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Abstract: Cognitive radio is a promising technology for improving spectrum utilization, which allows
cognitive users access to the licensed spectrum while primary users are absent. In this paper,
we design a resource allocation framework based on graph theory for spectrum assignment in
cognitive radio networks. The framework takes into account the constraints that interference for
primary users and possible collision among cognitive users. Based on the proposed model, we
formulate a system utility function to maximize the system benefit. Based on the proposed model
and objective problem, we design an improved ant colony optimization algorithm (IACO) from two
aspects: first, we introduce differential evolution (DE) process to accelerate convergence speed by
monitoring mechanism; then we design a variable neighborhood search (VNS) process to avoid the
algorithm falling into the local optimal. Simulation results demonstrate that the improved algorithm
achieves better performance.

Keywords: spectrum scheduling; ACO; DE; VNS; system utility

1. Introduction

With the development of wireless technology, the massive growth of wireless products increases
the demand for spectrum resources [1]. The fixed spectrum allocation policy limits the utilization
of aspectrum that is one of the non-renewable natural resources, which leads to underutilization
for a licensed spectrum and overutilization for unlicensed bands [2,3]. According to a report by the
Federal Communications Commission [4], the spatial and temporal variations in the licensed spectrum
utilization range from 15 to 85%. Therefore, achieving high utilization for licensed bands is one of
the most critical approaches to solving the spectrum-scarcity problem in the next generation wireless
systems. Cognitive radio (CR) [5] is a promising technology for dynamic spectrum management,
which can achieve better exploitation for spectrum resources. CR is able to intelligently detect ‘spectrum
holes’ (which means available licensed spectrum) and effectively allocate them to cognitive users
(who can also be named as secondary users or unlicensed users) in accordance with the distribution
objective. The main objective of spectrum allocation is to maximize spectrum utilization while avoiding
the possible interference to authorized users (who are referred to as primary users). Thus, how to
perform spectrum allocation to achieve maximization objectives while guarantee fairness constraints
for cognitive users and interference constraints for primary users become the main question in dynamic
spectrum assignment.

To address the spectrum allocation problem, we need to formulate a framework to guarantee
interference protection for primary users and build a relationship among cognitive users. Scholars have
done a lot of research about the mathematical model for spectrum allocation. In [6], Lu focuses on using
bipartite graphs to solve the resource allocation problem, in which cognitive users and primary users
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are treated as two partite sets and an allocation scheme can be seen as a matching of the corresponding
bipartite graph. A mathematical cross-layered model for the cognitive radio network link scheduling
problem under the interference temperature model is presented in [7], which maximizes the number
of scheduled links within a time frame while satisfying interference temperature constraints. In [8],
Changyan integrates an auction model and Stackelberg game theory to deal with the different stage
issues for spectrum sharing in CR networks. Game theory is adopted in [9] to reduce power waste
caused by some cognitive users’ SINR over the target value. To maximize system utility in this paper,
we perform spectrum allocation based on graph theory. However, the graph-theory-based allocation
issue is a nondeterministic polynomial (NP) problem whose solution can be found in polynomial time
on a non-deterministic machine. Intelligent optimization algorithms are effective methods to find
a close-to-optimal solution for NP-hard issues.

In this paper, we adopt the ant colony optimization algorithm (ACO) for available licensed
spectrum allocation. ACO [10] was first introduced by Dorigo in 1992, which is a popular means
of dealing with assignment issues. The basic idea of ACO comes from the natural phenomena that
ants can find the shortest path between nest and food efficiently due to their positive feedback
attribute [11]. However, ACO is prone to being premature and stagnate when the problem scale is
too big. These flaws would certainly drag the effectiveness of the algorithm down [12]. Based on the
above, we design a novel spectrum allocation algorithm (IACO) based on ACO, which introduces the
differential evolution (DE) [13] process to accelerates convergence speed by the monitoring mechanism,
in addition, we employ a variable neighborhood search (VNS) process [14] to avoid falling into the
local optimum. We can see from the simulation results that either the system utility or the other
performance of IACO are greatly promoted.

2. System Model and Problem Formulation

In this framework, we consider the three matters of spectrum allocation issue as suggested in [15]:
(a) possible interference to primary users; (b) collision with cognitive users; (c) system utility and the
fairness of spectrum access. We build a graph-based mathematical model [16] to demonstrate the
spectrum allocation problem, as shown in Figure 1, where PUi represents the primary user who has
the authority using a certain licensed spectrum channel, and SUi denotes the cognitive user who can
only access to ‘spectrum holes’ in an opportunistic manner. Each user has coverage area with radius
dp,m or dn,m on channel m, where dp,m indicates the protection radius of the primary user p on channel
m, whereas dn,m represents the interference radius of the cognitive user n with access to channel m.
SUi cannot access the licensed band that overlays with SUi in some area to avoid interfering with
primary user, meanwhile, any two cognitive users cannot use the same band if they overlap in some
area to diminish collision with each other.

Figure 1. Graph-based System Model.
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We define a graph G(V, E), where V is a set of vertices representing the cognitive users that
compete for the licensed spectrum, E is a set of undirected edges between vertices denoting interference
between any two vertices. For any two vertices n, k ∈ V, an edge exists between n and k if cn,k,m = 1.
The existence of the edge depends on the interference constraint C (see Section 2.1).

2.1. Matrices for Spectrum Allocation

Matrices Definition (See Table 1).

Table 1. Matrices Definition.

Name of Matrix Definition of Matrix

Available matrix L = {ln,m|ln,m ∈ {0, 1}}N×M, 1 ≤ n ≤ N, 1 ≤ m ≤ M
Benefit matrix B = {bn,m|bn,m ≥ 0}N×M, 1 ≤ n ≤ N, 1 ≤ m ≤ M

Interference matrix C = {cn,n,m|cn,n,m ∈ {0, 1}}N×N×M, 1 ≤ n ≤ N, 1 ≤ m ≤ M
Allocation matrix A = {an,m|an,m ∈ {0, 1}}N×M, 1 ≤ n ≤ N, 1 ≤ m ≤ M

Degree matrix for cognitive users Z = {zn|zn = {0, 1, . . . , M}}N , 1 ≤ n ≤ N
Degree ascending matrix K = {kn,m|kn,m ∈ {0, 1}}N×M, 1 ≤ n ≤ N, 1 ≤ m ≤ M

Explanation for Matrices

• Available matrix L. The matrix represents the availability of licensed bands for cognitive users.
If ln,m = 1, user n can access spectrum m without interference to primary users, otherwise ln,m = 0.
As shown in Figure 1, spectrum channel B is available for SU1, then l1,2 = 1.

• Benefit matrix B. The matrix indicates the benefit that a cognitive user gets by successful access to
a licensed spectrum band, where bn,m > 0 only if ln,m = 1.

• Interference matrix C. The three-axis matrix describes the interference relationship of any two
vertices n and k when they access spectrum m. As shown in Figure 1, SU3 and SU4 overlap in
some area, then c3,4,1 = 1, c3,4,3 = 1, c3,4,4 = 1.

• Allocation matrix A. The matrix is a spectrum allocation result which is interference free. If an,m = 1,
cognitive user n can access spectrum m and transmission data in this band. A conflict free allocation
needs to satisfy the interference constraints: an,m + ak,m ≤ 1, if cn,k,m = 1,∀n, k < N, m < M.

• Degree matrix for cognitive users Z. The matrix represents the available spectrum number for each
cognitive users. In Figure 1, z1 = 2, z2 = 4, z3 = 4, z4 = 3.

• Degree ascending matrix K. The matrix is another representation of the available matrix, which
incrementally orders the rows according to the degree matrix Z.

2.2. Problem Formulation and Measure Functions

Given the model above, we formulate the spectrum allocation problem by the following
optimization function:

max
A∈Λn,m(L,C)

N

∑
n=1

M

∑
m=1

an,m × bn,m

s.t. ∀1 ≤ n, k ≤ N, 1 ≤ m ≤ M

an,m + ak,m ≤ 1, i f cn,k,m = 1

A = {an,m}N×M

L = {ln,m}N×M

C = {cn,k,m}N×N×M

(1)

where Λn,m(L, C) is the set of interference free spectrum assignments for a given set of N cognitive
users and M spectrum bands and constraints C.
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There is always more than one allocation solution that would satisfy all the constraints. In order to
choose the optimum solution in terms of different applications and measure the algorithm thoroughly,
we use three different measure functions that already exist in the literature [17] to evaluate the solution.

(1) Max-Sum-Reward-Mean (MSRM): This function is used to measure the average of total spectrum
utilization in the system, which is the average of the sum user rewards.

Umean =
1
n

N

∑
n=1

M

∑
m=1

an,m × bn,m (2)

(2) Max-Proportional-Fair (MPF): The function is to measure the fairness among cognitive users
accessing the spectrum in the system, which is driven by ∑M

m=1 an,m × bn,m.

U f air = (
N

∏
n=1

M

∑
m=1

an,m × bn,m + 10−4)

1
N

(3)

(3) Max-Min-Reward (MMR): The function is to maximize the spectrum utilization at the bottleneck
cognitive users who receive the lowest reward, which is a simple notion of fairness.

Umin = min
1≤n≤N

(
M

∑
m=1

an,m × bn,m) (4)

3. The IACO-Based Spectrum Allocation Method

3.1. The Basic Idea

In nature, ants usually find the shortest route paths from their nest to food efficiently even though
obstacles exists in the path. It was found that there is an important medium used to communicate
information among individuals regarding paths, and it is called the pheromone. On the one hand,
a moving ant lays pheromone on the ground to mark the path, and the pheromone concentration on
the path gets reinforced; on the other hand, the path with a greater concentration of pheromones will
attract more ants to detect and select it with a greater probability. Based on the intelligence-ability of
an ant colony, some scholars propose the ant colony optimization (ACO) algorithm and try to solve
combinatorial optimization problems by mimicking the ants’ behavior [18].

ACO simulates the process of ants finding the shortest paths to obtain the close-to-optimal solution
for NP-hard issues. The positive feedback mechanism is the drive of the algorithm, the process of
which can be explained by two steps: first, each ant selects the path with the maximum pheromone
concentration and releases its pheromone to this path while it moves; then, more ants are attracted
to select the path. This not only accounts for the rapid discovery of good solutions but facilitates the
process of finding the optimal solution.

However, ACO is slow to converge while problem scale is large, and also it is prone to be trapped
in a local optimum in the later evolution. Based on these deficiencies of ACO, we design an improved
ant colony optimization IACO for spectrum allocation, which employs DE and VNS for performance
improvement. DE is a greedy genetic algorithm with retained thought, which evolves by mutation,
crossover, and selection in the population. In this paper, we adopt DE to optimize the moving mode
of the ants to improve the global convergence ability of the algorithm and maintain diversity of the
population. Besides, VNS is a local search metaheuristic employing a set of neighborhood search
methods to find the local optimum in each neighborhood iteratively and finally to reach the global
optimum at the end. In this paper, we design a set of neighborhoods for VNS to improve the local
searchability of the algorithm.
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3.2. Transform for the Spectrum Allocation Problem

The graph-theoretic model based spectrum allocation problem is NP-hard, so we introduce the
IACO to obtain the efficient assignment for cognitive users. We convert the assignment issue into the
shortest paths finding in a special undirected graph using IACO, for example, the model in Figure 1 is
transformed into an undirected graph (Figure 2d) by the transform process shown in Figure 2.

The transform process takes three steps: first, given the high computational complexity of
resources allocation, IACO names only the non-zero elements in matrix K into binary sequences
(the process of a to b in Figure 2); second, according to the row-major principle, we encode all letters
into a row vector P = [A, B, C, . . . , L, M] with the length of l that is the non-zero elements in K or K′

(the process of b to c in Figure 2); third, based on the row vector P, we transform the letters into vertices
of a special undirected graph except for the starting point SS and the ending point EE (the process of c
to d in Figure 2). The ants move back and forth between SS to EE in the special graph to obtain the
shortest paths (the optimal assignment scheme).

Figure 2. Transform Process.

3.3. Differential Evolution Process in IACO

DE generate new individuals by cooperation and competition among populations to guide the
direction for optimization searching. It is operated by three stochastic steps: mutation and crossover
as well as selection. The DE process in IACO with l-dimensional space, and N is the number of
individuals. In IACO, we use DE to generate a new individual to optimize the convergence speed.
Specifically, we use the following steps to get the new individual mi of generation i. Firstly, mutate the
population to get the variant vi:

vi,j = xr1,j + K× (xr2,j − xr3,j) (5)

where r1, r2, r3 ∈ {1, 2, . . . , N} are three individuals randomly selected from current population,
the mutation factor K is a real parameter in (0, 1]. We choose DE/rand/1/bin to mutation the
population instead of DE/best/1/bin [19]. Next, crossover is applied to generate vector ui by crossing
element xi and variant vi with a certain probability, which is used to increase the diversity of the trial
vector ui, as shown:

ui,j =

{
vi,j, rand(j) ≤ CR or j = rnbr(i)

xi,j, otherwise
(6)

where rand(i) is a uniform random number in [0, 1], CR means crossover probability in [0, 1] and
rnbr(i) is a random quantity in 1, 2, . . . , D. Finally, the new individual mi is selected from ui and xi
based on the greedy thought, and the selection operation can be expressed as:

mi =

{
ui, f (ui) < f (xi)

xi, otherwise
(7)
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3.4. Variable Neighborhood Search Process in IACO

The DE-based ACO is a good way for seeking large search spaces. On the other hand,
the combined algorithm has a weakness in which it fails to intensify the search in the promising
area. Thus, we use VNS to enhance the local searchability of the improved algorithm. The VNS process
in IACO has l-dimensional solution space, and Ns is the set of neighborhood space for solution s.
The process of VNS for local search is shown as follows:

Construct the neighborhood Ns. The main objective of the improved algorithm is to maximize the
spectrum utilization. To achieve this we first randomly choose a user xi ∈ s, and get a benefit list
L = (bx

1 , bx
2 , ..., bx

m) according to matrix B, where m is the available channel number. Then, we assign
the channel with the highest reward bx

i to user xi. Using this procedure, a new set of neighborhoods
is constructed. Local search. In order to search around the initial solution s, we construct the
neighborhood Ns for local search. If the neighborhood search obtains a better fitness value, then
the initial solution s is replaced by Ns. Finally, the global optimum with the highest system utility is
obtained after finishing the local search.

3.5. The Process and Description of IACO

The process of IACO-based spectrum allocation is described as below (see Algorithm 1):
Step 1: Initialization. Generate the initial vector Pinitial and initialize pheromone of each path

with τ0 (the edge between vertices is connected) or τ1 (the edge between vertices is available). Set the
maximum evolution time Emax, the maximum evolution time with low convergence speed Econvergence,
the number of population Num.

Step 2: Interference removal. The spectrum allocation scheme A must be interference free,
and therefore A needs to satisfy the interference constraints from matrix C. Based on this, we would
remove the interference-path to correct the solution. While A does not satisfy constraints defined by C,
it is necessary to equiprobably set one value to 0.

Step 3: Fitness evaluation. Calculating fitness value is a way to convert binary sequence solutions
into real space R, which can be expressed as: f → R+. Get the best path sequence Pbest and the highest
fitness value fmax.

Step 4: Monitor convergence rate. The monitoring mechanism is designed in IACO to detect the
rate-of-change in fitness. If the growth rate stays slow and meets Equation (8) during ∆t, then turn to
the 7th step to accelerate convergence speed of IACO by employing DE, otherwise, go to the 5th step
for ACO traversing.

f ′ =
f (xt+2×∆t)− f (xt+∆t)

f (xt+∆t)− f (xt)
< 1 (8)

where f (xi) is the fitness value of xi, ∆t is the evolution times, f ′ indicates the rate-of-change.
Step 5: Ants traversal. All ants move back and forth between the starting point and the ending

point. As described below in Figure 3, spectrum allocation can be seen as row traversal, where row
and column represent cognitive users and bands, respectively. In this row traversal, if the available
channel number zi > 0 and ki,j = 1, then band j is available for user i, that is to say node i in column j
is visitable for ants, otherwise the ants skip the node. Then the evolution time E = E + 1.

Figure 3. The way of IACO for spectrum allocation.
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(1) Path selection. The transfer probability between node i and s in the choice process is presented
as follows:

s =

arg maxj∈allowedl
{τα

i,jµ
β
i,j}, q ≤ q0

J, q > q0
(9)

where q0 is a constant in the scope [0, 1], and J is a random variable generated by the following
formula:

pi,s =


τα

i,sµ
β
i,s

∑maxj∈allowedl
τα

i,jµ
β
i,j

, s ∈ allowedl

0, s /∈ allowedl

(10)

where α and β are the weighted factor of information and expectation heuristic respectively.
allowedl is the available node-set for ant l at node i, tabul is the infeasible node-set for ant l and it
would be cleared after l finishes traversal.

(2) Update pheromone. Using an elitist strategy to update pheromone. The pheromone concentration
on path(i, j) is updated as the following rules:

τi,j = (1− ρ)× τi,j + ∆τi,j (11)

∆τi,j =
m

∑
k=1

∆τk
i,j (12)

∆τk
i,j =

Q
fmin

(13)

where ρ(0 < ρ < 1) is the pheromone evaporation coefficient, 1− ρ is the residual factor of
pheromone. Q is a constant of total pheromone released from all ants in each traversal, fmin is the
cost calculated by fitness function.

Step 6: Termination judgment. If reach the maximum iteration times Emax, the solving process is
over. Then map the best solution Pbest to allocation matrix A. If E < Emax and the convergence speed
is slow and and satisfy Econvergence, then go to the 7th step, otherwise, go to the 8th.

Step 7: Accelerate the convergence speed. Adopting DE to accelerate the global convergence
speed by optimizing the searching mode of the ants and guaranteeing the diversity of the population.
Initialize DE with the subpopulation of ACO, Econvergence = Econvergence + 1.

Step 8: Local search. Employing VNS to improve the local searchability of the improved algorithm
by searching around the initial solution.
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3.6. Pseudocode of IACO

Algorithm 1: An Improved Ant Colony Optimization Algorithm
Input: T: network topology; N: the number of node in undirected graph; ∆t: the evolution

times in change rate monitoring; Emax: the maximum of iteration; Econvergence: the
maximum evolution time with low convergence speed.

Output: the optimum spectrum allocation solution X
initialization population N(N1, N2, N3, . . . , NNum)

while E < Emax do
E← E + 1
Interference removal
Fitness Evaluation
if Equation (8) and Econvergence then

Initialize DE with subpopulation of ACO
Econvergence ← Econvergence + 1
Mutation
Crossover
Selection

all ants start traversal in the solution space
The ants select path by Equation (9)
Update pheromone according to Equation (11)
if !Econvergence then

Initialize VNS with local optimal solution s
Construct reverse neighborhood Ns

Local search

4. Simulation Results and Discussion

To validate the performance of the IACO, we compare IACO with the ACO, GA, and PSO [15]
from four aspects: convergence speed, MSRM, MMR and MPF in this section. We use the topology
structure of the cognitive radio system as suggested in [6]. The user nodes are randomly generated
in the rectangle region of 10× 10. The number of primary users M is equal to orthogonal available
spectrum number; the number of cognitive users is N.

Initialize IACO and ACO with α = 1, β = 3, ρ = 0.1, τ0 = 5, τ1 = 1; In GA, the crossover rate
pc = 0.8, mutation rate pm = 0.8; In PSO, two acceleration coefficients c1 = c2 = 2, inertia weight
ω = 0.5, maximum speed vx = 4. The population sizes are all N in IACO, ACO, PSO and GA,
the maximum evolution generation is 200. The four algorithms use the same topology, the iteration
times in the convergence experiment are 500 while others are 50, finally taking the mean of the result.

Experiment 1. Figure 4 shows the MSRM trend with the increasing times of iteration under M = 15, N = 10
for different algorithms. In the first 50 iterations, GA is the slowest, ACO speeds up all the time but still inferior
to PSO, and IACO is the best due to DE accelerating its convergence speed. At the later iteration, although PSO
reaches the optimum firstly, its MSRM is lower than IACO; IACO has the highest MSRM in the end, because it
adopts the VNS process to jump out of the local optimum.

Experiment 2. In this experiment, we show the MSRM, MPF and MMR trends with the increasing number
of available licensed spectrum for different algorithms in Figures 5–7, where the number of cognitive users is
fixed on N = 15. In Figures 5–7, all curves increase all the time. It can be seen that, if M < N, MSRM grows
quickly whereas MPF and MMR increase slowly because of the competition for access to spectrum in cognitive
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users. If M > N, with the increasing of licensed spectrum number, MPF and MMR grow rapidly. Also, IACO
is the best all the time.

Figure 4. The average system benefit with increasing of iterations.

Figure 5. MSRM change with N = 15.

Figure 6. MPF change with N = 15.

Figure 7. MMR change with N = 15.
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Finally, we fix the cognitive user on N = 5, available spectrum M = 5 and use exhaustive method
to obtain the optimal solution. The relative difference between each algorithm and the highest ideal
value is obtained from rd = 1− b

B , where b is the efficiency value of algorithms, B is the highest ideal
value. This experiment is based on MSRM, MMR, MPF. As shown in Table 2, IACO is already close
to the optimal value at the 100 iterations, only MPF has a slight relative difference. IACO has the
advantage of convergence and can reach the optimal value quickly.

Table 2. Optimal Value.

Iteration Algorithm
Relative Difference (%)

MSRM MMR MPF

30

IACO 0.366 0.447 1.711
ACO 1.144 1.676 3.017
PSO 0.324 1.275 2.083
GA 1.033 2.876 3.496

100

IACO 0 0 0.013
ACO 0 1.514 2.504
PSO 0 1.309 0.952
GA 0.472 2.666 3.224

200

IACO 0 0 0.012
ACO 0 1.177 2.299
PSO 0 0.616 0.564
GA 0.063 2.282 2.71

5. Conclusions

In this paper, we developed an efficient method IACO for available licensed spectrum allocation.
The main target is to maximize the system utility by using IACO. In IACO, the monitoring mechanism
detects the convergence speed for the algorithm to introduce DE in a timely manner. Besides, VNS is
employed to help IACO get rid of the local optimum. Therefore, the new allocation algorithm IACO
conquers the limits of ACO, and not only achieves high convergence speed but reduces the risk of
trapping to the local maximum. The results show that the IACO-based spectrum allocation achieves
the best performance in MSRM, MPF and MMR.
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