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Abstract: Cuckoo Search (CS) is a Meta-heuristic method, which exhibits several advantages such as
easier to application and fewer tuning parameters. However, it has proven to very easily fall into
local optimal solutions and has a slow rate of convergence. Therefore, we propose Modified cuckoo
search algorithm with variational parameter and logistic map (VLCS) to ameliorate these defects.
To balance the exploitation and exploration of the VLCS algorithm, we not only use the coefficient
function to change step size α and probability of detection pa at next generation, but also use logistic
map of each dimension to initialize host nest location and update the location of host nest beyond the
boundary. With fifteen benchmark functions, the simulations demonstrate that the VLCS algorithm
can over come the disadvantages of the CS algorithm.In addition, the VLCS algorithm is good at
dealing with high dimension problems and low dimension problems.

Keywords: cuckoo search; logistic map; variational parameter; coefficient function

1. Introduction

Optimization problems are prevalent in society, such as profit maximization, minimum error,
and so on [1,2]. To solve this kind of problems, many Meta-heuristic algorithms have been proposed,
such as genetic algorithms (GA) [3–5], tabu search [6–8], simulated annealing [9–11], particle swarm
optimization [12–14], ant colony optimization [15–17], etc. Cuckoo search (CS) [18] is inspired by
nature, which is a concise method and easy to implement. Cuckoo search is widely used in the real
world. For example, Shair et al. [19] developed a new approach which is CS algorithm in cutting
stock problem. Medjahed et al. [20] proposed a new framework for band selection problem based on
binary cuckoo search. However, CS method is not perfect, the main drawbacks being it easily falls into
the local optimal solution and the slow rate of convergence [21]. Li and Yin [22] used self adaptive
parameter method to improve CS. Wang et al. [23] presented a novel cuckoo search based on chaos
theory and elitism. Huang et al. [24] proposed a Chaos-enhanced cuckoo search that use logistic map
to ameliorate CS. Liu and Fu [25] proposed a cuckoo search algorithm based on frog leaping local
search and chaos theory. Zheng and Zhou [26] used Gaussian distribution to initiate the CS algorithm,
which only considered the initial part was not comprehensive. Li and Cao [27] used a DE algorithm
and a CS algorithm to propose a new hybrid optimization algorithm. These algorithms actually have
some improvement; however, some of the them make the CS become difficult to implement, while
others increase the complexity of the CS. Therefore, many future studies are necessary to develop new
effective cuckoo search algorithms for optimization problems [22].

Chiroma et al. [28] found that the population reduction and usage of biased random walk are
the most frequently used modifications. To improve the CS algorithm, this paper chooses a different
method. This paper proposes modified cuckoo search algorithm with variational parameters and
logistic sequences (VLCS). VLCS uses logistic map of each dimension to initialize host nest location
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and update the location of host nest beyond the boundary, which can guarantee that the location of the
nest is only calculated once. VLCS also uses coefficient function to change α and pa at next generation,
which greatly accelerates the convergence rate.

The rest of this paper is organized as follows. Section 2 describes the CS algorithm and analyzes
the defects of CS algorithm. Section 3 proposes the corresponding solution for the drawbacks of
CS algorithm and the VLCS algorithm. Simulation experiments are presented in Section 4. Finally,
conclusions are presented in Section 5.

2. Preliminary

2.1. Cuckoo Search Algorithm

Some cuckoos have an aggressive and complicated reproduction strategy. Yang and Deb imitated
the strategy and proposed the CS algorithm. The CS [18] obeys three rules: (1) Each cuckoo lays one
egg at a time, and dumps its egg in randomly chosen nest. (2) The best nests with high quality of eggs
will carry over to the next generations. (3) The number of available host nests is fixed, and the egg
laid by a cuckoo is discovered by the host bird with a probability pa ∈ [0, 1]. Based on these rules,
the pseudo code of CS is shown in Algorithm 1.

Algorithm 1: Cuckoo Search via Lévy Flights

Input: Objective function f(x), x = (x1, . . . , xd)
T

Output: Postprocess results and visualization
1 Generate initial population of n host nests xi (i = 1,2, . . . ,n);
2 while (t < MaxGeneration)or(stop criterion) do
3 Get a cuckoo randomly by Lévy flights and evaluate its quality/fitness Fi;
4 Choose a nest among n (say, j) randomly;
5 if Fi > Fj then
6 replace j by the new solution;

7 fraction (pa) of worse nests are abandoned and new ones are built;
8 Keep the best solutions or nests with quality solutions;
9 Rank the solutions and find the current best;

10 final ;
11 return Post-process results and visualization;

2.2. The Disadvantages of the Cuckoo Search Algorithm

Cuckoo search algorithm has three major drawbacks.

1. Initialization
Cuckoo search algorithm uses the random number to initiate these location of nests. Sometimes,
the location of these nests will be the same, and sometimes the location of these nests are not
properly dispersed in a defined area. Therefore, it causes repeated calculations and the easy
chance to fall into local optimal solution [24].

2. Parameters α and pa

In most cases, Yang and Deb used α = O(L/10) or α = O(L/100), where L is the characteristic
scale of the problem of interest [29]. Yang and Deb also suggested pa = 0.25 [18]. In other words,
α and pa are fixed number. The properties of the two parameters are the shortcomings of the
algorithm, because pa and α should be changed with the progress of iterator, when CS algorithm
search a local optimal solution and the global optimal solution.
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3. Boundary issue
CS algorithm uses Lévy flights and random walk to find nest location [18,30]. The locations of
some nests may be out of the boundary; when this happens CS algorithm uses the boundary
value to replace these location. The bound dealing method will result in a lot of nests at the same
location on the boundary, which is inefficient.

3. Modified Cuckoo Search Algorithm: VLCS

This section puts forward the corresponding solution for the drawbacks of the CS algorithm.

3.1. Nest Location of Each Host Are Initialized by Logistic Map of Each Dimension

In this paper, the nest location of each host is initialized by logistic map of each dimension for
four reasons. Firstly, the location xd is found by the logistic map and will not repeat. This means that
the speed of convergence can be accelerated. Secondly, logistic map is simple and easy to implement.
Thirdly, logistic map is easy to embed into every part of the CS algorithm. Fourthly, since each
dimension requires a chaotic map, using other chaotic maps will increase the complexity of the CS
algorithm. Logistic map [31] is defined as:

xn+1 = µxn(1− xn), n = 0, 1, 2, 3, . . . (1)

where xn ∈ (0, 1), the control parameter µ ∈ [0, 4] and n represents the n-th iteration. Chaos
phenomenon occurs when µ = 4 [32]. The pseudo code of initialization is shown in Algorithm 2.

Algorithm 2: Nest location of each host is initialized by logistic map of each dimension
Input: d represents the dimension;

Lb is the lower bound of Objective function f(x), Lb = (Lb1, . . . , Lbd)
T ;

Ub is the upper bound of Objective function f(x), Ub = (Ub1, . . . , Ubd)
T ;

Output: nest
1 Generate global random number r, r = (r1, . . . , rd)

T ,rd ∈ (0, 1);
2 n is equal to the number of nests;
3 for k = 1 : n do
4 r = 4∗r.∗(1−r); % Logistic map creates chaos when µ = 4;
5 nest(k, :) = Lb + (Ub − Lb).∗r; % Initial population of n host nests;

6 final;
7 return nest;

3.2. Step Size and pa Are Changed by Coefficient Function

This article uses the coefficient function to overcome the second disadvantage in Section 2.
The coefficient function [33] is defined as:

εα = 10(10∗tan(arctan(0.2)∗(2∗revolving−1))) (2)

revolving = cur_iteration/total_iteration (3)
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In Equation (3), the cur_iteration means the current number of iteration and the total_iteration
means the total number of iteration. The coefficient function in Equation (2) is used to adjust α and pa

(Equation (4)).

αnew = α/εα

panew =


panewLowerValue if pα/ε < panewLower

panewUpperValue else if pαε > panewUpper

pα/ε else

(4)

panewLowerValue ∈ (0, 1), panewLower ∈ (0, 1), panewUpperValue ∈ (0, 1) and panewUpper ∈ (0, 1). To find
the optimal parameters, this paper use a template to group parameters and set the change size
to 0.5. The template shown in Figure 1d and groups shown in Table 1. In Table 1, each row
changes panewLowerValue and panewUpperValue, and each column changes panewLower and panewUpper.
This paper selects α = 1 and pa = 0.25, which are mentioned by Yang and Deb [18] and recent
literature [28]. With functions of Table 2, we did 9600 experiments, and the results are shown in
Figure 1c. Then, we selects the optimal parameters from those experiments, which are red group 20
in Table 1. These parameters are panewLowerValue = 0.25, panewLower = 0.2, panewUpperValue = 0.75 and
panewUpper = 0.8. Then, these values are used to draw Figure 1a. In Figure 1a, at the beginning of the
revolving, the panew = 0.75 can guarantee that the VLCS algorithm can jump out of the local optimal
solution. At middle of the revolving, the change value of panew can improve the convergence rate. At the
end of the revolving, the panew = 0.25 can guarantee the accuracy of the VLCS algorithm convergence.
In Figure 1b, the interval of αnew decreases as rrevolving increases. The αnew replaces the fixed step size
of α and the panew replaces the fixed pa, which accelerate convergence of cuckoo search algorithm.

Table 1. Parameters groups.

0.10 0.10
0.90 0.90

group 1

0.15 0.10
0.85 0.90

group 2

. . . 0.25 0.10
0.75 0.90

group 4

. . . 0.40 0.10
0.60 0.90

group 7

0.45 0.10
0.55 0.90

group 8

0.10 0.15
0.90 0.85

group 9

0.15 0.15
0.85 0.85

group 10

. . . 0.25 0.15
0.75 0.85

group 12

. . . 0.40 0.15
0.60 0.85

group 15

0.45 0.15
0.55 0.85

group 16

0.10 0.2
0.90 0.80

group 17

0.15 0.20
0.85 0.80

group 18

. . . 0.25 0.20
0.75 0.80

group 20

. . . 0.40 0.20
0.60 0.80

group 23

0.45 0.20
0.55 0.80

group 24

...
...

...
...

...
...

...
0.10 0.45
0.90 0.55

group 57

0.15 0.45
0.85 0.55

group 58

. . . 0.25 0.45
0.75 0.55

group 60

. . . 0.40 0.45
0.60 0.55

group 63

0.45 0.45
0.55 0.55

group 64
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Figure 1. Parameter selection.

Table 2. benchmark function.

Test Function Dimension Range Optimum

f01 = ∑d
i=1 x2

i 15 xi ∈ [−5.12, 5.12] 0
f02 = −cos(x)cos(y)exp[−(x− π)2 − (y− π)2] 2 x, y ∈ [−100, 100] −1
f03 = ∑n−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] 15 x ∈ [−5, 5] 0
f03 = −∑5

i=1 cos[(i + 1)x + 1]∑5
i=1 cos[(i + 1)y + 1] 2 x, y ∈ [−10, 10] −186.7309

f04 = 1
4000 ∑d

i=1 x2 −∏d
i=0 cos( xi√

i
) + 1 15 x ∈ [−600, 600] 0

f05 =
−20exp[−20

√
1
d ∑d

i=1 x2
i ]

−exp[ 1
d ∑d

i=1 cos(2πxi)] + (20 + e)
15 x ∈ [−32.768, 32.768] 0

f06 = ∑d−1
i=1 [(1− xi)

2 + 100(xi+1 − x2
i )

2] 16 x ∈ [−10, 10] 0
f07 = ∑d

i=1[−xisin(
√
|xi|)] 10 x ∈ [−500, 500] −4189.829

f08 = 10d + ∑d
i=1[x

2
i − 10cos(2πxi)] 10 x ∈ [−5.12, 5.12] 0

f09 = −∑d
i=1 sin(xi)[sin( ix2

i
π )]2m 5 m = 10, x ∈ [0, π] −4.6877
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Table 2. Cont.

Test Function Dimension Range Optimum

f10 = 10 ∗ d + ∑d
i=1(x2

i − 10cos(2πxi)) 20 x ∈ [−10, 10] −654.6
f11 = ∑d

i=1(∑
i
j=1 xj)

2 30 x ∈ [−100, 100] 0
f12 = ∑d

i=1(xi + 0.5)2 30 x ∈ [−100, 100] 0
f13 = ∑d

i=1 ix4
i + random[0, 1) 30 x ∈ [−1.28, 1.28] 0

f14 = ∑d
i=1[x

2
i − 10cos(2πxi) + 10] 30 x ∈ [−5.12, 5.12] 0

f15 = (x2 − 5.1
4π2 x2

1 +
5
π − 6)2 + 10(1− 1

8π )cosx1 + 10 2 x1, x2 ∈ [−5, 15] 0.398

3.3. Boundary Is Constrained by Logistic Map of Each Dimension

For the boundary issue, the paper also uses the global random number r, which is changed by
logistic map.The reason for using logistic map is the same as in Section 3.1. Algorithms 2 and 3 use the
same r. This r can guarantee that the location of each nest is calculated only once.That means the r
reduces repeated calculations and accelerates the convergence process. The pseudo code of boundary
processing is shown in Algorithm 3.

Algorithm 3: Boundary is constrained by logistic map of each dimension
Input: d represents the dimension;

Global random number r, r = (r1, . . . , rd)
T , rd ∈ (0, 1);

nest(i, :) = [x1, x2, . . . , xd], i ∈ [1, n];
Output: nest

1 outLbMatrix is 1× d matrix,outLbMatrix= [OL1, OL2, . . . , OLd],OLd = 1;
2 outUbMatrix is 1× d matrix,outUbMatrix= [OU1, OU2, . . . , OUd],OUd = 1;
3 for j = 1 : d do
4 if the xd of nesti out of Lb then
5 OLj = 1;

6 else
7 OLj = 0;

8 for j = 1 : d do
9 if the xd of nesti out of Ub then

10 OUj = 1;

11 else
12 OUj = 0;

13 for i = 1 : n do
14 for j = 1 : d do
15 if (outLbMatrix(j) > 0) then
16 r(j) = 4 ∗ r(j) ∗ (1− r(j));
17 nest(i, j) = Lb(j) + (Ub(j)− Lb(j)) ∗ r(j);

18 if (outUbMatrix(j) > 0) then
19 r(j) = 4 ∗ r(j) ∗ (1− r(j));
20 nest(i, j) = Lb(j) + (Ub(j)− Lb(j)) ∗ r(j);

21 final ;
22 return nest;
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3.4. Proposed VLCS algorithm

This paper proposes VLCS algorithm to balance the exploitation and exploration. The VLCS
algorithm uses logistic map of each dimension to handle global random r, which is used in initiation
and boundary issue. Logistic map can guarantee that the location of each nest will only be calculated
once. The VLCS algorithm uses αnew and panew to replace the fixed parameters of the CS algorithm and
improve the performance of CS algorithm. The pseudo code of VLCS algorithm is shown in Algorithm 4.

Algorithm 4: VLCS algorithm
Input: d represents the dimension;

Objective function f(x), x=(x1, ..., xd)
T ;

Global random number r, r=(r1, . . . , rd)
T ,rd ∈ (0, 1);

Output: Postprocess results and visualization
1 Initiation part uses Algorithm 2;
2 n is equal to the number of nests;
3 while cur_iteration < total_iteration do
4 Get a nest randomly by Lévy flights with αnew;
5 The location of nest is bounded by Algorithm 3;
6 Then, evaluate its quality/fitness Fi;
7 Choose a nest among n (say, j) with maximum fitness Fj;
8 if Fi > Fj then
9 replace j by the new solution;

10 A fraction (panew) of worse nests are abandoned;
11 New ones are built by Algorithm 3;
12 Keep the best solutions (or nests with quality solutions);
13 Rank the solutions and find the current best;

14 Postprocess results and visualization;
15 final ;
16 return Postprocess results and visualization;

4. Simulation Experiments

This paper selects 15 benchmark functions [34–36] to prove that the VLCS algorithm is better than
the CS algorithm.The simulation environment is Matlab R2014a. The αnew and panew are shown in
Equation (4). The benchmark functions and conditions are shown in Table 2. In Table 2, the dimensions
of f02, f08 and f15 are two, and the others’ dimensions are not less than ten. To compare with other
algorithms, the nest number of n is 15 [18,24]. If the number of nest is changed, the relative convergence
rates of the VLCS algorithm and the CS algorithm do not change. Of course, if n is increased, the VLCS
algorithm and the CS algorithm will converge faster than other meta-heuristic algorithms. The CS [18]
was proposed by Xin She Yang, who has already attested that it is better than other meta-heuristic
algorithms. Section 3.1 illustrates the benefits of logistic map. Most of modified CS algorithms are
mainly focused on choosing chaotic maps (e.g., [23–25]). These studies do not mention how to reduce
repeated calculation in each dimension. This means the VLCS algorithm converges faster than most
of other modified CS algorithms, because the VLCS algorithm uses logistic map of each dimension
to initialize host nest location and update the location of host nest beyond the boundary. Therefore,
this paper compares the CS algorithm and the VLCS algorithm, and shows the results in Figure 2.
There is little difference between the VLCS algorithm and the CS algorithm in the function f04, f13 and
f14 because the three functions are simpler than other functions in Figure 2 and do not need to carry
out complex calculations. From the results, f07, f08, f09, f10 and f14 show two things clearly. Firstly,
the convergence speed of the VLCS algorithm is faster than the CS algorithm, because, at the middle
of the iteration, the CS algorithm easily falls into the local optimal solution and needs time to jump
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out of the local optimal solution. Secondly, the convergence accuracy of the VLCS algorithm is better
than the CS algorithm because the VLCS algorithm does not do redundant calculations in the same
place, even in the same dimension. Actually, if the other pictures in Figure 2 are enlarged, it is easy
to get the same conclusion. The VLCS algorithm solves the three disadvantages of the CS algorithm
mentioned in Section 2.2. In addition, Table 2 contains high-dimensional and low-dimensional test
functions. This means the VLCS algorithm applies not only to low-dimensional problems but also to
high-dimensional problems.
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Figure 2. Convergence performance of the CS and the VLCS.

5. Conclusions

In this paper, the VLCS algorithm consists of coefficient function, the standard CS algorithm and
each dimension with one logistic map. The logistic map is used to handle the initial problem and
boundary issue. Using the logistic map guarantees to reduce the complexity of the VLCS algorithm
and improve the computational efficiency. The reasons are analyzed in Section 3.1. The coefficient
function is used to calculate αnew and panew. The coefficient function is used to change αnew and panew

when the iteration increases. That is why the VLCS algorithm not only can reduce repeated calculation,
but also can accelerate the speed of convergence. Furthermore, the VLCS algorithm can prevent itself
from falling into a local optimum. The coefficient function is analyzed in Section 3.2. After the analysis
of Section 4 simulation experiments, the VLCS algorithm is good at dealing with high dimension
problems and low dimension problems.

In the future, we will come up with a more precise way to deal with α and pa and use the VLCS
algorithm to solve other practical engineering problems and real-world problems such as image hiding,
power distribution, AODV routing protocol and so on. We believe that the VLCS will promote the
development of the algorithm and be very useful in real-world problems.
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