
algorithms

Article

Vertex Cover Reconfiguration and Beyond †

Amer E. Mouawad 1,*, Naomi Nishimura 2, Venkatesh Raman 3 and Sebastian Siebertz 4,‡

1 Department of Informatics, University of Bergen, PB 7803, N-5020 Bergen, Norway
2 School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada; nishi@uwaterloo.ca
3 Institute of Mathematical Sciences, Chennai 600113, India; vraman@imsc.res.in
4 Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland; siebertz@mimuw.edu.pl
* Correspondence: a.mouawad@uib.no
† This paper is an extended version of our paper published in the 25th International Symposium on

Algorithms and Computation (ISAAC 2014).
‡ The work of Sebastian Siebertz is supported by the National Science Centre of Poland via POLONEZ Grant

Agreement UMO-2015/19/P/ST6/03998, which has received funding from the European Union’s Horizon
2020 research and innovation programme (Marie Skłodowska-Curie Grant Agreement No. 665778).

Received: 11 October 2017; Accepted: 7 Febuary 2018; Published: 9 Febuary 2018

Abstract: In the Vertex Cover Reconfiguration (VCR) problem, given a graph G, positive integers
k and ` and two vertex covers S and T of G of size at most k, we determine whether S can be
transformed into T by a sequence of at most ` vertex additions or removals such that every operation
results in a vertex cover of size at most k. Motivated by results establishing the W[1]-hardness of
VCR when parameterized by `, we delineate the complexity of the problem restricted to various
graph classes. In particular, we show that VCR remains W[1]-hard on bipartite graphs, is NP-hard,
but fixed-parameter tractable on (regular) graphs of bounded degree and more generally on nowhere
dense graphs and is solvable in polynomial time on trees and (with some additional restrictions) on
cactus graphs.

Keywords: reconfiguration; vertex cover; solution space; fixed-parameter tractability; bipartite graphs

1. Introduction

Under the reconfiguration framework, we consider structural and algorithmic questions related
to the solution space of a search problem Q. Given an instance I , an optional range [rl , ru] bounding a
numerically-quantifiable property Ψ of feasible solutions for Q and a symmetric adjacency relation
(usually polynomially-testable) A on the set of feasible solutions, we can construct a reconfiguration
graph RQ(I , rl , ru) for each instance I of Q. The nodes of RQ(I , rl , ru) correspond to the feasible
solutions of I having rl ≤ Ψ ≤ ru, and there is an edge between two nodes whenever the corresponding
solutions are adjacent under A. An edge can be seen as a reconfiguration step transforming one
solution into the other. Given two feasible solutions for I , S and T, one can ask if there exists a walk
(reconfiguration sequence) in RQ(I , rl , ru) from S to T, or for the shortest such walk. On the structural
side, one can ask about the diameter of reconfiguration graphRQ(I , rl , ru) or whether it is connected
with respect to some or any I , fixed A and fixed Ψ.

These types of reconfiguration questions have received considerable attention in recent years [1–5]
and are interesting for a variety of reasons. From an algorithmic standpoint, reconfiguration problems
model dynamic situations in which we seek to transform a solution into a more desirable one,
maintaining feasibility during the process. Reconfiguration also models questions of evolution; it can
represent the evolution of a genotype where only individual mutations are allowed and all genotypes
must satisfy a certain fitness threshold, i.e., be feasible. Moreover, the study of reconfiguration yields
insights into the structure of the solution space of the underlying problem, crucial for the design
of efficient algorithms. In fact, one of the initial motivations behind such questions was to study

Algorithms 2018, 11, 20; doi:10.3390/a11020020 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a11020020
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 20 2 of 21

the performance of heuristics [2] and random sampling methods [6], where connectivity and other
properties of the solution space play a crucial role.

Reconfiguration problems have been studied mainly under classical complexity assumptions,
with most work devoted to determining the existence of a reconfiguration sequence between
two given solutions. For most NP-complete problems, this question has been shown to be
PSPACE-complete [3,7,8], while for some problems in P, the reconfiguration question could be either
in P [3] or PSPACE-complete [9]. As PSPACE-completeness implies that the number of vertices in
reconfiguration graphs, and therefore the length of reconfiguration sequences, can be superpolynomial
in the number of vertices in the input graph, it is natural to ask whether we can achieve tractability
if we restrict the length of the sequence or other properties of the problem to a fixed constant. These
results motivated Mouawad et al. [10] to study reconfiguration under the parameterized complexity
framework [11,12].

The Vertex Cover Reconfiguration (VCR) problem was shown to be fixed-parameter tractable
when parameterized by k and W[1]-hard when parameterized by ` [10]; inRVC(G, 0, k), each feasible
solution for instance G is a vertex cover of size at most k (a subset S ⊆ V(G) such that each edge of
the graph has at least one endpoint in S) and two solutions are adjacent if one can be obtained from
the other by the addition or removal of a single vertex of G. Motivated by these results, we embark
on a systematic investigation of the parameterized complexity of the problem restricted to various
graph classes.

In Section 4, we start by showing that the VCR problem parameterized by ` remains W[1]-hard
when restricted to bipartite graphs. To obtain this result, we introduce the (t, d)-bipartite constrained
crown problem and show that it plays a central role for determining the complexity of the
reconfiguration problem. As the vertex cover is solvable in polynomial time on bipartite graphs,
this result provides an example of a search problem in P whose reconfiguration version is W[1]-hard
parameterized by `, answering a question left open by Mouawad et al. [10]. In Section 5, we characterize
instances of the VCR problem solvable in time polynomial in |V(G)| and apply this characterization
to trees, graphs with no even cycles and (with some additional restrictions) to cactus graphs (we
incorrectly claimed to have proved the result for cactus graphs in its full generality in an earlier
version of this paper [13]). We note that a polynomial-time algorithm for even-hole-free graphs was
also independently obtained by Kamiński et al. [8] for solving several variants of the closely-related
independent set reconfiguration problem. Moreover, VCR is known to be PSPACE-complete on graphs
of bounded treewidth [14] (for some constant value of treewidth), but it remains open whether the
problem is PSPACE-complete already for graphs of treewidth at most two, or even outerplanar graphs.
Our result on cactus graphs is a first step towards settling these questions. In Section 6, we present the
first fixed-parameter tractable algorithm for VCR parameterized by ` on graphs of bounded degree
after establishing the NP-hardness of the problem on four-regular graphs. Finally, we show using
completely different techniques, and at the cost of a much worse running time, that VCR, as well
as a host of other reconfiguration problems are fixed-parameter tractable on nowhere dense classes
of graphs.

2. Preliminaries

For general graph theoretic definitions, we refer the reader to the book of Diestel [15]. Unless
otherwise stated, we assume that each graph G is a simple undirected graph with vertex set V(G)

and edge set E(G), where |V(G)| = n and |E(G)| = m. The open neighbourhood of a vertex v is
denoted by NG(v) = {u | uv ∈ E(G)} and the closed neighbourhood by NG[v] = NG(v) ∪ {v}. For a
set of vertices A ⊆ V(G), we define NG(A) = {v 6∈ A | uv ∈ E(G), u ∈ A} and NG[A] = NG(A) ∪ A.
The subgraph of G induced by A is denoted by G[A], where G[A] has vertex set A and edge set
{uv ∈ E(G) | u, v ∈ A}.

A walk of length q from v0 to vq in G is a vertex sequence v0, . . . , vq such that, for all
i ∈ {0, . . . , q− 1}, vivi+1 ∈ E(G). It is a path if all vertices are distinct and a cycle if q ≥ 3, v0 = vq, and

Algorithms 2018, 11, 20 3 of 21

v0, . . . , vq−1 is a path. A matchingM(G) on a graph G is a set of edges of G such that no two edges
share a vertex; we use V(M(G)) to denote the set of vertices incident to edges inM(G). A set of
vertices A ⊆ V(G) is said to be saturated byM(G) if A ⊆ V(M(G)).

To avoid confusion, we refer to nodes in reconfiguration graphs, as distinguished from vertices in
the input graph. We denote an instance of the vertex cover reconfiguration problem by (G, S, T, k, `),
where G is the input graph, S and T are the source and target vertex covers, respectively, k is the
maximum allowed capacity and ` is an upper bound on the length of the reconfiguration sequence
we seek. By a slight abuse of notation, we use upper case letters to refer to both a node in the
reconfiguration graph, as well as the corresponding vertex cover. For any node S ∈ V(RVC(G, 0, k)),
the quantity k − |S| corresponds to the available capacity at S. We partition V(G) into the sets
CST = S ∩ T (vertices common to S and T), SR = S \ CST (vertices to be removed from S in the course
of reconfiguration), TA = T \ CST (vertices to be added to form T) and OST = V(G) \ (S ∪ T) =

V(G) \ (CST ∪ SR ∪ TA) (all other vertices). To simplify notation, we sometimes use G∆ to denote the
graph induced by the vertices in the symmetric difference of S and T, i.e., G∆ = G[S∆T] = G[SR ∪ TA].
We say a vertex is touched in the course of a reconfiguration sequence from S to T if v is either added
or removed at least once. We say a vertex v, in a vertex cover S, is removable if and only if v ∈ S and
NG(v) ⊆ S.

Proposition 1. For any graph G and any two vertex covers S and T of G, G∆ = G[SR ∪ TA] is bipartite.
Moreover, there are no edges between vertices in SR ∪ TA and vertices in OST .

Proof. None of the vertices in SR are included in T. Since T is a vertex cover of G, each edge of G
must have an endpoint in T, and hence, G[SR] must be an independent set. Similar arguments apply
to G[TA] and to show that there are no edges between vertices in SR ∪ TA and vertices in OST .

Proposition 2. For a graph G and any two vertex covers S and T of G, any vertex in SR ∪ TA must be
touched an odd number of times and any vertex not in SR ∪ TA must be touched an even number of times in
any reconfiguration sequence of length at most ` from S to T. Moreover, any vertex can be touched at most
`− |SR ∪ TA|+ 1 times.

Throughout this work, we implicitly consider the vertex cover reconfiguration problem as a
parameterized problem with ` as the parameter. The reader is referred to the books of Downey and
Fellows for more on parameterized complexity [11,12].

3. Representing Reconfiguration Sequences

There are multiple ways of representing a reconfiguration sequence between two vertex covers
of a graph G. In Sections 4 and 5, we focus on a representation that consists of an ordered sequence
of vertex covers or nodes in the reconfiguration graph. Given a graph G and two vertex covers of G,
A0 and Aj, we denote a reconfiguration sequence from A0 to Aj by α = (A0, A1, . . . , Aj), where Ai is a
vertex cover of G and Ai is obtained from Ai−1 by either the removal or the addition of a single vertex
from Ai−1 for all 0 < i ≤ j. For any pair of consecutive vertex covers (Ai−1, Ai) in α, we say Ai (Ai−1)
is the successor (predecessor) of Ai−1 (Ai). A reconfiguration sequence β = (A0, A1, . . . , Ai) is a prefix
of α = (A0, A1, . . . , Aj) if i < j.

In Section 6, we use the notion of edit sequences. We assume all vertices of G are labelled from
one to n, i.e., V(G) = {v1, v2, . . . , vn}. We let Ea = {a1, . . . , an} and Er = {r1, . . . , rn} denote the sets
of addition markers and removal markers, respectively. An edit sequence α is an ordered sequence
of elements obtained from the full set of markers E = Ea ∪ Er, where ai stands for the addition of
vertex vi, rj stands for the removal of vertex vj and 1 ≤ i, j ≤ n. The length of α, |α|, is equal to the total
number of markers in α. We let α[p] ∈ E , 1 ≤ p ≤ |α|, denote the marker at position p in α. We say β

is a segment of α whenever β consists of a subsequence of α with no gaps. The length of a segment
is defined as the total number of markers it contains. We use the notation α[p1, p2], 1 ≤ p1, p2 ≤ |α|,

Algorithms 2018, 11, 20 4 of 21

to denote the segment starting at position p1 and ending at position p2. Two segments β and β′ are
consecutive whenever β′ occurs later than β in α and there are no gaps between β and β′. For any pair
of consecutive segments β and β′ in α, we say β′ (β) is the successor (predecessor) of β (β′). Given an
edit sequence α, a segment β of α is a maximal addition segment if β is a maximal subsequence of α

consisting of only addition markers and no gaps. Similarly, β is a maximal removal segment if β is a
maximal subsequence of α consisting of only removal markers and no gaps.

We now discuss how edit sequences relate to reconfiguration sequences. Given a graph G and an
edit sequence α, we use V(α) to denote the set of vertices touched in α, i.e., V(α) = {vi | ai ∈ α∨ ri ∈ α}.
We let V(S, α) denote the set of vertices obtained after executing all reconfiguration steps in α on G
starting from some vertex cover S of G. We say α is valid whenever every set V(S, α[1, p]), 1 ≤ p ≤ |α|,
is a vertex cover of G, and we say α is invalid otherwise. Note that even if |S| ≤ k, α is not necessarily
a walk in the reconfiguration graphRVC(G, 0, k), as α might violate the maximum allowed capacity
constraint k. Hence, we let cap(α) = max1≤p≤|α|(|V(S, α[1, p])|), and we say α is tight whenever it is
valid and cap(α) ≤ k.

Proposition 3. Given a graph G and two vertex covers S and T of G, an edit sequence α is a reconfiguration
sequence from S to T if and only if α is a tight edit sequence from S to T.

4. Hardness Results

In earlier work establishing the W[1]-hardness of the VCR problem parameterized by ` on
general graphs, it was also shown that the problem becomes fixed-parameter tractable whenever
` = |SR ∪ TA| [10] (as we know exactly which vertices have to be touched, it is only a question of
finding the right order of additions and removals). When |SR ∪ TA| = n, we know from Proposition 2
that ` ≥ n, since every vertex in SR ∪ TA must be touched at least once. Moreover, Proposition 1
implies that whenever |SR ∪ TA| = n, the input graph must be bipartite. It is thus natural to ask about
the complexity of the problem when ` < n and the input graph is restricted to be bipartite. Since the
vertex cover problem is known to be solvable in time polynomial in n on bipartite graphs, our result
is, to the best of our knowledge, the first example of a problem solvable in polynomial time whose
reconfiguration version is W[1]-hard.

For a graph G, a crown is a pair (W, H) satisfying the following properties: (i) W 6= ∅ is an
independent set of G; (ii) NG(W) = H; and (iii) there exists a matching in G[W ∪ H] that saturates
H [16,17]. H is called the head of the crown, and the width of the crown is |H|. Crown structures
have played a central role in the development of efficient kernelization algorithms for the vertex cover
problem [16,17]. We define the closely-related notion of (t, d)-constrained crowns and show in the
remainder of this section that the complexity of finding such structures in a bipartite graph is central
for determining the complexity of the reconfiguration problem.

We define a (t, d)-constrained crown as a pair (W, H) satisfying all properties of a regular crown
with the additional constraints that |H| ≤ t and |W| − |H| ≥ d ≥ 0. We are now ready to introduce the
(t, d)-Bipartite Constrained Crown problem, or (t, d)-BCC, which is formally defined as follows:

(t, d)-bipartite constrained crown
Input: A bipartite graph G = (A ∪ B, E) and two positive integers t and d
Parameters: t and d
Question: Does G have a (t, d)-constrained crown (W, H) such that W ⊆ A and H ⊆ B?

Lemma 1. The (t, d)-bipartite constrained crown is W[1]-hard even when the input graph, G = (A ∪ B, E),
is C4-free and all vertices in A have degree at most two.

Proof. We give a reduction from the k-clique, known to be W[1]-hard, to the (k, (k
2))-bipartite

constrained crown. For (G, k) an instance of k-clique, we let V(G) = {v1, . . . , vn} and E(G) =

{e1, . . . , em}.

Algorithms 2018, 11, 20 5 of 21

We first form a bipartite graph G′ = ((X ∪ Z) ∪ Y, E1 ∪ E2), where vertex sets X and Y contain
one vertex for each vertex in V(G) and Z contains one vertex for each edge in E(G). More formally,
we set X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and Z = {z1, . . . , zm}. The edges in E1 join each pair of
vertices xi and yi for 1 ≤ i ≤ n and the edges in E2 join each vertex z in Z to the two vertices yi and yj
corresponding to the endpoints of the edge in E(G) to which z corresponds. Since each edge either
joins vertices in X and Y or vertices in Y and Z, it is not difficult to see that the vertex sets X ∪ Z and Y
form a bipartition.

By our construction, G′ is C4-free; vertices in X have degree one, and since there are no double
edges in G, i.e., two edges between the same pair of vertices, no pair of vertices in Y can have more
than one common neighbour in Z. For (G′, k, (k

2)) an instance of (k, (k
2))-BCC, A = X ∪ Z and B = Y,

we claim that G has a clique of size k if and only if G′ has a (k, (k
2))-constrained crown (W, H) such

that W ⊆ A and H ⊆ B.
If G has a clique K of size k, we set H = {yi | vi ∈ V(K)}, namely the vertices in Y corresponding

to the vertices in the clique. To form W, we choose {xi | vi ∈ V(K)} ∪ {zi | ei ∈ E(K)}, that is
the vertices in X corresponding to the vertices in the clique and the vertices in Z corresponding to
the edges in the clique. Clearly, H is a subset of size k of B, and W is a subset of size k + (k

2) of A;
this implies that |W| − |H| ≥ d = (k

2), as required. To see why NG′(W) = H, it suffices to note that
every vertex xi ∈ W is connected to exactly one vertex yi ∈ H, and every degree-two vertex zi ∈ W
corresponds to an edge in K whose endpoints vivj must have corresponding vertices in H. Moreover,
due to E1, there is a matching between the vertices of H and the vertices of W in X and, hence, a
matching in G′[W ∪ H] that saturates H.

We now assume that G′ has a (k, (k
2))-constrained crown (W, H) such that W ⊆ X ∪ Z and H ⊆ Y.

It suffices to show that |H|must be equal to k, |W ∩ Z|must be equal to (k
2) and, hence, |W ∩ X|must

be equal to k; from this, we can conclude that the vertices in {vi | yi ∈ H} form a clique of size k in
G as |W ∩ Z| = (k

2), requiring that edges exist between each pair of vertices in the set {vi | yi ∈ H}.
Moreover, since |W ∩ X| = k and NG′(W) = H, a matching that saturates H can be easily found by
simply picking all edges xiyi for yi ∈ H.

To prove the sizes of H and W, we first observe that since |H| ≤ k, NG′(W) = H, and each
vertex in Y has exactly one neighbour in X, we know that |W ∩ X| ≤ |H| ≤ k. Moreover, since
|W| = |W ∩ X|+ |W ∩ Z| and |W| − |H| ≥ (k

2), we know that |W ∩ Z| = |W| − |W ∩ X| ≥ (k
2) + |H| −

|W ∩ X| ≥ (k
2). If |W ∩ Z| = (k

2), our proof is complete, since by our construction of G′, H is a set of at
most k vertices in the original graph G, and the subgraph induced by those vertices in G has (k

2) edges.
Hence, |H| must be equal to k. Suppose instead that |W ∩ Z| > (k

2). In this case, since each vertex of Z
has degree two, the number of neighbours of W ∩ Z in Y is greater than k, violating the assumptions
that NG′(W) = H and |H| ≤ k.

We can now show the main result of this section:

Theorem 1. VCR parameterized by ` and restricted to bipartite graphs is W[1]-hard.

Proof. We give a reduction from the (t, d)-bipartite constrained crown to vertex cover reconfiguration
in bipartite graphs. For (G = (A ∪ B, E), t, d), an instance of the (t, d)-bipartite constrained crown,
A = {a1, . . . , a|A|} and B = {b1, . . . , b|B|}, we form G′ = (X ∪ Y ∪U ∪V, E1 ∪ E2) such that X and Y
correspond to the vertex sets A and B, E1 connects vertices in X and Y corresponding to vertices in A
and B joined by edges in G and U, V and E2 form a complete bipartite graph Kd+t,d+t. More formally,
X = {x1, . . . , x|A|}, Y = {y1, . . . , y|B|}, U = {u1, . . . , ud+t}, V = {v1, . . . , vd+t}, E1 = {xiyj | aibj ∈
E(G)} and E2 = {uivj | 1 ≤ i ≤ d + t, 1 ≤ j ≤ d + t}.

We let (G′, S, T, k = |A| + d + 2t, ` = 4d + 6t) be an instance of VCR, where S = X ∪U and
T = X ∪V. Clearly, |S| = |T| = |A|+ d + t. We claim that G has a (k, d)-constrained crown (W, H)

such that W ⊆ A and H ⊆ B if and only if there is a path of length at most 4d + 6t from S to T.

Algorithms 2018, 11, 20 6 of 21

If G has such a pair (W, H), we form a reconfiguration sequence of length at most 4d + 6t
as follows:

(1) Add each vertex yi such that bi ∈ H. The resulting vertex cover size is |A|+ d + t + |H|.
(2) Remove d + |H| vertices xi such that ai ∈W. The resulting vertex cover size is |A|+ t.
(3) Add each vertex from V. The resulting vertex cover size is |A|+ d + 2t.
(4) Remove each vertex from U. The resulting vertex cover size is |A|+ t.
(5) Add each vertex removed in Phase 2. The resulting vertex cover size is |A|+ d + t + |H|.
(6) Remove each vertex added in Phase 1. The resulting vertex cover size is |A|+ d + t.

The length of the sequence follows from the fact that |H| ≤ t: Phases 1 and 6 consist of at most t
steps each and Phases 2, 3, 4 and 5 of at most d + t steps each. The fact that each set forms a vertex
cover is a consequence of the fact that NG(W) = H.

For the converse, we observe that before removing any vertex ui, 1 ≤ i ≤ d + t, from U, we first
need to add all d + t vertices from V. Therefore, if there is a path of length at most 4d + 6t from S to T,
then we can assume without loss of generality that there exists a node Q (i.e., a vertex cover) along this
path such that:

|Q| ≤ |A|+ t and,

all vertices that were touched in order to reach node Q belong to X ∪Y.
In other words, at node Q, the available capacity is greater than or equal to d + t, and all edges in

G[U ∪V] are still covered by U. We let QIN = Q \ S and QOUT = S \Q. Since S = X∪U, QIN ⊆ Y and
QOUT ⊆ X. Moreover, since |Q| = |S|+ |QIN| − |QOUT| = |A|+ d + t + |QIN| − |QOUT| ≤ |A|+ t,
we know that |QOUT| − |QIN|must be greater than or equal to d. Given that ` ≤ 4d + 6t and we need
exactly 2d + 2t steps to add all vertices in V and remove all vertices in U, we have 2d + 4t remaining
steps to allocate elsewhere. Therefore, |QOUT|+ |QIN| ≤ d + 2t as QIN ⊆ Y, QOUT ⊆ X, and every
vertex in QIN ∪QOUT must be touched at least twice (i.e., added and then removed). Combining those
observations, we get:

|QOUT|+ |QIN| ≤ d + 2t
|QIN| − |QOUT| ≤ −d

|QIN| ≤ t

We have just shown that G has a pair (QOUT, QIN) such that QOUT ⊆ X, QIN ⊆ Y, |QIN| ≤ t,
|QOUT| − |QIN| ≥ d ≥ 0, and NG(QOUT) = QIN, as otherwise some edge is not covered. The
remaining condition for (QOUT, QIN) to satisfy is for G[QOUT ∪QIN] to have a matching that saturates
QIN. Hall’s marriage theorem [18] states that such a saturating matching exists if and only if for
every subset P of QIN, |P| ≤ |NG[QOUT∪QIN](P)|. By a simple application of Hall’s theorem, if no such
matching exists, then there exists a subgraph Z of G[QOUT ∪QIN] such that |V(Z)∩QOUT| < |V(Z)∩
QIN|. By deleting this subgraph from QOUT ∪QIN, we can get a new pair (Q′OUT, Q′IN), which must
still satisfy Q′OUT ⊆ X, Q′IN ⊆ Y, |Q′IN| ≤ t, |Q′OUT| − |Q′IN| ≥ d ≥ 0 and NG(Q′OUT) = Q′IN, since we
delete more vertices from QIN than we do from QOUT and NG[QOUT∪QIN](V(Z)∩QIN) = V(Z)∩QOUT.
Finally, if (Q′OUT, Q′IN) does not have a matching that saturates Q′IN, we can repeatedly apply the same
rule until we reach a pair that satisfies all the required properties. Since |QOUT| ≥ |QIN|, such a pair is
guaranteed to exist, as otherwise every subset P of QIN would satisfy |P| > |NG[QOUT∪QIN](P)| and
hence |QOUT| < |QIN|, a contradiction.

5. Polynomial-Time Algorithms

In this section, we present a characterization of instances of the VCR problem solvable in time
polynomial in n, and apply this characterization to trees, graphs with no even cycles (as subgraphs)
and to cactus graphs (with some additional restrictions). We show how to find reconfiguration

Algorithms 2018, 11, 20 7 of 21

sequences of the shortest possible length and therefore ignore the parameter `. Unless stated otherwise,
reconfiguration sequences are represented as ordered sequences of vertex covers or nodes in the
reconfiguration graph.

Definition 1. Given two vertex covers of G, A and B, a reconfiguration sequence β from A to some vertex
cover A′ is a c-bounded prefix of a reconfiguration sequence α from A to B, if and only if all of the following
conditions hold:

(1) |A′| ≤ |A|;
(2) For every node A′′ in β, |A′′| ≤ |A|+ c;
(3) For every node A′′ in β, A′′ is obtained from its predecessor by either the removal or the addition of a single

vertex in the symmetric difference of the predecessor and B;
(4) No vertex is touched more than once in the course of β.

We write A c, B←→ A′ when such a c-bounded prefix exists.

Proposition 4. Given two vertex covers S and T of G, if G has a vertex cover S′ such that S c, T←→ S′, then

S d, T←−→ S′ for all d > c.

Lemma 2. Given two vertex covers S and T of G and two positive integers k and c such that |S|, |T| ≤ k,
a reconfiguration sequence α of length |SR|+ |TA| = |S∆T| from S to T exists if:

(1) |S| ≤ k− c;
(2) |T| ≤ k− c; and

(3) For any two vertex covers A and B of G such that |A| ≤ k− c and |B| ≤ k− c, either A c, B←→ A′ or

B c, A←−→ B′, where A′ and B′ are vertex covers of G.

Moreover, if c-bounded prefixes can be found in time polynomial in n, then α can be found in time
polynomial in n.

Proof. We prove the lemma by induction on |S∆T|. When |S∆T| = 0, S is equal to T, and the claim
holds trivially since |α| = 0.

When |S∆T| > 0, we know that either S c, T←→ S′ or T c, S←→ T′. Without loss of generality,

we assume S c, T←→ S′ and let β denote the c-bounded prefix from S to S′. From Definition 1, we know
that the size of every node in β is no greater than |S| + c ≤ k. Therefore, the maximum allowed
capacity constraint is never violated.

Since |S′| ≤ |S| (Definition 1), by the induction hypothesis, there exists a reconfiguration sequence
from S′ to T whose length is |S′∆T|. By appending the reconfiguration sequence from S′ to T to the
reconfiguration sequence from S to S′, we obtain a reconfiguration sequence α from S to T.

To show that |α| = |S∆T|, it suffices to show that |β|+ |S′∆T| = |S∆T|. We know that no vertex is
touched more than once in β, and every touched vertex belongs to S∆T (Definition 1). We let H ⊆ S∆T
denote the set of touched vertices in β, and we subdivide H into two sets HS = H ∩ S = H ∩ SR
and HT = H ∩ T = H ∩ TA. It follows that |β| = |HS|+ |HT | and |S′∆T| = |SR \ HS|+ |TA \ HT |.
Therefore, |β|+ |S′∆T| = |HS|+ |HT |+ |SR \ HS|+ |TA \ HT | = |SR|+ |TA| = |S∆T| as needed.

When c-bounded prefixes can be found in time polynomial in n, the proof gives an algorithm for
constructing the full reconfiguration sequence from S to T in time polynomial in n.

5.1. Trees

Theorem 2. Vertex cover reconfiguration restricted to trees can be solved in time polynomial in n.

Algorithms 2018, 11, 20 8 of 21

Proof. We let (G, S, T, k, `) be an instance of vertex cover reconfiguration. The proof proceeds in two
stages. We start by showing that when G is a tree and S and T are of size at most k− 1, we can always

find one-bounded prefixes S 1, T←→ S′ or T 1, S←→ T′ in time polynomial in n. Therefore, we can apply
Lemma 2 with c = 1 to find a reconfiguration sequence of length |S∆T| from S to T in time polynomial
in n. In the second part of the proof, we show how to handle the remaining cases where S, T or both S
and T are of a size greater than k− 1.

First, we note that every forest either has a degree-zero or a degree-one vertex. Hence, trees
and forests are one-degenerate graphs. Since G is a tree, G[SR ∪ TA] is a forest and is therefore
one-degenerate. To find one-bounded prefixes in G[SR ∪ TA], it is enough to find a vertex of degree at
most one, which can clearly be done in time polynomial in n: For any two vertex covers S and T of a
tree G such that S, T ≤ k− 1, we can always find a vertex v ∈ SR ∪ TA having degree at most one in
G[SR ∪ TA]. The existence of v guarantees the existence of a one-bounded prefix from either S to some
vertex cover S′ or from T to some vertex cover T′. When v ∈ SR and |NG[SR∪TA]

(v)| = 0, we have

S 0, T←→ S′, since S′ is obtained from S by simply removing v. When v ∈ SR and |NG[SR∪TA]
(v)| = 1,

we have S 1, T←→ S′, since S′ is obtained from S by first adding the unique neighbour of v and then
removing v. Similar arguments hold when v ∈ TA.

Therefore, combining Lemma 2 and the fact that G[SR ∪ TA] is one-degenerate, we know that if
|S| ≤ k− 1 and |T| ≤ k− 1, a reconfiguration sequence of length |SR|+ |TA| from S to T can be found
in time polynomial in n. Furthermore, since the length of a reconfiguration sequence can never be less
than |SR|+ |TA|, the reconfiguration sequence given by Lemma 2 is the shortest path from S to T in
the reconfiguration graph.

When S (or T) has size k and is minimal, then we have a no-instance, since neither removing,
nor adding a vertex results in a k-vertex cover, and hence, S (or T) will be an isolated node in the
reconfiguration graph, with no path to T (or S).

When S, T or both S and T are of size k and are non-minimal, there always exists a reconfiguration
sequence from S to T, since S and T can be reconfigured to solutions S′ and T′, respectively, of size less
than k, to which Lemma 2 can be applied. The only reconfiguration steps from S (or T) of size k are to
subsets of S of size k− 1 (or to subsets of T of size k− 1); the reconfiguration sequence obtained from
Lemma 2 is thus a shortest path. Therefore, we can obtain a shortest path from S to T through a careful
selection of S′ and T′. There are two cases to consider:

Case (1): |S| = k, |T| = k, S is non-minimal and T is non-minimal. When both S and T are of
size k and are non-minimal, then each must contain at least one removable vertex. Hence, by removing
such vertices, we can transform S and T into vertex covers S′ and T′, respectively, of size k− 1. We let
u and v be removable vertices in S and T, respectively, and we set S′ = S \ {u} and T′ = T \ {v}.

1. If u ∈ SR and v ∈ TA, then the length of a shortest reconfiguration sequence from S′ to T′ will
be |S′∆T′| = |S∆T| − 2. Therefore, accounting for the two additional removals, the length of a
shortest path from S to T will be equal to |S∆T|.

2. If u ∈ SR and v ∈ CST , then the length of a shortest reconfiguration sequence from S′ to T′ will be
|S′∆T′| = |S∆T| − 1. Since v is in CST , it must be removed and added back. Therefore, the length
of a shortest path from S to T will be equal to |S∆T|+ 2. The same is true when u ∈ CST and
v ∈ TA or when u = v and u ∈ CST .

3. Otherwise, when u ∈ CST , v ∈ CST and u 6= v, the length of a shortest path from S to T will
be |S∆T| + 4, since we have to touch two vertices in CST (i.e., two extra additions and two
extra removals).

Case (2): |S| = k, |T| = k− 1 and S is non-minimal (similar arguments hold for the symmetric
case where |S| = k− 1, |T| = k, and T is non-minimal). Since |T| = k− 1, we only need to reduce

Algorithms 2018, 11, 20 9 of 21

the size of S to k− 1 in order to apply Lemma 2. Since S is non-minimal, it must contain at least one
removable vertex. We let u be a removable vertex in S, and we set S′ = S \ {u}.

1. If u ∈ SR, then the length of a shortest reconfiguration sequence from S′ to T will be |S′∆T| =
|S∆T| − 1. Therefore, accounting for the additional removal, the length of a shortest path from S
to T will be equal to |S∆T|.

2. If u ∈ CST , then the length of a shortest reconfiguration sequence from S′ to T will be |S′∆T| =
|S∆T|. Since v is in CST , it must be removed and added back. Therefore, the length of a shortest
path from S to T will be equal to |S∆T|+ 2.

As there are at most k2 pairs of removable vertices in S and T to check for Case (1), we can
exhaustively try all pairs and choose one that minimizes the length of a reconfiguration sequence.
Similarly, there are at most k removable vertices to check in Case (2). Consequently, vertex cover
reconfiguration on trees can be solved in time polynomial in n.

5.2. Cactus Graphs

A cactus graph G [19] is a connected graph in which every edge belongs to at most one cycle.
We let C(G) denote the set of all cycles in G. We say vertex v ∈ V(G) is a join vertex if v belongs to a
cycle and NG(v) ≥ 3.

The following proposition is a consequence of the fact that a maximal matchingM(G) of a cactus
graph G can contain an edge from each cycle in C(G).

Proposition 5. For a cactus graph G, the number of cycles in G is bounded above by the size of a maximum
matchingM(G), i.e., |C(G)| ≤ |M(G)|.

The next proposition is a consequence of the fact that for any cactus graph G, we can obtain a
spanning tree of G by removing a single edge from every cycle in G.

Proposition 6. For a cactus graph G and TG a spanning tree of G, the total number of edges in G is equal
to the number of edges in TG plus the total number of cycles in G, i.e., |E(G)| = |E(TG)| + |C(G)| =
|V(TG)| − 1 + |C(G)|.

Any graph with no even cycles (as subgraphs) is a cactus graph [20]. For a graph G with no
even cycles and any two vertex covers, S and T, of G, we know that G[SR ∪ TA] must be a forest, i.e.,
a bipartite graph with no even cycles (Proposition 1). Proposition 7 follows from the fact that in the
proof of Theorem 2, the fact that G is a tree is used only to determine that G[SR ∪ TA] must be a forest.
Therefore, using the same proof as in Theorem 2, we can show:

Proposition 7. Vertex cover reconfiguration on graphs with no even cycles can be solved in time polynomial
in n.

In the remainder of this section, we generalize Proposition 7 to all cactus graphs assuming that
the given vertex covers S and T are of size at most k− 2. To do so, we first show, in Lemmas 3 and 4,
that the third condition of Lemma 2 is satisfied for cactus graphs with c = 2. In Lemma 5, we show
how two-bounded prefixes can be found in time polynomial in n, which leads to Theorem 3. We note
that a similar result was proven independently by Ito et al. [21] via completely different methods.

Lemma 3. Given two vertex covers S and T of G, there exists a vertex cover S′ (or T′) of G such that S 2, T←→ S′

(or T 2, S←→ T′) if one of the following conditions holds:

(1) G[SR ∪ TA] has a vertex v ∈ SR (v ∈ TA) such that |NG[SR∪TA]
(v)| ≤ 1; or

Algorithms 2018, 11, 20 10 of 21

(2) there exists a cycle Y in G[SR ∪ TA] such that all vertices in Y ∩ SR (Y ∩ TA) have degree exactly two in
G[SR ∪ TA].

Moreover, both conditions can be checked in time polynomial in n, and when one of them is true, the
corresponding two-bounded prefix can be found in time polynomial in n.

Proof. First, we note that checking for Condition (1) can be accomplished in time polynomial in n
by simply inspecting the degree of every vertex in G[SR ∪ TA]. The total number of cycles satisfying
condition (2) is linear in the number of degree-two vertices in G[SR ∪ TA]. Therefore, we can check for
Condition (2) in time polynomial in n by a simple breadth-first search starting from every degree-two
vertex in G[SR ∪ TA].

If G[SR ∪ TA] has a vertex v ∈ SR of degree zero, we let S′ denote the vertex cover obtained
by simply removing v from S. It is easy to see that the reconfiguration sequence from S to S′ is a
zero-bounded prefix and can be found in time polynomial in n.

Similarly, if G[SR ∪ TA] has a vertex v ∈ SR of degree one, we let S′ denote the node obtained by
the addition of the single vertex in NG[SR∪TA]

(v) followed by the removal of v. The reconfiguration
sequence from S to S′ is a one-bounded prefix and can be found in time polynomial in n.

For the second case, we let Y be a cycle in G[SR ∪ TA], and we partition the vertices of the cycle
into two sets; YS = Y ∩ SR and YT = Y ∩ TA. Since G[SR ∪ TA] is bipartite, we know that |YS| = |YT |.
Since all vertices in YS have degree exactly two in G[SR ∪ TA], it follows that NG[SR∪TA]

(YS) ⊆ YT .
Therefore, a reconfiguration sequence from S to some vertex cover S′ that adds all vertices in YT (one
by one) and then removes all vertices in YS (one by one) will satisfy Conditions (1), (3) and (4) from
Definition 1 for any value of c. For c = 2, such a sequence will not satisfy Condition (2) if the cycle
has at least six vertices (i.e., |YT | ≥ 3). However, using the fact that every vertex in YS has degree
exactly two in G[SR ∪ TA], we can find a reconfiguration sequence from S to S′ in which no vertex
cover has a size greater than |S|+ 2. To do so, we restrict our attention to G[YS ∪YT]. Since Y is an even
cycle, we can label all the vertices of Y in clockwise order from zero to |Y| − 1 such that all vertices in
YS receive even labels. The reconfiguration sequence from S to S′ starts by adding the two vertices
labelled 1 and |Y| − 1. After doing so, the vertex labelled 0 is removed. Next, to remove the vertex
labelled 2, we only need to add the vertex labelled 3. The same process is repeated for all vertices with
even labels up to |Y| − 4. Finally, when we reach the vertex labelled |Y| − 2, both of its neighbours will
have already been added, and we can simply remove it. Hence, we have a two-bounded prefix from S
to S′, and it is not hard to see that finding this reconfiguration sequence can be accomplished in time
polynomial in n.

When the appropriate assumptions hold, we can show the symmetric case T 2, S←→ T′ using
similar arguments.

Lemma 4. If G is a cactus graph and S and T are two vertex covers of G, then there exists a vertex cover S′

(or T′) of G such that S 2, T←→ S′ (or T 2, S←→ T′).

Proof. We assume that |SR| ≥ |TA|, as we can swap the roles of S and T whenever |SR| < |TA|.
We observe that every connected component of G[SR ∪ TA] is a cactus graph since every induced
subgraph of a cactus graph is also a cactus graph. Since we assume |SR| ≥ |TA|, at least one connected
component X of G[SR ∪ TA] must satisfy |V(X) ∩ SR| ≥ |V(X) ∩ TA|.

To prove the lemma, we show that if neither condition of Lemma 3 applies to X, it must be the case
that |V(X) ∩ SR| < |V(X) ∩ TA|, contradicting our assumption. To simplify the notation, we assume
without loss of generality that G[SR ∪ TA] is connected, as we can otherwise set G[SR ∪ TA] = X.
The proof proceeds in two steps. First, we show that if Condition (1) of Lemma 3 is not satisfied, then
G[SR ∪ TA] must have at least one vertex u ∈ SR of degree at most two in G[SR ∪ TA]. In the second
step, we show that if both Conditions (1) and (2) of Lemma 3 are not satisfied, then |SR| < |TA|, which
completes the proof by contradiction.

Algorithms 2018, 11, 20 11 of 21

Since G[SR ∪ TA] is a cactus graph, we can apply Propositions 5 and 6 to get:

|E(G[SR ∪ TA])| = |SR|+ |TA| − 1 + |C(G[SR ∪ TA])|
≤ |SR|+ |TA| − 1 + |M(G[SR ∪ TA])| (1)

Moreover, since G[SR ∪ TA] is bipartite (Proposition 1), the size of a maximum matching in
G[SR ∪ TA] is less than or equal to min(|SR|, |TA|). Therefore:

|C(G[SR ∪ TA])| ≤ |M(G[SR ∪ TA])| ≤ |SR| (2)

Combining (1) and (2), we get:

|E(G[SR ∪ TA])| = |SR|+ |TA| − 1 + C(G[SR ∪ TA])

≤ 2|SR|+ |TA| − 1 (3)

If the minimum degree in G[SR ∪ TA] of any vertex in SR is three or more, then 3|SR| ≤ |E(G[SR ∪
TA])| ≤ 2|SR|+ |TA| − 1 and thus |SR| ≤ |TA| − 1, contradicting our assumption that |SR| ≥ |TA|.
Hence, G[SR ∪ TA] must have at least one vertex of degree two in SR.

Next, we show that if G[SR ∪ TA] has no vertex v ∈ SR such that |NG[SR∪TA]
(v)| ≤ 1 and no cycle

Y such that all vertices in Y ∩ SR have degree exactly two in G[SR ∪ TA], then |SR| < |TA|. We let Sx

denote the set of vertices in SR having degree x in G[SR ∪ TA]. Since G[SR ∪ TA] has no vertex v ∈ SR
such that |NG[SR∪TA]

(v)| ≤ 1, we know that S2 cannot be empty. In addition, since there is no cycle Y in
G[SR ∪ TA] such that all vertices in Y ∩ SR have degree exactly two in G[SR ∪ TA], any cycle involving
a vertex in S2 must also include a vertex from

⋃
i≥3 Si. It follows that

⋃
i≥3 Si is a feedback vertex set

(a set whose removal destroys all cycles) of G[SR ∪ TA], and G[S2 ∪ TA] is a forest.
We let ms denote the maximum degree in G[SR ∪ TA] of any vertex in SR. Since each edge in

G[SR ∪ TA] has one endpoint in SR,

ms

∑
i=2

i|Si| ≤ |E(G[SR ∪ TA])| (4)

and since each vertex in SR is in some Si and using (1), we can rewrite (4) as:

ms

∑
i=2

i|Si| ≤
(

ms

∑
i=2
|Si|
)
+ |TA| − 1 + |C(G[SR ∪ TA])|. (5)

To bound |C(G[SR ∪ TA])|, we note that since no edge can belong to more than one cycle in a
cactus graph, any vertex v ∈ Sx can be involved in at most b x

2 c cycles. Combining this observation
with the fact that any cycle involving a vertex in S2 must also include a vertex from

⋃
i≥3 Si, we have:

ms

∑
i=2

i|Si| ≤
(

ms

∑
i=2
|Si|
)
+ |TA| − 1 +

(
ms

∑
i=3
b i

2
c|Si|

)

≤ |S2|+
(

ms

∑
i=3

(1 + b i
2
c)|Si|

)
+ |TA| − 1 (6)

Finally, by rewriting ∑ms
i=2 i|Si| as 2|S2|+ ∑ms

i=3 i|Si| and given that i − (1 + b i
2c) ≥ 1 for i ≥ 3,

we obtain the desired bound:

Algorithms 2018, 11, 20 12 of 21

2|S2|+
ms

∑
i=3

i|Si| ≤ |S2|+
(

ms

∑
i=3

(1 + b i
2
c)|Si|

)
+ |TA| − 1

|S2|+
ms

∑
i=3

i|Si| ≤
(

ms

∑
i=3

(1 + b i
2
c)|Si|

)
+ |TA| − 1

|S2|+
ms

∑
i=3

(i− (1 + b i
2
c))|Si| ≤ |TA| − 1

|SR| =
ms

∑
i=2
|Si| ≤ |TA| − 1 (7)

This completes the proof.

Lemma 5. If G is a cactus graph and S and T are vertex covers of G, then finding a two-bounded prefix from S
to some vertex cover S′ (or from T to some vertex cover T′) of G can be accomplished in time polynomial in n.

Proof. To find a two-bounded prefix from S to some vertex cover S′ (or from T to some vertex cover
T′), we simply need to satisfy one of the conditions of Lemma 3, which can both be checked in time
polynomial in n. Since G[SR ∪ TA] is a cactus graph, we know from Lemma 4 that one of them must
be true.

Theorem 3. If S and T are of size at most k− 2, then vertex cover reconfiguration on cactus graphs can be
solved in time polynomial in n.

Proof. From Lemma 4, we know that for any cactus graph G and two vertex covers S and T of G,

then either S 2, T←→ S′ or T 2, S←→ T′, where S′ and T′ are some vertex covers of G. In addition, Lemma 5
shows that such two-bounded prefixes can be found in time polynomial in n. By combining these
facts, we can now apply Lemma 2. That is, if |S| ≤ k− 2 and |T| ≤ k− 2, a reconfiguration sequence
of length |SR|+ |TA| from S to T can be found in time polynomial in n.

It remains open whether we can solve the VCR problem in polynomial time on cactus graphs
without any restrictions on the size of S and T. For instance, it is unclear if we can always determine
(in polynomial time) whether a vertex cover of size k− 1 can be transformed into a vertex cover of size
k− 2 and, if so, whether we can find the shortest reconfiguration sequence.

6. FPT Algorithms

In this section, we first focus on vertex cover reconfiguration on graphs of bounded degree.
We start by showing that vertex cover reconfiguration is NP-hard on graphs of degree at most d, for any
d ≥ 4, by proving NP-hardness on 4-regular graphs. The proof is based on the observation that the
reconfiguration version of the problem is at least as hard as the compression version:

Vertex cover compression
Input: A graph G = (V, E) and a vertex cover C of G such that |C| = k ≥ 1
Parameter: k
Question: Does G have a vertex cover C′ of size k− 1?

The NP-hardness result relies on the representation of reconfiguration sequences as edit sequences.
Next, we give an FPT algorithm for vertex cover reconfiguration on graphs of bounded degree. Finally,
we show that a host of graph reconfiguration problems definable in first-order logic is fixed-parameter
tractable on nowhere dense classes of graphs.

Algorithms 2018, 11, 20 13 of 21

6.1. Compression via Reconfiguration

Theorem 4. Vertex cover reconfiguration is at least as hard as vertex cover compression.

Proof. We give a reduction from the latter to the former. For (G, C, k), an instance of vertex cover
compression, we let V(G) = {v1, . . . , vn} and form G′ = (VG ∪VA ∪VB, EG ∪ EJ), where G′ consists
of the disjoint union of a copy of G and a biclique Kk,k. Formally, we have:

VG = {g1, . . . , gn}
VA = {a1, . . . , ak}
VB = {b1, . . . , bk}

EG = {gigj | gi ∈ VG, gj ∈ VG, vivj ∈ E(G)}
EJ = {aibj | ai ∈ VA, bj ∈ VB, 1 ≤ i ≤ k, 1 ≤ j ≤ k}.

We let (G′, S, T, 3k− 1, 6k− 2) be an instance of vertex cover reconfiguration, where S = VA ∪ {gi |
vi ∈ C} and T = VB ∪ {gi | vi ∈ C}. Clearly, |S| = |T| = 2k and both S and T are vertex covers of G′.
We claim that G has a vertex cover of size k− 1 if and only if there is a reconfiguration sequence of
length 6k− 2 or less from S to T.

Before we can remove any vertex from VA, we need to add all k vertices from VB. However,
2k + k = 3k > 3k− 1, which violates the maximum allowed capacity. Therefore, if there is a
reconfiguration sequence from S to T, then one of the vertex covers in the sequence must contain at
most 2k− 1 vertices. Of those 2k− 1 vertices, k vertices correspond to the vertices in VA and cover
only the edges in EJ . Thus, the remaining k− 1 vertices must be in VG and should cover all the edges
in EG. By our construction of G′, these k− 1 vertices correspond to a vertex cover of G.

Similarly, if G has a vertex cover Ĉ such that |Ĉ| = k − 1, then the following reconfiguration
sequence transforms S to T: add all vertices of Ĉ, remove all vertices of C, add all vertices of VB,
remove all vertices from VA and finally add back all vertices of C and remove those of Ĉ. The length of
this sequence is equal to 6k− 2 whenever C ∩ Ĉ = ∅ and is shorter otherwise.

6.2. NP-Hardness on Four-Regular Graphs

We are now ready to show that vertex cover reconfiguration remains NP-hard even if the input
graph is restricted to be four-regular. We use the same ideas as we did in the previous section.
Since vertex cover remains NP-hard on four-regular graphs [22] and any algorithm that solves the
vertex cover compression problem can be used to solve the vertex cover problem, we get the desired
result. The main difference here is that we need to construct a gadget, Wk, that is also four-regular. We
describe Wk in terms of several component subgraphs, each playing a role in forcing the reconfiguration
of vertex covers.

A k-necklace, k ≥ 4, is a graph obtained by replacing every edge in a cycle on k vertices by two
vertices and four edges. For convenience, we refer to every vertex on the original cycle as a bead and
every new vertex in the resulting graph as a sequin. The resulting graph has k beads each of degree
four and 2k sequins each of degree two. Every two sequins that share the same neighbourhood in a
k-necklace are called a sequin pair. We say two beads are adjacent whenever they share exactly two
common neighbours. Similarly, we say two sequin pairs are adjacent whenever they share exactly one
common neighbour. Every two adjacent beads (sequin pairs) are linked by a sequin pair (bead).

The graph Wk consists of 2k copies of a k-necklace. We let U = {U1, . . . Uk} and L = {L1, . . . Lk}
denote the first and second k copies, respectively; for convenience, we use the terms “upper” and
“lower” to mean “in U” and “in L”, respectively. We let bu

i,j and bl
i,j denote the j-th beads of necklace

Ui and Li, respectively, where 1 ≤ i ≤ k and 1 ≤ j ≤ k. Beads on each necklace in Wk are numbered
consecutively in “clockwise order” from one to k. For every two adjacent beads bx

i,j and bx
i,j+1, where

x ∈ {u, l}, we let px
i,j denote the sequin pair that links both beads.

Algorithms 2018, 11, 20 14 of 21

For each sequin pair pl
i,j, we add four edges to form a K2,2 (a joining biclique) with the pair

pu
j,i, for all 1 ≤ i, j ≤ k (Figure 1); we say that sequin pairs pl

i,j and pu
j,i are joined. All k2 joining

bicliques in Wk are vertex disjoint. The total number of vertices in Wk is 6k2. Every vertex has
degree exactly four; every bead is connected to four sequins from the same necklace, and every
sequin is connected to two beads from the same necklace and two other sequins from a different
necklace. We let S be the set containing all upper beads and lower sequins, whereas T contains all
lower beads and upper sequins. Formally, S = {bu

i,j | 1 ≤ i, j ≤ k} ∪ {v ∈ pl
i,j | 1 ≤ i, j ≤ k} and

T = {bl
i,j | 1 ≤ i, j ≤ k} ∪ {v ∈ pu

i,j | 1 ≤ i, j ≤ k}. Each set contains 3k2 vertices, that is half the vertices
in Wk.

U1 U2 U3 U4

L1 L2 L3 L4

Figure 1. The graph W4 (the edges of only one of the k2 joining bicliques is shown).

Proposition 8. S and T are minimum vertex covers of Wk.

Proof. We need at least 2k2 vertices to cover the edges in the k2 vertex disjoint joining bicliques
contained in Wk. Moreover, any minimal vertex cover C of Wk that includes a vertex v from a sequin
pair px

i,j = {v, w}, where x ∈ {u, l}, must also include w. Otherwise, the two beads linking px
i,j to its

adjacent sequin pairs must be in C to cover the edges incident on w, making v removable. Hence,
any minimal vertex cover C of Wk must include either one or both sequin pairs in a joining biclique.
We let x denote the number of joining bicliques from which two sequin pairs are included in C.
Similarly, we let y denote the number of joining bicliques from which only one sequin pair is included
in C. Hence, x + y = k2 and |C| ≥ 4x + 2y. When y = 0, |C| ≥ 4k2 and C cannot be a minimum
vertex cover, as S and T are both vertex covers of Wk of size 3k2. When y ≥ 1, we are left with at
least y uncovered edges incident to the sequin pairs not in C. Those edges must be covered using at
least y beads and, hence, |C| ≥ 4x + 3y. If we assume 4x + 3y < 3k2, we get a contradiction since
4x + 4y = 4k2 < 3k2 + y and k2 < y. Therefore, S and T must be minimum vertex covers of Wk.

To prove the next two results, we consider the representation of reconfiguration sequences as
edit sequences. Since S is a minimal vertex cover of Wk, α cannot start with a vertex removal. Since
V(S, α[1, |α| − 1]) is a vertex cover of Wk, |S| = |T| and S and T are minimum vertex covers of Wk,
α cannot end with a vertex addition. Moreover, if |α| = 6k2, then α must touch every vertex in Wk
exactly once.

Proposition 9. Any (valid) edit sequence α′ of length 6k2 from S to T can be converted into a (valid) edit
sequence α from S to T such that |α| = |α′| = 6k2, |V(S, α[1, p])| ≤ |V(S, α′[1, p])|, for all 1 ≤ p ≤ |α|,
and any two vertices u and v from the same sequin pair in Wk are either added in the same maximal addition
segment or removed in the same maximal removal segment of α. Consequently, cap(α) ≤ cap(α′).

Proof. Both vertices in a sequin pair share the same neighbourhood. Hence, when u is removed, all of
its neighbours must have been added, making v also removable. Moreover, since every vertex is

Algorithms 2018, 11, 20 15 of 21

touched exactly once in α′, none of the neighbours of u and v will be touched in α′ after the removal
of u. Therefore, if v is not removed in the same maximal removal segment as u, then we obtain α by
shifting the removal of v, so that it happens immediately after the removal of u. It is not hard to see
that |α| = |α′| = 6k2 and |V(S, α[1, p])| ≤ |V(S, α′[1, p])|, for all 1 ≤ p ≤ |α|.

For the case of additions, if only u is added in some maximal addition segment β, then none of its
neighbours can yet be removed. Let γ be the maximal addition segment in which v is added (which
occurs after β in α′). We obtain α by shifting the addition of u from β to γ.

Lemma 6. There exists a function of k, f (k), such that (Wk, S, T, 3k2 + f (k), `) is a yes-instance and
(Wk, S, T, 3k2 + f (k) − 1, `) is a no-instance of vertex cover reconfiguration for ` = 6k2. Moreover,
k− 2 ≤ f (k) ≤ k + 3.

Proof. To show that such an f (k) exists, we first prove the k− 2 lower bound by showing that any
valid edit sequence α of length 6k2 from S to T must have some prefix where the number of vertex
additions #a minus the number of vertex removals #r is at least k− 2, i.e., #a− #r ≥ k− 2. In fact,
we will show that the aforementioned property holds for any valid edit sequence α of length 6k2 in
which two vertices from the same sequin pair are always added or removed in the same maximal
addition or removal segment, respectively. Considering only such sequences is sufficient because, from
Proposition 9, we know that any sequence α′ of length 6k2 can be transformed into such a sequence
α so that |V(S, α[1, p])| ≤ |V(S, α′[1, p])|, for all 1 ≤ p ≤ |α|. In other words, if α′ has no prefix with
#a− #r ≥ k− 2 (but α does), then cap(α′) < cap(α), a contradiction.

We let position x, 1 ≤ x ≤ |α|, be the smallest position such that α[1, x] contains exactly 5k
vertex removals. Those 5k vertices correspond to a set S′ ⊂ S, as α touches every vertex exactly
once. The claim is that α[1, x] must contain at least 6k− 2 vertex additions. We let T′ ⊂ T denote the
set of added vertices in α[1, x]. Since NWk (S

′) ⊆ T′, we complete the proof of the lower bound by
showing that |T′| ≥ |NWk (S

′)| ≥ 6
5 |S′| − 2 ≥ 6k− 2. To do so, we show that for any S′ ⊂ S of size 5k,

NWk (S
′) ⊆ T′ contains at least 6

5 |S′| − 2 = 6k− 2 vertices.
In what follows, we restrict our attention to the bipartite graph Z = Wk[S′ ∪ T′], and we let

S′ and T′ denote the two partitions of Z. We subdivide S′ into two sets: S′b contains upper beads,
and S′s contains lower sequins. Since every vertex in S′b has four neighbours in T′ and adjacent
beads share exactly two neighbours, we have |NZ(S′b)| ≥ 2|S′b|, and equality occurs whenever S′b
contains 2k beads from the same two upper necklaces. Whenever S′b contains fewer than 2k beads
and Z[S′b ∪ NZ(S′b)] consists of tb ≥ 1 connected components, at least one bead from each component
(except possibly the first) will be adjacent to at most one other bead in the same component. Therefore,
|NZ(S′b)| ≥ 2|S′b|+ 2(tb − 1).

Proposition 9 implies that T′ will always contain both vertices of any sequin pair. Since we are
only considering vertices in V(α[1, x]), some sequins in S′s might be missing the other sequin in the
corresponding pair. However, all the neighbours of the sequin pair have to be in T′, so we assume
without loss of generality that vertices in S′s can be grouped into sequin pairs. Every sequin pair in S′s
has four neighbours in T′. Adjacent sequin pairs share exactly one neighbour. Hence, |NZ(S′s)| ≥ 3

2 |S′s|,
and equality occurs whenever S′s contains k sequin pairs of a single lower necklace. Whenever S′s
contains fewer than k sequin pairs and Z[S′s ∪NZ(S′s)] consists of ts ≥ 1 connected components, at least
one sequin pair from each component will be adjacent to at most one other sequin pair in the same
component. Therefore, |NZ(S′s)| ≥ 3

2 |S′s|+ ts.
Combining the previous observations, we know that when either S′b or S′s is empty, |NZ(S′)| ≥

6
5 |S′|, as needed. When both are not empty, we let I = NZ(S′b)∩NZ(S′s). Hence, |NZ(S′b)|+ |NZ(S′s)| −
|I| ≥ 2|S′b|+ 2(tb − 1) + 3

2 |S′s|+ ts − |I|, and we rewrite it as:

|NZ(S′)|+ 2 ≥ 100
50
|S′b|+

75
50
|S′s|+ 2(tb − 1) + ts − (|I| − 2) (8)

Algorithms 2018, 11, 20 16 of 21

We now bound the size of I. Note that I can only contain upper sequin pairs joined with sequin
pairs in S′s. As every sequin pair in S′s has either zero or two neighbours in I, |S′s| ≥ |I|. Moreover,
for every two sequin pairs in S′s having two neighbours in I, there must exist at least one vertex in S′b,

which implies |S′b| ≥
|I|
4 . Finally, whenever a sequin pair p ∈ S′s has two neighbours in I, then tb, ts ≥ 1,

as at least one bead neighbouring the sequin pair joined with p must be in S′b. Every other sequin pair
p′ ∈ S′s, p′ 6= p, with two neighbours in I will force at least one additional connected component in
either Z[S′b ∪ NZ(S′b)] or Z[S′s ∪ NZ(S′s)] since Wk contains a single joining biclique between any two

necklaces. Therefore, the total number of connected components is tb + ts ≥ |I|2 . Putting it all together,
we get:

40
50
|S′b|+

15
50
|S′s|+ 2(tb − 1) + ts ≥

2
10
|I|+ 3

10
|I|+ 5

10
|I|+ tb − 2

≥ |I| − 2 (9)

Combining Equations (8) and (9), we get:

|NZ(S′)|+ 2 ≥ 6
5
|S′|+ 40

50
|S′b|+

15
50
|S′s|+ 2(tb − 1) + ts − (|I| − 2)

≥ 6
5
|S′| (10)

Therefore, V(S, α[1, x]) is a vertex cover of Wk of size at least 3k2 + k− 2, as needed.
To show the f (k) ≤ k + 3 upper bound, we show that (Wk, S, T, 3k2 + k + 3, 6k2) is a yes-instance

by providing an actual reconfiguration sequence:

(1) Add all k beads in L1. Since S is a vertex cover of Wk, we know that the additional k beads will
result in a vertex cover of size 3k2 + k.

(2) Add both vertices in pu
1,1, and remove both vertices in pl

1,1. The removal of both vertices in pl
1,1 is

possible since we added all their neighbours in L1 (Step (1)) and U1. The size of a vertex cover
reaches 3k2 + k + 2 after the additions and then drops back to 3k2 + k.

(3) Repeat Step (2) for all sequin pairs pu
i,1 and pl

1,i for 2 ≤ i ≤ k. The size of a vertex cover is again
3k2 + k once Step (3) is completed. Step (2) is repeated a total of k times. After every repetition,
we have a vertex cover of Wk since all beads in L1 were added in Step (1), and the remaining
neighbours of each sequin pair in Ui are added prior to the removals.

(4) Add both vertices in pu
1,2, and remove vertex bu

1,2.

(5) Add bl
2,1 and bl

2,2. At this point, the size of a vertex cover is 3k2 + k + 3.

(6) Remove both vertices in pl
2,1.

(7) Repeat Steps (4), (5) and (6) until all beads in L2 have been added and the sequin pairs removed.
When we reach the last sequin pair in L2, bl

2,1 was already added, and hence, we gain a surplus of
one, which brings the vertex cover size back to 3k2 + k.

(8) Repeat Steps (4) to (7) for every remaining necklace in L.

Since every vertex in Wk is touched exactly once, we know that ` = 6k2. In the course of the
described reconfiguration sequence, the maximum size of any vertex cover is 3k2 + k + 3. Hence,
f (k) ≤ k + 3. This completes the proof.

It would be interesting to close the gap on f (k), but the existence of such a value is enough to
prove the main theorem of this section.

Theorem 5. Vertex cover reconfiguration is NP-hard on four-regular graphs.

Proof. We prove the result by a reduction from vertex cover compression to vertex cover
reconfiguration where the input graph is restricted to be four-regular in both cases. For (G, C, k),

Algorithms 2018, 11, 20 17 of 21

an instance of vertex cover compression, we form G′ = (V(G) ∪ V(Wk), E(G) ∪ E(Wk)). We let
(G′, S, T, 3k2 + k + f (k) − 1, 6k2 + 4k − 2) be an instance of vertex cover reconfiguration, where
S = {eu

i,j | 1 ≤ i, j ≤ k} ∪ {pl
i,j | 1 ≤ i, j ≤ k} ∪ C and T = {el

i,j | 1 ≤ i, j ≤ k} ∪ {pu
i,j | 1 ≤ i, j ≤ k} ∪ C,

and f (k) is the value whose existence was shown in Lemma 6.
Clearly, |S| = |T| = 3k2 + k and both S and T are vertex covers of G′. We claim that G has a vertex

cover of size k− 1 if and only if there is a reconfiguration sequence of length 6k2 + 4k− 2 or less from
S to T.

We know from Lemma 6 that the reconfiguration of Wk requires at least f (k) available capacity.
However, 3k2 + k + f (k) > 3k2 + k + f (k) − 1, which violates the maximum allowed capacity.
Therefore, if there is a reconfiguration sequence from S to T, then one of the vertex covers in the
sequence must contain at most 3k2 + k − 1 vertices. By Proposition 8, we know that 3k2 of those
3k2 + k− 1 vertices are needed to cover the edges in E(Wk). Thus, the remaining k− 1 vertices must
be in V(G) and should cover all edges in E(G). By construction of G′, these k− 1 vertices correspond
to a vertex cover of G.

Similarly, if G has a vertex cover Ĉ such that |Ĉ| = k − 1, then the following reconfiguration
sequence transforms S to T: add all vertices of Ĉ, remove all vertices of C, apply the reconfiguration
sequence whose existence was shown in Lemma 6 to G′[V(Wk)] and finally add back all vertices of C
and remove those of Ĉ. The length of this sequence is equal to 6k2 + 4k− 2 whenever C ∩ Ĉ = ∅ and
is shorter otherwise.

6.3. FPT Algorithm for Graphs of Bounded Degree

In this section, we prove that vertex cover reconfiguration parameterized by ` is fixed-parameter
tractable for graphs of degree at most d. Our algorithm is randomized and based on a variant of the
colour-coding technique [23] that is particularly useful in designing parameterized algorithms on
graphs of bounded degree. The technique, known in the literature as random separation [24], boils
down to a simple, but fruitful observation that in some cases, if we randomly colour the vertex set of a
graph using two colours, the solution or vertices we are looking for are appropriately coloured with
high probability. In our case, we want to make sure that the set of touched vertices gets highlighted.
We note that our algorithm can easily be derandomized using standard techniques [25].

We start with an instance (G, S, T, k, `) of VCR, with G having degree at most d. Recall that
we partition V(G) into the sets CST = S ∩ T, SR = S \ CST , TA = T \ CST , and the independent set
OST = V(G) \ (S∪T) = V(G) \ (CST ∪ SR ∪TA). We colour independently every vertex of G using one
of two colours, say red and blue (denoted byR and B), with probability 1

2 . We let χ : V(G)→ {R,B}
denote the resulting random colouring. Suppose that (G, S, T, k, `) is a yes-instance, and let σ denote a
reconfiguration sequence from S to T of length at most `. We say that the colouring χ is successful if
both of the following conditions hold:

• Every vertex in V(σ) is coloured red; and
• Every vertex in NG(V(σ)) is coloured blue.

Observe that V(σ) and NG(V(σ)) are disjoint. Therefore, the two aforementioned conditions are
independent. Moreover, since the maximum degree of G is d, we have |V(σ)|+ |NG(V(σ))| ≤ (`+ 1)d.
Consequently, the probability that χ is successful is at least:

1
2|V(σ)|+|NG(V(σ))| ≥

1
2(`+1)d

.

Let VR denote the set of vertices coloured red and VB denote the set of vertices coloured blue.
Moreover, we let C1, . . . , Cq denote the set of connected components of G[VR]. The main observation
now is the following:

Algorithms 2018, 11, 20 18 of 21

Proposition 10. If χ is successful, then NG(V(σ)) ⊆ CST , V(σ) has a non-empty intersection with at most `
connected components of G[VR], and each one of those components consists of at most ` vertices.

Proof. The fact that NG(V(σ)) ⊆ CST follows from the observation that every vertex in V(σ) must be
added or removed at least once and no vertex in NG(V(σ)) is ever added or removed. In other words,
if v ∈ V(σ) is removed, then all of its untouched neighbours must be in CST . Similarly, if v ∈ V(σ) is
added, then prior to being added, all of its untouched neighbours must be in CST .

Since |V(σ)| ≤ `, we know that G[V(σ) ∪ NG(V(σ))] consists of at most ` connected components
(each of size at most (`+ 1)d) and G[V(σ)] consists of at most ` components (each of size at most `).
Let C be a connected component of G[VR] such that |V(C)| > `. We claim that we can safely ignore (and
hence delete) this component when χ is successful. Suppose to the contrary that V(σ)∩V(C) = Q 6= ∅.
Since χ is successful, it must be the case that every vertex in NG(Q) is coloured blue. However, we
know that there exists at least one vertex in NG(Q) that is coloured red (since C is a connected
component of G[VR] and all vertices in C are coloured red). As we have obtained a contradiction, we
can conclude that when χ is successful, V(σ) can intersect at most ` connected components of G[VR],
and none of those components can be of a size greater than `, as claimed.

Given Proposition 10, we can safely assume that every connected component of G[VR] consists of
at most ` vertices (as the remaining components can be ignored when χ is successful). For simplicity,
let us first assume that G[V(σ)] is connected. Thus, if χ is successful, then there exists a single
component in G[VR], say C?, such that V(σ) ⊆ V(C?), |V(C?)| ≤ ` and SR ∪ TA ⊆ V(C?). Therefore,
we can simply enumerate all possible sequences of length at most ` and make sure that at least one of
them is the required reconfiguration sequence from S to T. This brute-force testing can be accomplished
in time 2O(` log `) · nO(1).

Let us now consider the general case when G[V(σ)] is not necessarily connected. We say
a component C of G[VR] is important if V(C) ∩ (SR ∪ TA) 6= ∅. There are at most ` important
components. Hence, we only need to bound the number of unimportant components. To that end, we
partition the unimportant components of G[VR] into equivalence classes with respect to the following
relation ':

C ' C′ ⇔ C is isomorphic to C′.

Proposition 11. The total number of graphs with at most ` vertices is at most 2O(`
2), and therefore, the

equivalence relation ' has at most 2O(`
2) equivalence classes.

Assume that some equivalence class contains more than ` unimportant components. We claim
that retaining only ` of them is enough. To see why, it is enough to note that V(σ) intersects with at
most ` of those components; they are all isomorphic; and the neighbours of any such component are
contained in CST . Putting it all together, we know that we have at most 2O(`

2) equivalence classes, each
with at most ` components, and each component is of size at most `. Hence, we can guess the sequence
from S to T in time 2O(`

3 log `) · nO(1) (testing whether two graphs with ` vertices are isomorphic can be
accomplished naively in time 2` log `).

We have proven that the probability that χ is successful is at least 2−(`+1)d. Hence, to obtain a
Monte Carlo algorithm with false negatives, we repeat the above procedure 2(`+1)d times and obtain
the following result:

Theorem 6. There exists a one-sided error Monte Carlo algorithm with false negatives that solves the vertex
cover reconfiguration problem on graphs of degree at most d in time 2(`+1)d · 2O(`3 log `) · nO(1).

Algorithms 2018, 11, 20 19 of 21

6.4. FPT Algorithm for Nowhere Dense Graphs

In this section, we present a more general result, showing that the reconfiguration variant of every
first-order definable optimization problem parameterized by ` is fixed-parameter tractable on every
fixed nowhere dense class of graphs.

Let us quickly recall the necessary definitions from logic. For our purpose, it suffices to consider
first-order logic over the vocabulary of coloured graphs. We refer to the textbook [26] for extensive
background on logic.

Let A, B be two unary relation symbols and E a binary relation symbol. We call {E, A, B}
the vocabulary of graphs with two colours A and B. First-order formulas over the vocabulary
of coloured graphs are formed from atomic formulas x = y, E(x, y), A(x) and B(x), where x, y
are variables (we assume that we have an infinite supply of variables), by the usual Boolean
connectives ¬ (negation), ∧ (conjunction) and ∨ (disjunction) and existential and universal
quantification ∃x, ∀x, respectively. The free variables of a formula are those not in the scope of a
quantifier, and we write ϕ(x1, . . . , xk) to indicate that the free variables of the formula ϕ are among
x1, . . . , xk. To define the semantics, we inductively define a satisfaction relation |=. Let G be a graph
and A, B ⊆ V(G). For simplicity, we do not distinguish between A as a symbol and A as a set. For a
formula ϕ(x1, . . . , xk), and v1, . . . , vk ∈ V(G), G |= ϕ(v1, . . . , vk) means that G satisfies ϕ if the free
variables x1, . . . , xk are interpreted by v1, . . . , vk. If ϕ(x1, x2) = E(x1, x2) is atomic, then G |= ϕ(v1, v2)

if (v1, v2) ∈ E(G). Similarly, if ϕ(x) = A(x), then G |= ϕ(v) if v ∈ A. The meanings of the equality
symbol, the Boolean connectives and the quantifiers are the usual ones.

Let ϕ(X) be a first-order formula that has a free set variable X. For example, the vertex cover
problem is defined by the formula:

ϕ(X) = ∀x∀y(¬E(x, y) ∨ X(x) ∨ X(y)).

As another example, we can define dominating sets by the formula:

ϕ(X) = ∀x(X(x) ∨ ∃y(X(y) ∧ E(x, y))

and independent sets by the formula:

ϕ(X) = ∀x∀y((X(x) ∧ X(y) ∧ x 6= y)→ ¬E(x, y)).

Naturally, we can define a reconfiguration variant for each such formula ϕ. Given two sets
S, T ⊆ V(G), we ask for a sequence S1, . . . , St, S1 = S and St = T such that G |= ϕ(Si) for all
intermediate configurations Si. We call the corresponding decision problem ϕ-reconfiguration, and we
refer to a solution of a problem instance as a ϕ-reconfiguration sequence.

Nowhere dense graph classes were introduced by Nešetřil and Ossona de Mendez [27] as a very
general model of uniform sparseness in graphs. We refer to the textbook [28] for the formal definition of
the notion of nowhere denseness and for more background on its theory. For our purpose, it is sufficient
to note that most familiar classes of sparse graphs are nowhere dense, e.g., every proper minor closed
class and every class of bounded degree is nowhere dense. We will prove the following theorem.

Theorem 7. Let ϕ(X) be a first-order formula over the vocabulary of graphs with a free set variable; let C
be a nowhere dense class of graphs; let ε > 0 be a real; and let ` ≥ 1 be an integer. Then, there exists a
constant f (|ϕ|, `, ε) and an algorithm that, given an n-vertex graph G ∈ C and two sets S, T ⊆ V(G) with
G |= ϕ(S), G |= ϕ(T), decides whether there exists a ϕ-reconfiguration sequence of length at most ` in time
f (|ϕ|, `, ε) · n1+ε.

Proof. Our proof is based on a result of Grohe, Kreutzer and Siebertz [29], which states that for every
first-order formula ψ (without free variables), every nowhere dense class C of graphs and every real
ε > 0, there exists a constant f (|ψ|, ε), such that given an n-vertex graph G ∈ C, one can decide in time
f (|ψ|, ε) · n1+ε whether ψ holds in G.

Algorithms 2018, 11, 20 20 of 21

In order to approach the ϕ-reconfiguration problem, we want to write a formula ψ over the
vocabulary of graphs with two colours S and T without free variables, which expresses the existence
of a ϕ-reconfiguration sequence of length at most `. We will guarantee that the length of ψ is bounded
by a function depending only on ` (and on ϕ, though only as a fixed constant). Then, by fixing any
ε > 0 and using the result of [29], we conclude that ϕ-Reconfiguration is fixed-parameter tractable
parameterized by ` on every nowhere dense class C.

The formula ψ simply states the existence of a sequence of ` elements that will be added or
removed in the course of the reconfiguration. For each initial sequence of length i = 1, . . . , ` of
these ` guesses, we state in ψ that the formula ϕ(X) is satisfied for the set S modified according to the
first i operations. Finally, we state that the reconfiguration leads to the set T. The precise formula is
cumbersome to write; however, we expect that the reader is convinced that we can express the desired
statement in first-order logic once we have stated how to handle a single addition and removal of a
vertex. To state that a vertex is added to the set S, we write the formula:

∃x1
(

ϕ′(S, x1)
)
,

where ϕ′(X) is obtained from ϕ(X) by replacing every atom X(x) for a variable x by the formula
X(x) ∨ x = x1. If we now want to remove a vertex, we extend the formula to the formula:

∃x2∃x1

((
(x1 6= x2)→ ϕ′′(S, x1, x2)

)
∧
(
(x1 = x2)→ ϕ′′′(S, x2)

))
,

where ϕ′′(X, x1, x2) is the formula obtained from ϕ(X) by replacing every atom X(x) by the formula
(X(x) ∨ x = x1) ∧ x 6= x2, and ϕ′′′(X, x2) is obtained from ϕ(X) by replacing X(x) by X(x) ∧ x 6= x2.
Similarly, we can handle any sequence of additions and removals of vertices of length at most ` and
form a big disjunction over all such sequences to obtain the final formula ψ.

7. Conclusions

To the best of our knowledge, our results constitute the first in-depth study of the VCR problem
parameterized by the length of a reconfiguration sequence. We showed that even though the vertex
cover problem is solvable in polynomial time on bipartite graphs, VCR remains W[1]-hard. On the
tractable side, we showed that VCR is solvable in polynomial time for trees, as well as graphs with no
even cycles and is fixed-parameter tractable for graphs of bounded degree. It remains open whether
we can solve VCR in polynomial time on cactus graphs without any restrictions on the size of S
and T. Finally, we believe that the techniques used in both our hardness proofs and positive results
can be extended to cover a host of graph deletion problems defined in terms of hereditary graph
properties [10]. It also remains to be seen whether our FPT results can be extended to a larger class of
sparse graphs, e.g., biclique-free graphs.

Acknowledgments: The authors would like to thank Daniel Lokshtanov for fruitful discussions that greatly
helped improve the presentation of some of the results.

Author Contributions: All the authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fricke, G.; Hedetniemi, S.M.; Hedetniemi, S.T.; Hutson, K.R. γ-Graphs of Graphs. Discuss. Math.
Graph Theory 2011, 31, 517–531.

2. Gopalan, P.; Kolaitis, P.G.; Maneva, E.N.; Papadimitriou, C.H. The connectivity of boolean satisfiability:
Computational and structural dichotomies. SIAM J. Comput. 2009, 38, 2330–2355.

3. Ito, T.; Demaine, E.D.; Harvey, N.J.A.; Papadimitriou, C.H.; Sideri, M.; Uehara, R.; Uno, Y. On the complexity
of reconfiguration problems. Theor. Comput. Sci. 2011, 412, 1054–1065.

Algorithms 2018, 11, 20 21 of 21

4. Ito, T.; Kawamura, K.; Ono, H.; Zhou, X. Reconfiguration of list L(2, 1)-labelings in a graph. In Proceedings of
the 23rd Annual International Symposium on Algorithms and Computation, Taipei, Taiwan, 19–21 December
2012; pp. 34–43.

5. Kamiński, M.; Medvedev, P.; Milanič, M. Shortest paths between shortest paths. Theor. Comput. Sci. 2011,
412, 5205–5210.

6. Cereceda, L.; van den Heuvel, J.; Johnson, M. Connectedness of the graph of vertex-colourings. Discret. Math.
2008, 308, 913–919.

7. Ito, T.; Kamiński, M.; Demaine, E.D. Reconfiguration of list edge-colourings in a graph. Discrete Appl. Math.
2012, 160, 2199–2207.

8. Kamiński, M.; Medvedev, P.; Milanič, M. Complexity of independent set reconfigurability problems.
Theor. Comput. Sci. 2012, 439, 9–15.

9. Bonsma, P. The complexity of rerouting shortest paths. In Proceedings of the International Symposium on
Mathematical Foundations of Computer Science, Bratislava, Slovakia, 27–31 August 2012, pp. 222–233.

10. Mouawad, A.E.; Nishimura, N.; Raman, V.; Simjour, N.; Suzuki, A. On the Parameterized Complexity of
Reconfiguration Problems. Algorithmica 2017, 78, 274–297.

11. Downey, R.G.; Fellows, M.R. Parameterized Complexity; Springer-Verlag: New York, NY, USA, 1997.
12. Downey, R.G.; Fellows, M.R. Texts in Computer Science. In Fundamentals of Parameterized Complexity;

Springer: Berlin, Germany, 2013.
13. Mouawad, A.E.; Nishimura, N.; Raman, V. Vertex Cover Reconfiguration and Beyond. In Proceedings of the

Algorithms and Computation—25th International Symposium, ISAAC 2014, Jeonju, Korea, 15–17 December
2014; pp. 452–463.

14. Wrochna, M. Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst. Sci. 2018, 93, 1–10.
15. Diestel, R. Graph Theory; Electronic Ed.; Springer-Verlag: Berlin, Germany, 2005.
16. Abu-Khzam, F.N.; Collins, R.L.; Fellows, M.R.; Langston, M.A.; Suters, W.H.; Symons, C.T. Kernelization

Algorithms for the Vertex Cover Problem: Theory and Experiments. In Proceedings of the Sixth Workshop
on Algorithm Engineering and Experiments, New Orleans, LA, USA, 10 January 2004; pp. 62–69.

17. Chor, B.; Fellows, M.R.; Juedes, D. Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps.
In Proceedings of the 30th International Conference on Graph-Theoretic Concepts in Computer Science, Bad
Honnef, Germany, 21–23 June 2004; pp. 257–269.

18. Hall, P. On Representatives of Subsets. In Classic Papers in Combinatorics; Birkhäuser Boston: Cambridge,
MA, USA, 1987; pp. 58–62.

19. Brandstädt, A.; Le, V.B.; Spinrad, J.P. Graph Classes: A Survey; Society for Industrial and Applied
Mathematics: Philadelphia, PA, USA, 1999.

20. Conlon, J.G. Even cycles in graphs. J. Graph Theory 2004, 45, 163–223.
21. Ito, T.; Nooka, H.; Zhou, X. Reconfiguration of Vertex Covers in a Graph. IEICE Trans. 2016, 99-D, 598–606.
22. Garey, M.R.; Johnson, D.S.; Stockmeyer, L.J. Some Simplified NP-Complete Graph Problems.

Theor. Comput. Sci. 1976, 1, 237–267.
23. Alon, N.; Yuster, R.; Zwick, U. Color-coding. J. ACM 1995, 42, 844–856.
24. Cai, L.; Chan, S.M.; Chan, S.O. Random Separation: A New Method for Solving Fixed-Cardinality

Optimization Problems. In Proceedings of the Parameterized and Exact Computation, Second International
Workshop, IWPEC 2006, Zürich, Switzerland, 13–15 September 2006; pp. 239–250.

25. Cygan, M.; Fomin, F.V.; Kowalik, L.; Lokshtanov, D.; Marx, D.; Pilipczuk, M.; Pilipczuk, M.; Saurabh, S.
Parameterized Algorithms; Springer: Berlin, Germany, 2015.

26. Hodges, W. Model Theory; Cambridge University Press: Cambridge, UK, 1993; Volume 42.
27. Nešetřil, J.; de Mendez, P.O. On nowhere dense graphs. Euro. J. Comb. 2011, 32, 600–617.
28. Nešetřil, J.; De Mendez, P.O. Sparsity. In Algorithms and Combinatorics; Springer: Berlin, Germany, 2012;

Volume 28.
29. Grohe, M.; Kreutzer, S.; Siebertz, S. Deciding first-order properties of nowhere dense graphs. J. ACM 2017,

64, 17, doi:10.1145/3051095.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Representing Reconfiguration Sequences
	Hardness Results
	Polynomial-Time Algorithms
	Trees
	Cactus Graphs

	FPT Algorithms
	Compression via Reconfiguration
	NP-Hardness on Four-Regular Graphs
	FPT Algorithm for Graphs of Bounded Degree
	FPT Algorithm for Nowhere Dense Graphs

	Conclusions
	References

