eθsYsdSH

s +
µ

θ

∫ T

0
eθsdSH

s

)
− T

ΨT
SH

T −
1

ΨT

(
SH

T

∫ T

0
Xsds

)
≡ B1(T)− B2(T)− B3(T)

(33)

for all T > 0. Clearly, we have e−θTSH
T → 0 and:

1
T

e−θT
(

SH
T

∫ T

0
Xsds

)
−→ 0
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almost surely, as T → ∞, by Lemma 5 and Equation (22), which imply that:

eθT B2(T) =
1

T−1e−2θTΨT
· e−θTSH

T −→ 0 (34)

and:

eθT B3(T) =
1

T−1e−2θTΨT
· 1

T
e−θT

(
SH

T

∫ T

0
Xsds

)
−→ 0 (35)

almost surely, as T → ∞ by Equation (26). To prove the statement Equation (30), we need to estimate:

eθT B1(T) =
T

ΨT
eθT
(∫ T

0
eθsYsdSH

s +
µ

θ

∫ T

0
eθsdSH

s

)
.

Notice that:∫ T

0
eθsYsdSH

s =
∫ T

0
eθs
(∫ s

0
e−θrdSH

r

)
dSH

s

=
∫ T

0
eθs
(∫ T

0
dSH

r e−θr
)

dSH
s −

∫ T

0
eθs
(∫ s

0
e−θrdSH

r

)
dSH

s

=
∫ T

0
eθs
(∫ T

0
dSH

r e−θr
)

dSH
s

−
∫ T

0

(∫ s

0
e−θrδSH

r

)
eθsδSH

s −
∫ T

0

∫ T

0
DH

r

(
e−θs

∫ s

0
eθxδSH

x

)
φH(r, s)drds

= YT

∫ T

0
eθsdSH

s

−
∫ T

0

(∫ s

0
e−θrδSH

r

)
eθsδSH

s −
∫ T

0
e−θsds

∫ s

0
eθrφH(r, s)dr

for every T ≥ 0 by the relationship Equation (17). We see that:

eθT B1(T) =
e−θT

1
T e−2θTΨT

(∫ T

0
eθsYsdSH

s +
µ

θ

∫ T

0
eθsdSH

s

)
=

e−θT

1
T e−2θTΨT

(
YT

∫ T

0
eθsdSH

s +
µ

θ

∫ T

0
eθsdSH

s

)
− e−θT

1
T e−2θTΨT

∫ T

0

(∫ s

0
e−θrδSH

r

)
eθsδSH

s

− e−θT

1
T e−2θTΨT

∫ t

0
e−θsds

∫ s

0
eθrφH(r, s)dr

≡ B11(T)− B12(T)− B13(T)

(36)

for all T ≥ 0. Clearly, Lemma 7 and Equation (26) imply that the convergence:

B12(T), B13(T) −→ 0 (37)
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holds almost surely, as T → ∞. For B11(T), by Lemma 6, we have also that:

B11(T) =
e−θT

1
T e−2θTΨT

(
YT +

µ

θ

) ∫ T

0
eθsdSH

s

=

{
1

1
T e−2θTΨT

(
YT +

µ

θ

) (
Y∞ +

µ

θ

)}
·

e−θT ∫ T
0 eθsdSH

s

Y∞ + µ
θ

−→ 2θ
λH

λH − ϑH
· ξ

η + µ
θ (λH − ϑH)−1

(38)

in distribution, as T → ∞, where η ∼ N(0, 1) is independent of ξ ∼ N(0, 1). Combining this
with Equations (33)–(36), and Slutsky’s theorem, we have introduced the desired conclusion:

eθT (θ̂T − θ
)
−→ 2θλH

λH − ϑH
· ξ

η + µ
θ (λH − ϑH)−1

in distribution, as T → ∞.
For the convergence Equation (31), we have:

µ̂T − µ =
1
T

(
XT − θ̂T

∫ T

0
Xsds− µT

)
=

1
T

{
−
(
θ̂T − θ

) ∫ T

0
Xsds + XT − θ

∫ T

0
Xsds− µT

}
= − 1

T
(
θ̂T − θ

) ∫ T

0
Xsds +

1
T

SH
T

for all T > 0 and:

T
(

µ̂T − µ− 1
T

SH
T

)
= −

(
eθT(θ̂T − θ)

)
·
(

e−θT
∫ T

0
Xsds

)
−→ 2λHξ

in distribution, as T tends to infinity, by the convergence Equation (30) and Slutsky’s theorem.
For the convergence Equation (32), noticing that the proof of the convergence Equation (31),

we have:

T1−H (µ̂T − µ) = − 1
TH

(
eθT(θ̂T − θ)

)
·
(

e−θT
∫ T

0
Xsds

)
+

SH
T

TH

for all T > 0, and it is easy to see that:

D(T) :=
1

TH

(
eθT(θ̂T − θ)

)
·
(

e−θT
∫ T

0
Xsds

)
−→ 0,

as T tends to infinity, in probability. In fact, by Equations (2), (18) and Lemma 2, we have:

e−θT
∫ T

0
Xsds =

1
θ

e−θT f (T) + ZT −
µ

θ
Te−θT −→ µ

θ2 + Z∞

almost surely, as T tends to infinity. Combining this with the convergence Equation (30), we have
that D(T)→ 0 in probability, as T tends to infinity. Thus, the convergence Equation (32) follows from
the fact:

SH
T

TH ∼ N
(

0, 2− 22H−1
)
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for all T > 0. This completes the proof of Theorem 2.

5. Conclusions

In this paper, we discuss the least squares estimation for the Vasicek-type model driven by a
sub-fraction Brownian motion SH with Hurst index H ∈ ( 1

2 , 1). Based on the so-called continuous
observation, we introduce the least squares estimators of the two unknown parameters µ and θ

in the Vasicek-type model and prove in detail the consistency and asymptotic distributions of the
two estimators. In general, however, there exists a gap between the results we introduce and their
applicability. For instance, one must take into account the so-called discrete observations and then
choose an observation frequency for any practical problem in finance. Hence, in our current study,
we are considering the parametric estimation of the Vasicek-type model under the so-called discrete
observations. Moreover, in the future, we will attempt to give the least squares estimators of the
Vasicek-type model driven by a general Gaussian process.
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