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Abstract: In cognitive radio networks (CRNs), improving system utility and ensuring system fairness
are two important issues. In this paper, we propose a spectrum allocation model to construct
CRNs based on graph coloring theory, which contains three classes of matrices: available matrix,
utility matrix, and interference matrix. Based on the model, we formulate a system objective function
by jointly considering two features: system utility and system fairness. Based on the proposed model
and the objective problem, we develop an improved gravitational search algorithm (IGSA) from two
aspects: first, we introduce the pattern search algorithm (PSA) to improve the global optimization
ability of the original gravitational search algorithm (GSA); second, we design the Chebyshev chaotic
sequences to enhance the convergence speed and precision of the algorithm. Simulation results
demonstrate that the proposed algorithm achieves better performance than traditional methods in
spectrum allocation.
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1. Introduction

With the massive growth of wireless devices, the conventional method of resource allocation
aggravates the spectrum-scarcity situation, which significantly degrades the utilization of spectrum.
However, the spatial and temporal variations in the licensed spectrum utilization range from 15%
to 85%, according to a report by Federal Communications Commission [1]. In this condition,
cognitive radio (CR) techniques are studied and developed [2]. CR is a promising technology for
improving the traditional spectrum allocation methods, which enables access to the underutilized
licensed spectrum to mitigate the spectrum-scarcity problem in the unlicensed band. Furthermore,
cognitive radio networks (CRNs) [3] are vital wireless communication systems to utilize the spectrum
resource efficiently. In these networks, the cognitive users, namely secondary users (SUs) can use
licensed spectrum without interfering with the licensed users or primary users (PUs) [4]. Based on
this feature, CRNs implement four main objectives of dynamic spectrum management [5]: spectrum
sensing, spectrum assignment, spectrum mobility, and spectrum sharing.

Spectrum sensing [6] is mainly to achieve the detection and analysis of the spectrum hole
characteristics which are time distribution, required bandwidth, noise, transmission power, and so
on. Spectrum assignment [7] refers to the selection of suitable operating bands for data transmission
according to the requirements of the quality of service (QoS) and determines the carrier frequency,
communication system, communication parameters, and emission level. Spectrum mobility means that
once the PU is found to return to this channel, the SU who using the band would move immediately
and establish a new communication connection for data transmission. The purpose of spectrum
sharing is to solve the problem of how to choose the spectrum between multiple SUs and ensure
the maximization of spectrum utilization. Spectrum assignment is a key issue for maximizing the
spectrum utilization. The scholars have done a lot of work in spectrum allocation.
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One of the major topics of research for spectrum assignment is studying the mathematical model.
Based on different application requirements and network structures, different system frameworks
are proposed. In [8], Zhu et al. abstract a cognitive radio network into a topological map, in which
each PU owns its channel and the SU cannot use it while PU is active. Furthermore, the two SUs
who overlap in the communication range cannot occupy the same channel. In [9] Lu et al. focus on
using bipartite graphs to solve the resource allocation problem, in which SUs and PUs are treated as
two partite sets and an allocation scheme can be seen as a matching of the corresponding bipartite
graph. In [10], Borhan et al. investigate the optimal scheduling of CRNs links under interference
temperature theory, in which interference temperature is identical to the noise that users will create
while they join the system. The authors design a cross-layered model to activate as many simultaneous
primary/secondary links while the noise interference constraints are satisfied. In [11], Mohammad
et al. use evolutionary game theory to model potential PU-SU dynamics; the authors focus on the
emergence of bio-socially inspired foraging, socializing behaviors, and the potential impacts of these
behaviors on the overall performance of the system. In [12], a modified multi-auctioneer progressive
spectrum auction mechanism is introduced to optimize the utility of system. However, the graph
theory not only takes into account the interference among users but develops mathematical expression
to quantify the performance of algorithms, which attracts researchers to use it to formulate the channel
allocation problem. Based on this, we build a graph-based mathematical model to demonstrate the
spectrum allocation problem in this paper.

The other major research topic for spectrum assignment is studying the spectrum allocation
algorithm. The problem of spectrum allocation is an NP-hard one. Whereas the meta-heuristic
approach is one of the best ways to find a near-optimization solution for NP-hard issues. In [13],
Salehinejad et al. introduce ant colony optimization (ACO) algorithm to solve the opportunistic
spectrum access, but it only works in distributed strategies. He et al. propose ACO in [14] to maximize
the throughput of the system. In [15], an optimized genetic algorithm (GA) based on underlay
color-sensitive graph coloring framework is proposed, in which GA could avoid the remaining local
optima by randomly adding the individual. GA is also proposed in [16] to solve the routing and
spectrum allocation problem with multicast flows; the authors design novel selection and crossover
strategies to enhance the algorithm performance. In [17], particle swarm optimization (PSO) and
the modified GA algorithms are employed to find a near-optimal solution according to the specified
requirements of SUs, the specified requirements can be the minimum data rate or the maximum
subscription fee that they are willing to pay. Javier Del Ser et al. propose harmony search (HS)
algorithm in [18] for spectrum allocation based on both centralized and distributed architecture; the
proposed algorithm dramatically decreases the transmission rate required for exchanging control
traffic among nodes and achieves near-optimum spectral channel assignment.

Although channel assignment based on metaheuristic algorithms has been studied for a long time,
the study still faces challenges, such as algorithms easily falling into local optima and slow convergence
speed. Gravitational search algorithm (GSA) [19] is a novel metaheuristic algorithm, which has been
confirmed to be able to achieve higher performance in solving various non-linear problems compared
with some well-known swarm algorithms [20]. In this paper, we use graph coloring theory to formulate
the spectrum assignment problem, and we also design a new version of GSA (IGSA) to maximize the
spectrum utilization. In IGSA, first, Chebyshev map [21] is adopted to initialize the population of IGSA
to reduce the risk of trapping to the local maximum. Second, pattern search algorithm (PSA) [22] is
introduced to ameliorate the inefficiency fine searchability of GSA. Besides, we investigate interference
cancellation according to the interference-free principle. Based on the IGSA, we allocate the available
licensed channel to SUs without interference to PUs while maximizing system utility.
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2. System Model

2.1. Graph Coloring Model Based on CRN

A topological structure of the CRNs can be abstracted into a simple undirected graph that is
represented as G(V, E, L), where V is a finite set of vertices, representing SUs; E is a set of edges that
are subject to interference matrix; L is a collection of available colors which represent the idle spectrum.
Allocating available licensed spectrum resources to SUs is equivalent to vertex coloring in the graph
coloring problem.

Assuming that there is N SUs who compete with each other to access M channels. Each SU
occupies an available channel at a certain time.

Definition 1. Channel Availability Matrix L = {ln,m|ln,m ∈ {0, 1}}N×M is a N × M binary matrix,
expressing availability of these licensed channels for SUs. If ln,m = 1, channel m is available for the n-th
SU; otherwise, ln,m = 0.

Definition 2. Channel Utility Matrix B = {bn,m|bn,m > 0}N×M indicates the benefits that each SU can
obtain from different channels. bn,m is the benefits obtained by the n-th SU when it uses the channel m.

Definition 3. Interference Matrix C = {cn,k,m|cn,k,m ∈ {0, 1}}N×N×M is a binary matrix of N × N ×M,
expressing the interference among SUs of each channel. cn,k,m = 1 means that the n-th SU and the k-th SU
cannot access into channel m simultaneously, because that would cause transmission interference.

Definition 4. Interference-Free Allocation Matrix A = {an,m|an,m ∈ {0, 1}}N×M is a N ×M binary matrix,
it indicates a feasible channel allocation scheme. an,m = 1 denotes that channel m is allocated to the n-th SU.
On the contrary, an,m = 0.

2.2. Problem Formulation

Based on the aforementioned graph coloring model for spectrum allocation, we formulate the
optimization problem. First, we introduce a commonly used objective, which is maximizing spectrum
utilization and it can be expressed as

U = max
A∈∧n,m

N

∑
n=1

M

∑
m=1

an,m · bn,m. (1)

Besides, we introduce another objective to improve the fairness of the SU accessing the system,
which is achieved by minimizing the standard deviation estimation of SU. It can be expressed as

S = min
A∈∧n,m

√√√√ 1
N − 1

N

∑
n=1

(
M−1

∑
m=0

an,m · bn,m −
1
N

U)2. (2)

Moreover, a channel assignment result should satisfy the collision-free constraint, i.e. if channel m
is being accessed by the n-th SU, then the k-th SU cannot access this channel simultaneously, that is

an,m + ak,m ≤ 1, ∀k ∈ Im
n , n ∈ N; m = 1, 2, . . . , M. (3)

where k ∈ Im
n is the set of interfering to the n-th SU on channel m according to interference constraints

and it comes from

Im
n = {k|k ∈ cn,k,m = 1; cn,k,m ∈ C}

⋂
{k|k = 1, 2, . . . , N}. (4)
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Combine the (1)–(3) to formulate the problem. In order to reduce the complexity of the
problem, we transform the above multiobjective optimization problem into a single objective problem.
Let E = U − S denote the optimization problem which can be expressed as

max
A∈∧n,m

E

s.t. an,m + ak,m ≤ 1, ∀k ∈ Im
n , n ∈ N; m = 1, 2, . . . , M,

(5)

where A is a valid spectrum assignment allocation, ∧n,m is the set of all valid spectrum assignments
given a set of N SUs and M spectrum bands.

3. Technologies

Spectrum allocation is essentially a binary multiobjective optimization problem with constraints,
which is NP-hard. Heuristic algorithms, in accordance with intuitive or empirical, are extensively
used in combinatorial optimization problems and express outstanding performance. GSA is a novel
heuristic algorithm, which has been successfully applied to various real optimization problems, e.g.,
neural network training, mechanical engineering, image processing, and telecommunication. Then,
we try to employ GSA to solve the spectrum assignment issue in CRNs. However, similar to other
swarm intelligence algorithms, GSA has such problems as being prone to falling into local optimum
and having low precision of solving. Consequently, PSA, a derivative-free evolutionary algorithm
with strong fine search capability, is adopted to this paper to enhance the accuracy of GSA.

3.1. Critical Technologies

3.1.1. Encoding and Decoding

The encoding maps the position of a particle to a solution, which is an important concept in IGSA.
Interference-free allocation matrix A is subject to the availability matrix L which contains many zero
elements. Therefore, considering the computational complexity of spectrum allocation, this paper
encodes only nonzero elements in matrix L. Following the column-priority principle, these nonzero
elements are encoded into a binary row vector. After encoding, we can obtain a row vector P with
length D. P represents the position of a particle in the proposed algorithm.

Decoding is the reverse process of encoding. The reverse process remaps the row vector P to an
allocation scheme A. Figure 1 illustrates the process of encoding and decoding.

Figure 1. The mapping process.
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3.1.2. Population Initialization

In order to increase the randomness and spreadability of the particle position, Chebyshev chaotic
sequences are employed to initialize the particle position in an ergodic, uniform, and randomn manner.
It is expressed as follows:

xn+1,j = cos (k · cos−1 (xn,j)), xn,j ∈ [−1, 1], (6)

where k is the degree of Chebyshev map and usually is a positive integer bigger than 1, n = 1, 2, . . . , N,
and j = 1, 2, . . . , D. Because the spectrum allocation matrix A is in binary representation, then a
threshold method is introduced to control the particle position, as shown below:

sgn(xn,j) =

{
1 0 ≤ xn,j ≤ 1,

0 −1 ≤ xn,j < 0.
(7)

In IGSA, the first particle position X1 is randomly generated, and the size of which is the encoding
length D. Then the rest of the particle position is initialized with the Chebyshev chaotic mapping rule.
The initial position of the particle i is described as follows:

Xi = (xi,1, xi,2, . . . , xi,D). (8)

3.1.3. Position Modification

The resource allocation scheme A is interference-free. However, in the process of the particle
evolution or pattern move, the particle position or mesh point (spectrum allocation schemes) may not
satisfy the interference constraints anymore, hence it needs to be corrected. The rule of modification is:
for any spectrum m, if cn,k,m = 1, then check the n and k rows in m column of allocation scheme matrix
A, if they are all 1, it is necessary to set one of these two elements (an,m or ak,m) to zero equal-probably.
Then the spectrum allocation scheme A would be interference free.

3.2. Algorithms

3.2.1. Basic Thoughts

Some studies have shown that GSA could outperform other metaheuristic algorithms [20],
especially in global search. Still, similar to other swarm intelligence algorithm, GSA can easily
fall into local optimum and lack fine searchability. Based on the above, GSA and PSA are respectively
chosen as coarse search and fine search of the spectrum allocation mechanism. Therefore, the position
of the particle with the heaviest mass in the GSA iterations represents a close-to-optimal solution for
spectrum assignment, which is used as the initial value of PSA for further local search.

3.2.2. GSA in IGSA

The GSA, one of the high-efficient heuristic search algorithm, was first proposed by
Esmat Rashedi, et al. in 2009 [19]. GSA is inspired by the Newtonian law and follows the motion
law. In GSA, a particle is an agent of spectrum allocation solution, the process of finding the global
optimal solution for objective functions that are transformed into movement in which all agents move
towards the agents with heavier mass.Therefore, the position of an agent which is heaviest will be the
close-to-optimal global allocation solution.

Assuming a GSA system with N agents, position and velocity of the i-th agent can be defined as:

Xt
i = (xt

i,1, xt
i,2, . . . , xt

i,d, . . . , xt
i,D) i = (1, 2, . . . , N), (9)

Vt
i = (vt

i,1, vt
i,2, . . . , vt

i,d, . . . , vt
i,D) i = (1, 2, . . . , N), (10)
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where xt
i,d, vt

i,d are respectively the position and velocity of the i-th agent in d-th dimension of t-th
generation. The velocity of an agent in the next iteration is considered as a fraction of its current
velocity added to its acceleration. Therefore, its position and its velocity could be calculated as follows:

xt+1
i,d = xt

i,d + vt+1
i,d , (11)

vt+1
i,d = randi × vt

i,d + at
i,d. (12)

Moreover, resource allocation is actually a binary issue, nevertheless, the original GSA is a
continuous algorithm for solving a continuous problem. Hence, the sigmoid function is adapted to
design a binary gravitational search algorithm for settling the binary issue. Then a new update model
for position and velocity is proposed:

xt+1
i,d =

{
1 rand() < S(vt+1

i,d ),

0 rand() ≥ S(vt+1
i,d ).

(13)

sig(vt
i,d) =

1
1 + exp(−vt

i,d)
, (14)

where randi is a uniformly distributed random number in the interval [0, 1]; at
i,d is the acceleration of

i-th agent in dth dimension at t time:

at
i,d =

Ft
i,d

Mt
i
, (15)

Ft
i,d is the force exerted by the remaining population upon agent i at t time:

Ft
i,d = ∑

j∈Kbest,j 6=i
randjGt

Mt
j Mt

i

Rt
i,j + ε

(xt
i,d − xt

i,d), (16)

Rt
i,j = ||Xt

i , Xt
j ||, (17)

Gt = G(G0, t), (18)

Gt = G0 × e−
αt
T , (19)

where Kbest is the set of first k agents with the best fitness value. Rt
i,j denotes the euclidian distance

between agent i and j. α is a constant. Gt is the gravitational constant. t and T are the current iteration
times and maximum iteration times. A heavier agent has a stronger attraction to others; the mass
of each agent is obtained by calculating the fitness value of the agents. The mass of i-th agent Mt

i is
updated as

mt
i =

f t
i − f t

worst
f t
best − f t

worst
, (20)

Mt
i =

mt
i

∑N
j=1 mt

j
, (21)

where f t
i represent the fitness value and mass of agent i at t time. Futhermore, f t

worst and f t
best are the

worst and the best fitness value in all agents at t time, respectively:

f t
worst = min

j∈{1,2,...,N}
f t
j , (22)

f t
best = max

j∈{1,2,...,N}
f t
j . (23)
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3.2.3. PSA in IGSA

PSA is an optimized method without any gradient information for any objective function, which is
suitable to solve a variety of optimization problems. It computes a sequence of points that may or may
not approach the optimal point. PSA starts with base points (or initial points) which are provided by
the GSA. Around the base point, a set of points called mesh would be established. The mesh is created
by adding the current point to a scalar multiple of a set of vectors called a pattern. The algorithm
adaptively adjusts its mesh size and base points by fitness value comparison of the base point and
mesh points. If a point in mesh has a better objective fitness value, it becomes the current point at
the next iteration. The features of PSA ensure its superior exploitation ability which compensates the
insufficiency of GSA.

The PSA process in IGSA is as follows:

1. Building pattern. The PSA pattern is obtained by constructing a group of vectors. The group
consists of a list of new points around the base point, which is used for the fine search of a base
point. The vector of i-th base point is built in this way:

Ωi = [I,−I]2D×2D, (24)

where I is an identity matrix, D is the encoded length of spectrum allocation, Ωi is a vector group
built for the base point Xi.

2. Forming mesh. The PSA establishes a series of points centered around the base point, which is
called mesh. The following formula is used to generate mesh:

{Si} = Xi + ∆m · {Ωi}, (25)

where {Si} represents the new alternative point set of the base point Xi, ∆m is the mesh size.
3. Polling. In the search process of PSA, the optimum point among Si and original base point

is selected to be the new base point of the next iteration, the new point is denoted as Xi+1.
Polling has two kinds of results: polling success and failure. Polling success means that an
alternative point in mesh is better than the base point, otherwise polling failure.

4. Adjusting mesh size. If polling success, the new alternative point replaces the base point and
then use Equation (26) to enlarge mesh size (or step size) of searching, otherwise, the original
base point is retained and then use Equation (27) to shrink the mesh size.

∆m+1 = βe × ∆m, (26)

∆m+1 = βs × ∆m. (27)

where βe and βs denote the enlarge factor and shrink factor, respectively.

4. Spectrum Allocation Based on IGSA

In order to balance the exploration and exploitation ability, we design an improved algorithm
which employs GSA for global optimizing and PSA for local search. In this section, we illustrate the
process of IGSA-based spectrum allocation and present the algorithm in Algorithm 1. The process of
IGSA-based spectrum allocation is described as below:

Step 1: Initialization. Generate the system environment; initialize the parameters and constants of
IGSA; define the objective function; set the maximum iteration time of GSA and PSA Tg, Tp,
respectively.

Step 2: Population initialization. Build chaotic population for IGSA using the Chebyshev chaotic map
(in Section 3.2.1).

Step 3: Exploration. Employ GSA to explore the search space and obtain the close-to-optimal solution.
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Step 4: Exploitation. Initialize PSA with the optimal solution obtained from GSA, use PSA to exploit
the local area.

Algorithm 1: An Improved Gravitational Search Algorithm.
Input: T: network topology; E(X): fitness function; k: initialization constant; Tg,Tp: the

maximum of iteration for GSA and PSA; G0: gravitational constant; ξ: the minimum
mesh size; N: population size;

Output: the optimum scheme X
1 encoding by matrix L of T
2 initialization population with the Chebyshev chaotic map X(X1

1 , X1
2 , X1

3 , . . . , X1
N)

3 for t = 2; t < Tg; t ++ do
4 evaluate the fitness value of E(Xt

i )

5 Gt ← G0e
− αt

Tg

6 f t
worst ← maxj∈{1,2,...,N} f t

j

7 f t
best ← minj∈{1,2,...,N} f t

j

8 Mt
i ←

mt
i

∑k
j=1 mt

j

9 at
i,d ←

Ft
i,d

Mt
i

10 update velocity and position

11 get the agent position with the heaviest mass X
Tg
best

12 set X
Tg
best as the initial point X0 of PSA

13 create mesh points
14 while (Tp) do
15 evaluate fitness value E(Xi)

16 if meshsize < ξ then
17 break

18 else
19 adjust mesh size

20 position modification

5. Simulation Experiment

To evaluate and compare the performance of the dynamic channel allocation approaches in
cognitive radio networks, we perform simulation experiments in this section. First, we introduce the
evaluation criteria for algorithm performance. Second, we construct the environment for experiments
and initialize parameters for algorithms (IGSA, GSA [19], PSO [23] and color sensitive graph
coloring(CSGC) [24]). Third, we conduct experiments and analyze the experimental results.

5.1. Evaluation Criteria

To evaluate the performance of algorithms for assigning spectrum to SUs in CRNs from different
aspects, we introduce several criteria in this paper.

• System utility: the total system utility of a spectrum allocation scheme, which is used to validate
the total revenue of the system, that is

Su =
N

∑
n=1

M

∑
m=1

an,m · bn,m. (28)
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• System fairness: the standard deviation estimation of SU, which is used to validate the fairness of
SUs access into spectrum, that is

S f =

√√√√ 1
N − 1

N

∑
n=1

(
M−1

∑
m=0

an,m · bn,m −
1
N

Su)2. (29)

• System overall performance: the total capacity of the system, which is used to validate the overall
system performance, that is

Se = Su − S f . (30)

5.2. Experimental Environment and Parameter

Simulations are operated in Matlab R2014a platform. We use the topology structure of cognitive
radio system as suggested in [25], it is assumed that there is a wireless network covering 20× 20
square area. The number of PU is fixed to 10, with protection radius dp = 4. The number of SUs is
N, with interference radius ds = 2. The number of available spectrum is M, which are completely
orthogonal. The matrix B, L and C are generated according to the reference.

The parameters of the algorithms are set as shown in Table 1. Especially, the parameter setting
of IGSA references the configuration of the original GSA to guarantee the comparability with GSA.
The default parameter configuration cannot be the optimal setting for various problems. Thus we
cannot assure they are optimal for IGSA in solving spectrum assignment. Parameter configuration
could be a limitation of our current work, and we will try to find an effective parameter setting method
in our further work. Additionally, the maximum iteration times of GSA and PSA in IGSA should
be properly chosen so as to ensure the satisfactory performance of the algorithm with minimum
computational efforts. A series of experiments were conducted to properly choose the run times in
IGSA. The convergence experiments show that the original GSA usually reaches the convergence state
after 100 iterations. To enhance the exploitation ability of the proposed algorithm while assuring the
exploration capability, the iteration of GSA and PSA are set at 50 and 150, respectively. The population
size is the same for all the algorithms in each experiment. Each individual performs one fitness
evaluation after an iteration, then the best fitness value of each algorithm is selected to validate the
performance of the algorithm.

Table 1. Parameter setting for algorithms.

Algorithm Specific Parameter Genetic Parameter

GSA the initial gravitational
constant G0 = 100,

the coefficient α = 20

population size
S = 20,

the maximum
iteration Eitr = 200.

IGSA
the mesh size ∆1 = 1,

the shrink factor βs = 0.5,
the enlarge factor βe = 2.

PSO the acceleration coefficients c1 = c2 = 2,
inertia weight ω = 0.5, the maximum speed vx = 4.

In addition, we use the CSGC which is commonly used to solve the spectrum allocation problem
as the benchmark algorithm to compare with others, for more information on CSGC, please refer to [24].
All algorithms use the same topology, and the number of repetitions in convergence experiments is
500, others are 50, and the average is finally taken.
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5.3. Simulations and Analyzation

Experiment 1. In order to validate the performance of the improved algorithms which optimizes the original
GSA at different iteration stages, we conduct this experiment firstly. In Figure 2, GSA + CCM indicates an
optimized method that initializes the population of GSA with Chebyshev chaotic map, and GSA + PSA is an
optimized approach that enhances the local searchability of GSA using PSA. As we can see in Figure 2, in the
first 50 iterations, the performance curve of GSA + CCM is close to IGSA but still lower than IGSA. Due to
IGSA adopting the encoding and decoding rules to reduce the computing dimension and data redundancy, the
convergence rate increases. Whereas GSA + CCM still performs better than GSA + PSA in convergence because
initializing population with the chaotic map effectively avoids premature convergence. However, the insufficiency
in local search leads to its inferior exploitation ability in the last stage of iteration. Different from GSA + CCM,
GSA + PSA vanquishes the deficiency of GSA in fine search and achieves good performance. However, it suffers
from the premature convergence which causes the convergence speed to be lower than the other algorithms.
Compared with the other GSA-based improved algorithms, IGSA not only avoids premature convergence but has
sufficient capability in local search.

Figure 2. Performance of the GSA-based improved algorithm.

Experiment 2. In this experiment, we evaluate the performance of the IGSA and GSA, PSO, CSGC in terms
of overall system performance. From Figure 3, we can see that the overall performance grows with the iteration
times, where the number of available channels is M = 10, the number of SUs is N = 20.

As shown in Figure 3, the performance of CSGC is far inferior to PSO, GSA and IGSA, and it starts
converging until 150 iterations. The PSO is better than CSGC but still lower than GSA and IGSA. Before
35 iterations, the performance of GSA exceeds IGSA in terms of overall system performance. However, due to
GSA easily falling into local extremum and prematurely converging, GSA reaches the convergence state with
the maximum overall benefits 248 until 90 iterations. Using the chaotic map initializes population causing the
convergence speed of IGSA to be lower than GSA at the beginning of the iteration, but it effectively prevents
IGSA from trapping in the local optimum. Besides, owing to the PSA process being introduced to IGSA, the
fine searchability of IGSA is enhanced in an efficient way. IGSA gets into convergence state when it iterates
75 times with benefit 260. As is shown in Figure 3, IGSA performs better in overall system performance than
other algorithms.
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Figure 3. Convergence speed.

Experiment 3. Figures 4 and 5 show the performance of the four algorithms in terms of the system utility and
the system fairness under the condition of fixed spectrum number and increasing SU number, respectively, where
the available channel number is fixed on M = 10, the number of SUs distributes in N = [10, 30].

Figure 4 shows the trend of the system utility, which is growing with the increasing of SU. From the figure,
we can see that the system utility grows with the increasing of SU numbers even though the the number of
available channels is fixed. The growth speed of PSO and CSGC are inferior to GSA and IGSA. The curve of
IGSA is always higher than others, which means that IGSA not only can escape the local extremum in a timely
manner but it can also obtain the close-to-optimal solution quickly.

Figure 5 shows the trend of the system fairness, which is growing with the increasing of SU. As we can see,
the fairness of SUs access to spectrum declines with the increasing of SU numbers while the available channel
number is fixed. Because more SUs will cause more conflicts. Nevertheless, the descent rate of the IGSA is the
slowest, and the CSGC has the worst performance in fairness.

Figure 4. The system utility trend when M = 10.
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Figure 5. The system fairness trend when M = 10.

Experiment 4. As shown in Figures 6 and 7, they demonstrate the capability of the four algorithms in terms
of the system utility and the system fairness under the condition of increasing spectrum number and fixed SU
number, respectively, where the available channel number distributes in M = [10, 30] and the number of SUs is
fixed at N = 15.

Figure 6 shows the trend of the system utility with the increasing of the available channel while the number
of SUs is fixed. From the figure, we can see that all algorithm curves augment with the increase of available
spectrum. Because more available channels will allow more SU access to the system to create higher utility. In
Figure 6, IGSA always performs better than other algorithms; PSO and CSGC are slightly lower.

Figure 7 shows the trend of the fairness among SUs with the increasing of the available channel under the
condition of fixed SU. As we can see, the fairness curves decline with the increase of available spectrum, because
more available channels offer more channel access opportunities for SUs, which reduces collision probability.
IGSA always outperforms GSA, PSO or CSGC.

Figure 6. The system utility trend when N = 15.
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Figure 7. The system fairness trend when N = 15.

6. Conclusions

In CRNs, an effective spectrum allocation scheme is the key to solving the low utilization of
spectrum resource. In this paper, an improved spectrum allocation approach based on gravitational
search algorithm is proposed. In order to augment the randomness and spreadability of the population
and reduce the risk of algorithm trapping into local optimum, the Chebyshev chaotic map is used in
this paper. Besides, the PSA is introduced to refine the fine searchability of IGSA, which helps IGSA to
locate the global optimal solution quickly. The simulation results show that the spectrum allocation
method based on IGSA outperforms existing methods in terms of overall performance.
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