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Abstract: The classical capacitated vehicle routing problem (CVRP) is a very popular combinatorial
optimization problem in the field of logistics and supply chain management. Although CVRP has
drawn interests of many researchers, no standard way has been established yet to obtain best
known solutions for all the different problem sets. We propose an efficient algorithm Bilayer Local
Search-based Particle Swarm Optimization (BLS-PSO) along with a novel decoding method to
solve CVRP. Decoding method is important to relate the encoded particle position to a feasible
CVRP solution. In bilayer local search, one layer of local search is for the whole population in
any iteration whereas another one is applied only on the pool of the best particles generated in
different generations. Such searching strategies help the BLS-PSO to perform better than the existing
proposals by obtaining best known solutions for most of the existing benchmark problems within
very reasonable computational time. Computational results also show that the performance achieved
by the proposed algorithm outperforms other PSO-based approaches.

Keywords: capacitated vehicle routing problem; particle swarm optimization; novel decoding approach;
bilayer local search technique

1. Introduction

The huge importance of solving capacitated vehicle routing problem (CVRP) in companies
supporting service and logistics for supplying commodities is a strong motivation for many researchers
worldwide to solve the CVRP with innovative algorithms. Capacitated Vehicle Routing Problem in
general deals with some customer nodes having some sort of pre-specified demands to be served
from a hub with a set of vehicles. Although there are many practical constraints in the real world like
stochastic customer demand, resource restrictions and so on. There are many pieces of research that
introduce practical variations of CVRP [1–5]. However, a large portion of practical applications are
simple in nature which can be fit to CVRP. The definition of CVRP has been outlined in [6]. A vehicle
picks some shipment from the depot to serve some of the customers according to their demands until
its capacity permits, makes a trip to serve them, and returns to the depot. The vehicles also have
additional restrictions on their maximum travelling distance which is the total of distance travelled
by the vehicle and the service time it requires to handle the customers it serves. A set of nodes is
given on a graph and a hub location h is specified among them. Then a vehicle routing problem can be
portrayed as Figure 1, where the nodes represent customers, cities or so on. The target of solving a
CVRP is to find minimum total cost, specifically minimum travelling distance, incurred by the vehicles
for visiting the customer nodes to satisfy their demands.

Algorithms 2018, 11, 31; doi:10.3390/a11030031 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-4185-4518
https://orcid.org/0000-0002-6586-9116
http://www.mdpi.com/journal/algorithms
http://dx.doi.org/10.3390/a11030031


Algorithms 2018, 11, 31 2 of 22
Algorithms 2018, 11, x FOR PEER REVIEW  2 of 22 

 
Figure 1. A portrayal of capacitated vehicle routing problem. 

CVRP is closely related to the classical Travelling Salesperson’s Problem (TSP) with a difference 
that vehicle capacity is limited in CVRP, but not in TSP. This makes CVRP a more complex problem 
than TSP. As TSP is a well-known NP hard problem, where no algorithm is available to solve TSP by 
polynomial time when the number of nodes increases, CVRP too is obviously an NP hard problem 
[7]. 

Even though an exact algorithm is unlikely to exist to solve CVRP, there have been a few 
attempts from researchers based on branch and bound technique, set partitioning technique and so 
on, which can handle CVRP with only few nodes [8]. Therefore, many approximate algorithms are 
proposed to solve CVRP effectively. Although these algorithms never find the optimal, they can find 
“good” or near-optimal solutions within a reasonable computational time. 

Among heuristics, Clark and Wright’s saving algorithm is a very early introduction in the area 
of CVRP [9]. This technique is basically a constructive heuristic which builds tours gradually by 
inserting a node at each time with respect to some saving conditions till no more cluster can be 
constructed. There are many improvements and variations available in the literature from many 
researchers [10–12]. “Cluster-First Route-Second” [13,14] and “Route-First Cluster-Second” [15] are 
other two well-known algorithms for handling CVRP. The former one builds some clusters of 
customers then a TSP tour is obtained with those customers to solve CVRP, and the latter one is the 
technique to make a TSP tour of all customers then cluster them into routes with respect to the given 
constraints. 

Recently many nature-inspired metaheuristics such as Genetic Algorithm (GA) [16,17], Tabu 
Search (TS) [18–20] and Simulated Annealing (SA) [21,22] have become attractive in the field of 
optimization. Nevertheless, there are many research articles that report their performances in dealing 
with CVRP [23–27]. It is worth mentioning that swarm optimization techniques are getting popular 
due to their simplicity and performance to handle optimization problems nowadays [28–30]. Swarm-
based metaheuristics are mainly inspired from unique characteristics of some swarms such as birds 
(bird flocking), fish (fish schooling), ants (foraging), etc. These creatures are not very intelligent 
individually whereas they show intelligent and complex behavior while working collectively; see, 
for example, the foraging behavior of bees for honey collection. Swarm-based metaheuristics are also 
getting remarkable attention from many researchers in dealing optimization problems like CVRP and 
its variations [31–37]. 

In this work, to explain the applicability of the proposed scheme, we adopt particle swarm 
optimization (PSO) due to its growing applications in the field of optimization [38,39]. PSO was first 
introduced by Kennedy and Eberhart [40] for handling continuous optimization problems. 
Afterwards, numerous applications are proposed to trick the discrete optimization problems till date. 
Among them, articles on CVRP are also available in the literature. Quantum individual-based 
discrete PSO (DPSO) is proposed in [41] where, the quantum particle swarm optimization is 
introduced in [42]. In DPSO, PSO is hybridized with simulated annealing (SA) to obtain a complete 
CVRP solution. In their approach they cluster the customers with DPSO, and then make a sequence 
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CVRP is closely related to the classical Travelling Salesperson’s Problem (TSP) with a difference
that vehicle capacity is limited in CVRP, but not in TSP. This makes CVRP a more complex problem
than TSP. As TSP is a well-known NP hard problem, where no algorithm is available to solve TSP by
polynomial time when the number of nodes increases, CVRP too is obviously an NP hard problem [7].

Even though an exact algorithm is unlikely to exist to solve CVRP, there have been a few attempts
from researchers based on branch and bound technique, set partitioning technique and so on, which can
handle CVRP with only few nodes [8]. Therefore, many approximate algorithms are proposed to
solve CVRP effectively. Although these algorithms never find the optimal, they can find “good” or
near-optimal solutions within a reasonable computational time.

Among heuristics, Clark and Wright’s saving algorithm is a very early introduction in the area of
CVRP [9]. This technique is basically a constructive heuristic which builds tours gradually by inserting
a node at each time with respect to some saving conditions till no more cluster can be constructed.
There are many improvements and variations available in the literature from many researchers [10–12].
“Cluster-First Route-Second” [13,14] and “Route-First Cluster-Second” [15] are other two well-known
algorithms for handling CVRP. The former one builds some clusters of customers then a TSP tour is
obtained with those customers to solve CVRP, and the latter one is the technique to make a TSP tour of
all customers then cluster them into routes with respect to the given constraints.

Recently many nature-inspired metaheuristics such as Genetic Algorithm (GA) [16,17], Tabu
Search (TS) [18–20] and Simulated Annealing (SA) [21,22] have become attractive in the field of
optimization. Nevertheless, there are many research articles that report their performances in
dealing with CVRP [23–27]. It is worth mentioning that swarm optimization techniques are getting
popular due to their simplicity and performance to handle optimization problems nowadays [28–30].
Swarm-based metaheuristics are mainly inspired from unique characteristics of some swarms such as
birds (bird flocking), fish (fish schooling), ants (foraging), etc. These creatures are not very intelligent
individually whereas they show intelligent and complex behavior while working collectively;
see, for example, the foraging behavior of bees for honey collection. Swarm-based metaheuristics are
also getting remarkable attention from many researchers in dealing optimization problems like CVRP
and its variations [31–37].

In this work, to explain the applicability of the proposed scheme, we adopt particle swarm
optimization (PSO) due to its growing applications in the field of optimization [38,39]. PSO was first
introduced by Kennedy and Eberhart [40] for handling continuous optimization problems. Afterwards,
numerous applications are proposed to trick the discrete optimization problems till date. Among them,
articles on CVRP are also available in the literature. Quantum individual-based discrete PSO (DPSO) is
proposed in [41] where, the quantum particle swarm optimization is introduced in [42]. In DPSO, PSO is
hybridized with simulated annealing (SA) to obtain a complete CVRP solution. In their approach they
cluster the customers with DPSO, and then make a sequence of customers utilizing the SA algorithm.
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Though they show quality solutions for some benchmark instances, and the approach requires large
computational time to reach the best-known solutions (BKS). Kao [43] proposed a combinatorial PSO
mainly based on the work of Chen [41]. A technique utilizing an advanced version of PSO, namely
GLN-PSO in [44], was introduced by Pongchairerks and Kachitvichyanukul [45]. They utilize two
decoding techniques namely “Solution Representation-1 (SR-1)” and “Solution Representation-2 (SR-2)”
to solve CVRP where the first decoding technique (SR-1) is an improved version of their previous
work [46]. Mainly a local search is added to their previous solution representation which was a
decoding technique based on relative position of vehicles. The second decoding technique (SR-2) is
an enhanced version of SR-1 where they consider a vehicle coverage radius in addition to other two
reference points for the vehicles in their representation. Even though Ai achieves better results [44]
than their previous work [46], the computational time is still noticeable. A hybrid PSO is presented
in [47] where they obtained initial solutions to run their PSO utilizing MPNS-GRASP [48]. To reduce
the computational time, they utilize expanding neighborhood search [49,50] as well. They utilize path
relinking technique [51] to guide the PSO. There is another hybrid approach in [52] which hybridizes
two swarm optimization techniques, namely ACO and PSO. ACO mainly make clusters of customer
and builds the routes, and then PSO is utilized in short term memory to speed up the convergence by
laying pheromone on the global and personal best solutions only. However, these algorithms have
shown some good results at the expense of considerable computational time as all the approaches
are mainly devoted to obtaining optimal solutions to the problems rather than concentrating on the
main idea of approximation algorithms which is to obtain good solutions for large problems within
reasonable computational time.

A candidate solution represented by a particle in PSO is usually in an encoded form, which needs
a decoding procedure to obtain the comprehensive meaning of it. In this article, we represent a solution
in a simple vector form to easily apply different operations of PSO, and at the same time we propose
an effective decoding algorithm to interpret the solution. Decoded results are then exploited with a
unique bilayer local search scheme. One layer of local search is for each particle in every iteration.
The second layer of local search is applied on the pool of the best particles generated in different
generations. The local search scheme improves the solution very effectively. Addition of these simple
steps makes the algorithm very fast as compared to other available techniques and shows remarkable
results in handling benchmark problems.

The rest of the article is organized as follows. A clear formulation of the problem statement is
presented in Section 2. The proposed bilayer local search-enhanced PSO (BLS-PSO) is introduced
describing the methodology in detail in Section 3. Section 4 presents the parameter optimization,
the discussion of computational results and the comparison with other best known PSO-based
algorithms. Finally, conclusion and future remarks are made in Section 5.

2. Mathematical Formulation

CVRP is usually stated as a graph of a set C = {ci|i = 1, 2, . . . , n} of n nodes, resembling customers,
along with associated demands D = {di|i = 1, 2, . . . , n} and required service times ST = {sti|i = 1, 2, . . . , n}.
If no service time is specified for the customers in a problem definition, then it is set to 0. Among the
nodes, a special node, say ch, is called the depot, from where the demands of other nodes are met using
some vehicles. For the depot ch, the service time sth = 0. A vehicle starts from the depot, serves the
demands of some nodes, and comes back to the depot. The objective is to serve all the customers using a
set of vehicles, keeping the cost (usually calculated as the total distance travelled by the vehicles) as low as
possible. A capacity constraint is associated with every vehicle, which specifies the maximum amount of
total demands of the nodes that can be served by it. Maximum travel distance is another constraint that,
if specified, puts a limit on the total distance traveled along with service time spent by a vehicle [43].

The required variables for the CVRP formulation are presented in Table 1.
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Table 1. Related notations and variables for CVRP formulation defined in this article.

N Total number of nodes
m Total number of required vehicles

dist
(

cj, ck

)
Cost to visit node ck from node cj

sti Service time required when a vehicle visits node i (for the depot, sth = 0)
Q Maximum capacity of a vehicle
TT Maximum distance of a vehicle can travel to
di Demand of a customer to be served by a vehicle
Z Customer set served by a vehicle; |Z| is the number of customers served by a vehicle

xv
jk Binary decision variable set to 1 if vehicle v serves node k after serving node j, or 0 otherwise

Some notations and variables related to the formulation of CVRP are stated in Table 1, based on
which the problem can be formulated as a minimization problem as

Mimize
n

∑
j=1

n

∑
k=1

v

∑
v=1

xv
jkdist

(
cj, ck

)
(1)

fulfilling the following constraints

m

∑
v=1

n

∑
j=1

xv
jk = 1 k = 1, 2, . . . , n; k 6= h (2)

m

∑
v=1

n

∑
k=1

xv
jk = 1 j = 1, 2, . . . , n; j 6= h (3)

n

∑
j=1

xv
jo −

n

∑
k=1

xv
ok = 0 v = 1, 2, . . . , m; o = 1, 2, . . . , n; o 6= h (4)

n

∑
j=1

n

∑
k=1

xv
jkdj ≤ Q v = 1, 2, . . . , m (5)

n

∑
j=1

n

∑
k=1

xv
jk

(
dist

(
cj, ck

)
+ stcj

)
≤ TT v = 1, 2, . . . , m (6)

n

∑
k=1

xv
hk =

n

∑
k=1

xv
kh ≤ 1 v = 1, 2, . . . , m (7)

∑
j,k∈Z

xv
jk ≤ |Z| − 1 Z ⊆ {1, 2, . . . , n}; h /∈ Z; v = 1, 2, . . . , m (8)

xv
jk ∈ {0, 1} j, k = 1, 2, . . . n; v = 1, 2, . . . , m (9)

Equations (2)–(8) are the constraints to ensure the validity of a solution to Equation (1). Equations (2)
and (3) ensure that a customer is served by exactly one vehicle. Equation (4) ensures the direction of
a vehicle to serve a node i.e., if a vehicle travels from node cj to node co then it never returns to the
node co from any other node ck or depot ch. Equation (5) restricts the customers to be assigned to a
vehicle exceeding the maximum load capacity of that vehicle. Equation (6) confirms the fulfillment of the
maximum travel distance constraint of a vehicle. Equation (7) forces a vehicle to start the journey from
and end at the depot ch and never visit the depot any more. Equation (8) restricts sub-tour generated
within a route. Equation (9) is the integrality constraint for the formulation.
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3. Proposed Methodology

The traditional PSO algorithm applies the velocities on the particles to explore new solutions.
We propose an enhanced PSO by incorporating a bilayer local search approach with it. The first layer
of local search is applied on the whole population, i.e., on each particle in the population in every
iteration. Thus, it improves the quality of the solutions obtained by traditional PSO by searching their
neighborhoods. The second layer of local search is implemented on the pool of the best particles found
in different iterations. This layer is to give additional chances to the best particles to look for better
solutions in their neighborhoods. Such local searches allow the particles to have a better exploration
around the current position as otherwise a particle may move from a position missing out a nearby
potential solution.

We represent a particle in PSO in an encoded vector form to apply PSO operations easily on
them. Hence, we also propose a decoding method to build a real comprehensive solution out of a
particle. The overall workflow of proposed bilayer local search-enhanced particle swarm optimization
(BLS-PSO) is sketched in Figure 2.

The proposed BLS-PSO technique to solve a capacitated vehicle routing problem (CVRP) can
broadly be thought as having three major parts: the application of the particle swarm optimization
(PSO), the decoding step to obtain the detail routes encoded in a solution and the bilayer local search
approach to search for a better solution in the neighborhood. We discuss these steps in detail in the
following subsections.
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3.1. PSO for CVRP

PSO is a population-based metaheuristic which consists of particles or chromosomes consisting
of candidate solutions. In this work, a chromosome is a “Customer Vector”, a permutation of all the
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customers specified in a problem statement. We can also think such a customer vector as a position
vector in the solution space.

At first, we generate a predetermined number of random particles for PSO. We also assign a
random velocity for each particle to guide the particles to search for better solutions utilizing the PSO
scheme. If the position of the l-th particle is At−1

l on iteration (t − 1), then the particle can move to its

new position A(t)
l influenced by its velocity Vt

l , as done in the traditional PSO, using

At
l = At−1

l ⊕ Vt
l (10)

The velocity also gets updated at each iteration, according to Shi and Eberhart [53], as

Vt
l = k1Vt−1

l ⊕ k2
(

Bl → At−1
l

)
⊕ k3

(
G → At−1

l
)

(11)

where Vt
l is the velocity of the lth particle in the t-th iteration, Bl is the best solution attained by the l-th

particle till (t − 1) iterations, and G is best solution attained by any particle in the population in (t − 1)
iterations. k1, k2 and k3 are parameters to guide the velocity to move a particle to a certain direction
specifying the effect of its own velocity, attraction to the best position ever reached by itself and the best
position ever reached by any particle in the population. Effect of the history of velocity is controlled
by the parameter k1, influence of the personal best position is determined by k2 and k3 maintains the
balance with the global best solution at any stage. These influences are basically the strength of PSO
algorithm which leads a particle to a better position. Thus, we have utilized the proposal of Shi and
Eberhart [53] instead of using the straightforward PSO velocity update equation from Eberhart and
Kennedy [40] to try to keep the preeminent balance among the influential portions in Equation (11).

PSO was first proposed for continuous problem domains where ⊕ can be considered as vector
addition and→ as vector subtraction. However, CVRP is defined in discrete domain. Hence, to apply
PSO in discrete domain, we adopt the swap sequence-based PSO [54]. We need to map the meaning
of Equations (10) and (11) so that PSO can deal a discrete type problem. In this purpose [54], authors
proposed a new definition to the characteristics of two symbols, ⊕ and→. X ⊕ SS means applying a
sequence of swap sequence on the elements of X to reach Y, a new position in the solution space, while X
→ W gives a basic swap sequence BSS, the applying of which W can be converted to X. A detailed
description is presented here to understand the mechanism of the operators.

Swap sequence is basically moving a particle from one solution or position to another solution
or position in the solution space. Suppose an encoded solution or particle in the solution space is
X = (1, 3, 5, 2, 4) assuming the problem has five nodes in the problem statement. Then SS can be a swap
sequence consisting of one or more swap operators that move X to its new position Y. For example
SS = SO(2,3) may be a random initial swap sequence having a single swap operator or velocity for
particle X. Thus, X ⊕ SS = (1, 3, 5, 2, 4) ⊕ SO(2, 3) = (1, 5, 3, 2, 4) would be Y the new particle position.
However, SS may be a swap sequence having more than one swap sequence or basic swap sequence
or swap operators as well. Let another SS = SO(2, 3) ⊕ SO(4, 5) having two swap operators. Applying
a swap sequence with more than one swap operators on a particle is simply applying swap operators
one after another on the particle. Thus, X ⊕ SS = (1, 3, 5, 2, 4) ⊕ SO(2, 3) ⊕ SO(4, 5) = (1, 5, 3, 2, 4) ⊕
SO(4, 5) = (1, 5, 3, 4, 2). This definition helps to make a swap sequence or velocity from Equation (11)
and then swap sequence will apply on a particle according to Equation (10) to move the particle from
one position to other.

Another definition of BSS is basically the difference between two positions in a solution space to
relate the personal best position or global best position with present position of a particle. In other
words, BSS = X→ W. Suppose X = (1, 3, 5, 2, 4) and W = (5, 1, 3, 4, 2). To find the BSS we need to
relate the nodes in W with the nodes in X from right to left. X(1) = W(2) = 1. So, the swap operator
SO(1, 2) will be the first operator. Thus, W1 = W ⊕ SO(1, 2) = (1, 5, 3, 4, 2). Then X(2) = W1(3) = 3
thus next swap operator will be SO(2, 3) which will make W2 = W1 ⊕ SO(2, 3) = (1, 3, 5, 4, 2). Again,
X(4) = W2(5) and the swap operator will be SO(4,5) which will finally make W3 = (1, 3, 5, 4, 2) ⊕ SO(4,
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5) = (1, 3, 5, 2, 4) = X. Then the BSS will be obtained as (SO(1,2) ⊕ SO(2,3) ⊕ SO(4,5)) which can apply
on W to find X.

3.2. Decoding the Customer Vector

The customer vectors in the particles presented in the previous section are in an encoded form.
It is not only difficult to comprehend them but also not suitable to apply the proposed local search
operations on them. We propose a novel distance-based decoding method presented in Algorithm 1 to
make a complete CVRP solution from a chromosome or customer vector.

In the proposed decoding method, the required number of vehicles m is taken as input parameter
from the problem statement. We first assign the first m customers in the customer vector to the m
vehicles (line 2 to line 4 in Algorithm 1). Afterwards we assign each of the remaining (n− m) customers
to one of the m routes according to Algorithm 1. For a customer ci, where m < i < n, we first try to
add it to the end of a suitable route (line 9 to line 16 in Algorithm 1). For this, we rank the routes
according the distances of their last assigned nodes from ci, and try to assign it to the end of the route
having ci’s closest possible customer at its end. According to the rank, we keep on trying the routes one
after another to find a suitable route where ci can be assigned without exceeding the corresponding
vehicle’s capacity.

If ci cannot be assigned to any route following this strategy, i.e., its addition to any route exceeds
the limit of the vehicle, we try to replace a customer having a lower demand than ci. This procedure
is depicted from line 17 to 31 in Algorithm 1. An example scenario presents the major steps of the
mechanism of Algorithm 1 followed by the pseudocode.

Algorithm 1. Distance-based decoding method.

Inputs
x: customer vector
m: number of vehicles given in the problem statement
Outputs
routesMade: a Boolean value Indicating whether routes could successfully been made
route: The routes made
Procedure
1. for r = 1 to m do
2. route(r) = x(r); // put the first m nodes in x as the starting nodes of the m routes
3. end for
4. i = m;
5. while i <= |x| do
6. i = i + 1; // index of the next node in x to insert in any route
7. sortedRoutes = indices of routes sorted in non-increasing order based on distances

of their last nodes to x(i)
8. assigned = 0;
9. for j = 1 to |sortedRoutes| do
10. r = sortedRoutes(j);
11. if addition of x(i) to the end of route(r) satisfies Equations (5) and (6) then
12. add x(i) to the end of route(r);
13. assigned = 1;
14. go to 18;
15. end if
16. end for
17. if assigned == 0 // x(i) was not assigned to any route in the loop from line 10 to 17 then
18. maxRouteSize = maximum number of nodes assigned to a route
19. for k = maxRouteSize down to 1 do
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20. sortedRoutes = indices of routes sorted in non-increasing order based on the
increases of the distances if the kth nodes of the routes are replaced by x(i)

21. for j = 1 to |sortedRoutes| do
22. r = sortedRoutes(j);
23. if replacing kth node of route(r) by x(i) satisfies Equations (5) and (6) then
24. add kth node to the end of x; // to be assigned again
25. replace kth node of route(r) by x(i);
26. assigned = 1;
27. go to 33;
28. end if
29. end for
30. end for
31. end if
32. if assigned == 0 then
33. routesMade = 0;
34 return;
35. end if
36. end while
37. routesMade = 1;
38. return;

Suppose a CVRP example problem scenario with 11 nodes as given in Table 2.

Table 2. Hub ID, Customer IDs and associated demands in example problem instance.

Hub ID Customer IDs

IDs 1 2 3 4 5 6 7 8 9 10 11
Demands 0 17 8 16 28 13 8 23 7 6 15

Note that a random customer vector (2, 8, 6, 9, 11, 7, 3, 4, 5, 10) is found in an iteration of PSO.
Considering the vehicle capacity constraint to be 40, the number of vehicles required is assumed to be
given as 4.

Now the first 4 customer nodes from the customer vector will be assigned to the 4 routes, say,
R1 = (2), R2 = (8), R3 = (6) and R4 = (9). Afterwards the algorithm will try to insert node 11 to any of
the routes. For this, the routes are sorted in non-increasing order based on distances of node 11 from
their last nodes, e.g., 2, 8, 6 and 9. Suppose the sorted sequence is (R4, R2, R1, R3). Since adding node
11 to route 4 does not violate the capacity constraint, R4 becomes (9, 11). The next node in the customer
vector is node 7, for which suppose that sorted route sequence is (R1, R2, R3, R4). R1 can successfully
accommodate node 7, and it becomes (2, 7). Following this manner, suppose that nodes 3 and 4 are
assigned to R2 and R3, making them (8, 3) and (6, 4), respectively.

Now based on node 5, suppose that the sorted route sequence is (R2, R1, R3, R4). However,
note that adding node 5 exceeds the vehicle capacity for each of the routes. So, it cannot be assigned in
this step. Now according to the second strategy, the algorithm tries to the replace a node with 5 from
any of the routes. For this the routes are again sorted in non-increasing order based on the increases of
the distances if the nodes 7, 3, 4 and 11 are replaced by node 5. Suppose that the sorted sequence is
(R4, R1, R3, R2). So, the algorithm tries R4 first, and finds that replacing node 11 with node 5 does
not violate the capacity constraint. Hence, R4 becomes (9, 5), and node 11 is added to the end of the
customer vector, making a temporary customer vector as (2, 8, 6, 9, 11, 7, 3, 4, 5, 10, 11). The node 10 is
then assigned to R2, making it (8, 3, 10), according to the first strategy.

Now, the algorithm tries to insert node 11 again to any of the routes. According the first strategy,
suppose the sorted route sequence is (R1, R4, R3, R2). Hence, node 11 can be accommodated in R1,
making it (2, 7, 11). After decoding steps, now we have route vectors at hand (R1 (2, 7, 11), R2 (8, 3, 10),
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R3 (6, 4), R4 (9, 5)) to apply the bilayer local search operations to find if any better solution is available
in the neighborhood of the particle.

3.3. Proposed Bilayer Local Search

A local search can exploit the neighborhood of a particle with the expectation of getting a better
solution. We propose two layers of local searches to be applied during the iterations of the PSO
algorithm. Here we explain them in detail.

3.3.1. The First Layer Local Search

The first layer local search is applied on the all “feasible” particles, for which routes could be
successfully made by Algorithm 1, in the population in every iteration of PSO. We apply Intra-Route
Local Search (Intra-RLS) followed by Inter-Route Local Search (Inter-RLS) to exploit the neighborhood
of a particle to look for any better solution before moving to another position in the solution space in
the next iteration of PSO. In the Intra-RLS, we apply “swap” and “insertion” strategies on every route
constructed for the particle at hand. In the “swap” stage, we interchange the neighboring nodes in a
route if it minimizes the total distance of the route. For “insertion”, we pick a node, and try to insert
it in other possible positions in the route if it decreases the total distance of the route. After all the
nodes have been checked, the move with the best gain can be executed. We apply “insertion” operation
using the nodes one after another onward from the starting of a route until any node succeeds to move
to another position. We do not perform all possible exploration here to keep the complexity of the
algorithm tolerable. Moreover, there remains a possibility for the proposed second layer of local search
to explore more “insertion” options on the potential solutions that are selected in the “pool” (please see
Section 3.3.2 for details).

A portrayal of the attempts made by the “insert” and “swap” operations on a route (cd, ce, cf and
cg) are illustrated in Figure 3.
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The Inter-RLS strategy also applies the similar “insertion” and “swap” operations, but between
two different routes. Inter-RLS is portrayed in Figure 4. The arrows show the “insert” options to be
tried by node 1, from which the best one is to be performed if it decreases the total distance of the two
concerned routes.
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It is worth mentioning here that the “insertion” operation is not allowed to remove all the nodes
of a route into another route thus the required number of vehicles will be constant throughout the
program run.

3.3.2. The Second Layer Local Search

The operations of the second layer of local search are similar to those in the first layer. As mentioned
earlier, this layer of local search is applied on a pool of the global best solutions attained in different
iterations the PSO algorithm. This is an approach to exploit the best-found solution more deeply as
some of them might be very close to the optimal solution.

To limit the growth of the pool, we refine it by deleting some of the solutions in the pool according
to Algorithm 2 at every iteration. It keeps the best solution in the pool. It also keeps the solutions
that were updated by the local search in the previous iteration for the hope that they may be further
updated in the upcoming iterations to attain better solutions. The solution that neither is the best in
the pool nor was updated in the previous iteration is deleted from the pool because it can no longer be
updated by the proposed local search.

Algorithm 2. Refining the pool of solutions

Input
P: a pool of global best solutions
Output
P’: The refined pool of solutions
Procedure
1. for each solution s in P do
2. if s is the best solution in P then
3. add s to P’
4. else if s was updated in the previous iteration then
5. add s to P’
6. end if
7. end for

4. Computational Result Analysis

We have implemented the proposed bilayer local search enhanced particle swarm optimization
(BLS-PSO) in MATLAB R2017a environment on a personal computer with a processor Intel® Pentium®

Dual-Core CPU T4300 @ 2.10 GHz (only single core is used), memory (RAM) of 2.0 GB, and Windows
10 Education version.

We have considered seven sets of capacitated vehicle routing benchmark problems of
the well-known CVRPLIB problem set which are also used for the verification of many
PSO-based proposals [41], can be downloaded from http://vrp.atd-lab.inf.puc-rio.br/index.php/en/.
The benchmark problem sets are called Set A, Set B, Set P [55], Set E, Set F, Set M [56] and Set CMT [57].
The problems in the Sets A, B, E, F, M and P specify only capacity constraints for the vehicles, but not
any constraint on the distance travelled by a vehicle. Total number of customers varies from 15 to 199 in
these sets, and locations of the customers, except Sets B and M, are generated in random scattered
manner or, following semi-clustered fashion [52]. The problems in Set B and M are generated in a
clustered layout [52]. Though some researchers [41] pick a subset of the 92 problems to demonstrate
the performances of their proposed algorithms, we have considered all the problems to show the real
portrayal of the performance of our proposed BLS-PSO on a variety of problems.

Chen et al. [41] considered all the 14 problems of the CMT problem set. CMT1, CMT2, CMT3,
CMT4, CMT5, CMT11 and CMT12 consider only the capacity constraint for the vehicles whereas
CMT6, CMT7, CMT8, CMT9, CMT10, CMT13 and CMT14 have additional restrictions on the maximum
travelling distance of a vehicle. In CMT, problem sets include 50 to 199 customers, whose locations

http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
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are randomly scattered in CMT1 to CMT10 problem sets while clustered locations are set in CMT11
to CMT14.

4.1. Setting the Parameters

A fundamental characteristic of metaheuristic algorithms is that their performance is greatly
parameter value intensive. Quality of solution obtained and required computational time to solve a
problem critically depend on the parameter sets. As optimizing the parameter sets for any metaheuristic
algorithm is itself an optimization problem, we have run all the problems for different parameter sets
and selected the best result achieving parameter set for this article. In the parameter set optimization
step, there are several parameter values to be decided such as population size or the number of particles
PSParticle, maximum number of iterations, T, constants in PSO equation k1, k2 and k3, termination
criteria and so on. We have performed a set of experiments to fix the parameter sets to obtain the
best out of the proposed bilayer local search-based particle swarm optimization (BLS-PSO) algorithm.
The experimental designed setup for the experiments are portrayed in Table 3.

Table 3. Different values of parameters used in experimental setup.

PSParticle T k2 k3

{|n/10|, |n/8|, |n/6|,
|n/4|, |n/3|, |n/2|, |n|} {10, 20, 50, 60, 80, 100} {between 0 and 1

(with 0.1 interval)}
{between 0 and 1

(with 0.1 interval)}

Then, k1 value is predicted via Equation (12) as used in [58].

k1 =

(
0.1−

(
1−
√

1− 2× t/T
)
× 1

2

)
(12)

The termination criteria used in our approach is that the program run until the maximum number
of iterations, T. For BLS-PSO, we have reported the average of the performances of 20 runs for the best
combination of k2 and k3 for a problem, unless specified otherwise.

The experiments show that performance of the proposed algorithm get improved with increasing
both population size, PSParticle and maximum number of iteration, T portrayed in Figure 5. It is
observed that even if the PSParticle and T is increased up to certain limit, the proposed algorithm can
find results equal to best known solutions at most for 85 benchmark instances. When the setting
PSParticle is equal to the number of nodes in respective problem statement and T is 50 or more it can
find the results equal to the best-known solutions for maximum 85 benchmark problems. Not finding
the outputs equal to the best-known solutions for the remaining problem instances are likely due to
having two reasons either the small population size or the number of maximum iteration which is set
as low as 100. However, as an approximate algorithm is expected to find a near optimal or, a “good”
solution within a small computational time, we have chosen the PSParticle as equal to n and T as 50.

For setting the value of k2 and k3, we have run the program again with the parameter setting
of PSParticle and T as mentioned above. In these experimental setups, for a particular k2 we have run
the program for all k3 values. For any setup, the number of best known results found is marked on
the pie chart in Figure 6. Close observation portrays that there is no significant converging point
to fix the value of k2 and k3 to obtain the best performance of the proposed algorithm. However,
the computational time required for one complete run of the proposed algorithm for an instance is
not significant. Thus, experiments for all the combinations of k2 and k3 for each instance is performed
thoroughly and the best result achieved by the proposed BLS-PSO is reported in later subsections.
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4.2. Result Analysis

Tables 4–10 present the computational results obtained by BLS-PSO for several benchmark
problem sets, where m represents the required number of vehicles for the corresponding problem
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instance, Cost reports the best fitness obtained by an algorithm along with the corresponding gap in
percentage, representing the quality of a solution, calculated as

gap =
CostBLS−PSO − BKS

BKS
× 100% (13)

where CostBLS-PSO is the best solution obtained by the proposed method and BKS is the best-known
solution for the same instance reported in the literature. AvgT is average of CPU times required by
20 individual runs for particular k2 and k3 value to reach the corresponding best solution. As we have
mentioned, k2 and k3 values are not same for all the problems, we have mentioned the specific k2 and k3

values for each instance. Although the values of k2 and k3 tabulated in the tables are not mandatorily the
only combination to find the results rather there may many other combinations giving the same results.
We have mentioned only one combination here for the consistency in the presentation of the tables.

Table 4. Performance of BLS-PSO in solving the benchmark problems in Set A.

Problems BKS CostBLS-PSO gap AvgT k2 k3

A-n32-k5 784 784 0.00 0.15 0.1 0.1
A-n33-k5 661 661 0.00 0.15 0.4 0.5
A-n33-k6 742 742 0.00 0.43 0.4 0.0
A-n34-k5 778 778 0.00 0.8 0.5 0.8
A-n36-k5 799 799 0.00 0.76 0.0 0.8
A-n37-k5 669 669 0.00 0.92 0.8 1.0
A-n37-k6 949 949 0.00 0.64 0.5 0.2
A-n38-k5 730 730 0.00 0.69 1.0 0.8
A-n39-k5 822 822 0.00 1.07 0.5 0.3
A-n39-k6 831 831 0.00 1.15 0.4 0.7
A-n44-k6 937 937 0.00 1.03 0.3 0.0
A-n45-k6 944 944 0.00 1.76 0.0 0.2
A-n45-k7 1146 1146 0.00 1.31 0.5 0.0
A-n46-k7 914 914 0.00 1.29 0.6 0.3
A-n48-k7 1073 1073 0.00 1.45 0.9 0.1
A-n53-k7 1010 1010 0.00 2.54 0.9 1.0
A-n54-k7 1167 1167 0.00 7.61 0.2 0.5
A-n55-k9 1073 1073 0.00 8.47 0.5 0.4
A-n60-k9 1354 1354 0.00 8.78 0.6 0.2
A-n61-k9 1034 1034 0.00 7.98 0.7 1.0
A-n62-k8 1288 1296 0.62 9.53 0.7 0.4
A-n63-k9 1616 1616 0.00 9.22 0.9 0.3
A-n63-k10 1314 1314 0.00 10.14 0.8 1.0
A-n64-k9 1401 1415 1.00 18.86 0.5 0.6
A-n65-k9 1174 1174 0.00 16.5 0.2 0.8
A-n69-k9 1159 1159 0.00 18.41 0.6 0.6
A-n80-k10 1763 1766 0.17 16.75 0.2 1.0

Average 0.07 5.5 – –

Table 5. Performance of BLS-PSO in solving the benchmark problems in Set B.

Problems BKS CostBLS-PSO gap AvgT k2 k3

B-n31-k5 672 672 0.00 2.07 0.5 0.5
B-n34-k5 788 788 0.00 2.42 0.1 0.9
B-n35-k5 955 955 0.00 1.12 0.6 0.8
B-n38-k6 805 805 0.00 3.01 0.8 0.9
B-n39-k5 549 549 0.00 3.59 0.0 0.3
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Table 5. Cont.

Problems BKS CostBLS-PSO gap AvgT k2 k3

B-n41-k6 829 829 0.00 3.93 0.2 0.3
B-n43-k6 742 742 0.00 2.55 0.7 0.1
B-n44-k7 909 909 0.00 3.16 0.0 0.3
B-n45-k5 751 751 0.00 2.04 0.8 0.2
B-n45-k6 672 672 0.00 4.95 0.5 0.5
B-n50-k7 741 741 0.00 5.45 0.3 0.2
B-n50-k8 1312 1312 0.00 5.53 0.0 0.0
B-n51-k7 1032 1032 0.00 5.39 0.2 0.0
B-n52-k7 747 747 0.00 6.18 0.1 0.6
B-n56-k7 707 707 0.00 7.31 0.2 0.2
B-n57-k7 1153 1153 0.00 8.12 0.0 0.8
B-n57-k9 1598 1598 0.00 8.56 0.4 1.0

B-n63-k10 1496 1496 0.00 9.13 0.0 0.6
B-n64-k9 861 884 2.67 16.75 1.0 0.8
B-n66-k9 1316 1322 0.46 15.52 1.0 0.9

B-n67-k10 1032 1032 0.00 8.24 0.1 1.0
B-n68-k9 1272 1272 0.00 6.19 0.0 0.5

B-n78-k10 1221 1221 0.00 9.71 0.5 0.2

Average 0.14 6.13 – –

Table 6. Performance of BLS-PSO in solving the benchmark problems in Set E.

Problems BKS CostBLS-PSO gap AvgT k2 k3

E-n22-k4 375 375 0.00 0.21 0.3 0.1
E-n23-k3 569 569 0.00 0.2 0.1 0.6
E-n30-k3 534 534 0.00 0.3 0.2 0.2
E-n33-k4 835 835 0.00 1.77 0.4 0.3
E-n51-k5 521 521 0.00 2.81 0.1 0.8
E-n76-k7 682 687 0.73 13.55 0.2 0.9
E-n76-k8 735 735 0.00 27.36 0.2 0.8

E-n76-k10 830 830 0.00 18.62 0.4 0.6
E-n76-k14 1021 1021 0.00 14.69 0.2 0.3
E-n101-k8 815 815 0.00 21.27 0.9 0.9
E-n101-k14 1067 1095 2.62 25.81 0.2 0.2

Average 0.31 11.51 – –

Table 7. Performance of BLS-PSO in solving the benchmark problems in Set F.

Problems BKS CostBLS-PSO gap AvgT k2 k3

F-n45-k4 724 724 0.00 9.2 0.7 0.7
F-n72-k4 237 237 0.00 7.26 0.9 0.2
F-n135-k7 1162 1171 0.78 60.32 0.4 0.7

Average 0.26 25.59 – –

Table 8. Performance of BLS-PSO in solving the benchmark problems in Set M.

Problems BKS CostBLS-PSO gap AvgT k2 k3

M-n101-k10 820 820 0.00 28.81 0.7 1.0
M-n121-k7 1034 1034 0.00 33.33 0.6 0.0
M-n151-k12 1015 1065 4.93 83.81 0.7 0.4
M-n200-k16 1274 1335 4.79 90.35 0.5 1.0
M-n200-k17 1275 1371 7.53 107.14 0.5 1.0

Average 3.45 68.69 – –
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Table 9. Performance of BLS-PSO in solving the benchmark problems in Set P.

Problems BKS CostBLS-PSO gap AvgT k2 k3

P-n16-k8 450 450 0.00 0.11 0.1 0.9
P-n19-k2 212 212 0.00 0.1 0.9 0.0
P-n20-k2 216 216 0.00 0.35 0.1 0.1
P-n21-k2 211 211 0.00 0.32 0.1 0.1
P-n22-k2 216 216 0.00 0.71 0.1 0.7
P-n22-k8 603 603 0.00 0.83 0.4 0.2
P-n23-k8 529 529 0.00 1.02 0.5 0.8
P-n40-k5 458 458 0.00 1.33 0.5 0.2
P-n45-k5 510 510 0.00 1.45 1.0 0.3
P-n50-k7 554 554 0.00 1.48 0.7 0.9
P-n50-k8 631 631 0.00 1.05 1.0 0.1
P-n50-k10 696 696 0.00 2.23 0.3 0.5
P-n51-k10 741 741 0.00 3.38 0.3 0.6
P-n55-k7 568 568 0.00 4.32 1.0 0.1
P-n55-k10 694 694 0.00 4.94 0.6 1.0
P-n55-k15 989 989 0.00 4.29 1.0 0.3
P-n60-k10 744 744 0.00 5.83 0.8 0.1
P-n60-k15 968 968 0.00 5.37 0.0 0.7
P-n65-k10 792 792 0.00 6.44 0.0 0.8
P-n70-k10 827 833 0.73 9.24 0.8 1.0
P-n76-k4 593 598 0.84 16.11 0.4 1.0
P-n76-k5 627 636 1.44 15.85 0.6 0.4
P-n101-k4 681 692 1.62 20.17 0.5 0.7

Average 0.2 4.72 – –

Table 10. Performance of BLS-PSO in solving the benchmark problems in Set CMT.

Problems BKS CostBLS-PSO gap AvgT k2 k3

CMT1 524.61 524.61 0.00 2.19 0.6 0.2
CMT2 835.26 835.26 0.00 8.44 0.4 0.8
CMT3 826.14 826.14 0.00 10.58 0.6 1.0
CMT4 1028.42 1042.8 1.4 11.82 0.9 0.0
CMT5 1291.29 1324.01 2.53 16.37 0.9 0.2
CMT6 555.43 555.43 0.00 9.11 0.4 0.4
CMT7 909.68 909.68 0.00 7.23 0.0 0.9
CMT8 865.95 870.03 0.47 19.41 1.0 0.1
CMT9 1162.55 1177.14 1.25 25.21 0.0 1.0
CMT10 1395.85 1436.84 2.93 31.04 0.6 0.7
CMT11 1042.12 1042.12 0.00 8.58 1.0 0.8
CMT12 819.56 819.56 0.00 10.08 0.1 0.1
CMT13 1541.14 1546.36 0.34 15.54 0.2 0.7
CMT14 866.37 866.37 0.00 11.07 0.0 0.4

Average 0.64 13.33 – –

The proposed BLS-PSO algorithm has reached the best-known solutions for 84 instances out of
the 106 Euclidean distance-based benchmark instances used in our experiments. BLS-PSO has an
average gap of 0.07%, 0.14%, 0.31%, 0.26%, 3.45%, 0.2% and 0.64% to solve instances in Sets A, B, E, F,
M, P and CMT, respectively. It requires an average CPU Time of 5.5 s, 6.13 s, 11.51 s, 25.59 s, 68.69 s,
4.72 s and 13.33 s to solve instances in Set A, B, E, F, M, P and CMT, respectively. Thus, BLS-PSO has
been found to obtain the results equal to the best-known results for most of the existing benchmark
problems within short computational time.
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BLS-PSO has not met the best-known results for some instances. The main reason behind this
may be the small population size or the lower value of the maximum number of iterations. Increasing
them are expected to attain better solutions.

4.3. Comparative Performance of PSO-Based Approaches

To portray the comparison of the performance of our proposed algorithm with other PSO-based
algorithms in the literature, we have taken the same instances used by other researchers [41,44,47,52].
Table 11 contains the results for 16 instances from the Sets A, B, E, F, M and P, and Table 12 lists
results for all the 14 instances of Set CMT. Here, PSO-based algorithms DPSO [41], SR1, SR2 [44,46]
and PSCO [52] are compared with proposed BLS-PSO. Here, Cost is the result obtained by respective
algorithms and a value is in boldface font when it is equal to the best-known result reported in the
literature. The superscript “a” indicates that the cost is inferior to what is achieved by the proposed
BLS-PSO. BT refers to the computational time in seconds to reach the corresponding result. For the
proposed algorithm, we have reported the AvgT as mentioned earlier. As mentioned above there are
no convergence of solution for specific k2 and k3 value, we have mentioned AvgCost as the average
of all the solutions obtained by BLS-PSO for different k2 and k3. The deviation of the AvgCost with
the best-known solutions is mentioned as SD in Table 11. It is evident that even the average time
taken by the proposed method is far better, let alone the shortest time, than the shortest time of other
approaches for each of the problem instances under consideration.

Table 11. Performance comparison of BLS-PSO with respect to other PSO-based approaches for solving
some selected instances.

SR1 SR2 PACO DPSO BLS-PSO

Problem BKS
Cost Cost Cost Cost Cost AvgCost
BT BT BT BT AvgT

(gap) (gap) (gap) (gap) (gap) (SD)

A-n33-k5 661
661 661 661 661 661 661
11 13 0.87 32.3 0.15

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

A-n46-k7 914
914 914 914 914 914 914
18 23 6.02 128.9 1.29

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

A-n60-k9 1354
1366 a 1355 a 1354 1354 1354 1362

28 40 52.88 308.8 8.78
(0.89) (0.07) (0.00) (0.00) (0.00) (0.59)

B-n35-k5 955
955 955 955 955 955 955
12 14 2.65 37.6 1.12

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

B-n45-k5 751
751 751 751 751 751 757
17 20 5.85 134.2 2.04

(0.00) (0.00) (0.00) (0.00) (0.00) (0.8)

B-n68-k9 1272
1278 a 1274 a 1275 a 1272 1272 1289

33 50 62.97 344.3 6.19
(0.47) (0.16) (0.24) (0.00) (0.00) (1.34)

B-n78-k10 1221
1239 a 1223 a 1221 1239 a 1221 1243

41 64 98.78 429.4 9.71
(1.47) (0.16) (0.00) (1.47) (0.00) (1.8)

E-n30-k3 534
541 a 534 534 534 534 534

11 16 4.38 28.4 0.3
(1.31) (0.00) (0.00) (0.00) (0.00) (0.00)

E-n51-k5 521
521 521 521 528 a 521 531
21 22 19.46 300.5 2.81

(0.00) (0.00) (0.00) (1.34) (0.00) (1.92)

E-n76-k7 682
691 a 682 685 688 a 687 696

38 60 46.85 526.5 13.55
(1.32) (0.00) (0.44) (0.88) (0.73) (2.05)
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Table 11. Cont.

SR1 SR2 PACO DPSO BLS-PSO

F-n72-k4
237

237 237 237 244 a 237 248

58 53 30.64 398.3 7.26
(0.00) (0.00) (0.00) (2.95) (0.00) (4.64)

F-n135-k7 1162
1184 a 1162 1170 1215 a 1171 1192

178 258 248.77 1526.3 60.32
(1.89) (0.00) (0.69) (4.56) (0.78) (2.58)

M-n101-k10 820
821 a 820 820 824 a 820 827

60 114 113.28 874.2 28.81
(0.12) (0.00) (0.00) (0.49) (0.00) (0.85)

M-n121-k7 1034
1041 a 1036 a 1034 1038 a 1034 1040

88 89 80.62 1733.5 33.33
(0.68) (0.19) (0.00) (0.39) (0.00) (0.58)

P-n76-k4 593
599 a 594 593 602 a 598 617

51 48 53.48 496.3 16.11
(1.01) (0.17) (0.00) (1.52) (0.84) (4.05)

P-n101-k4 681
686 683 683 694 a 692 699
99 86 64.92 977.5 20.17

(0.73) (0.29) (0.29) (1.91) (1.62) (2.64)

Average
– – – – – –

47.81 60.63 55.78 517.3125 13.25
(0.62) (0.066) (0.1) (0.97) (0.25) (1.49)

A-n33-k5 indicates the problem statement is from Set A, having total 33 nodes and 5 vehicles. a indicates the results
compared to those BLS-PSO has obtained better results.

The overall results are also graphically represented in Figure 7 to show the comparative
performances more comprehensively. The negative gap in Figure 7a corresponds to the problem
instance, for which the BLS-PSO has obtained a new optimal result. Figure 7b demonstrates that
time consumed by BLS-PSO is significantly less than the other approaches, where the plot is almost
touching the horizontal axis for all the instances.
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Table 12 portrays the comparison of performance in handling CMT problem set instances. Here
we have compared SR1, SR2 [44,46], HybPSO [47] and PSCO [52] with the proposed BLS-PSO.

Table 12. Performance comparison of BLS-PSO with respect to other PSO-based approaches for solving
the instances of Set CMT.

SR1 SR2 PACO HybPSO BLS-PSO

Problem BKS
Cost Cost Cost Cost Cost AvgCost
BT BT BT BT AvgT

(gap) (gap) (gap) (gap) (gap) (SD)

CMT1 524.61
524.61 524.61 524.61 524.61 524.61 524.61

21 24 32.3 3 2.19
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

CMT2 835.26

849.58
a

844.42
a 835.26 835.26 835.26 840.39

39 57 108 13 8.44
(1.71) (1.1) (0.00) (0.00) (0.00) (0.61)

CMT3 826.14
835.8 a 829.4 a 829.92

a 826.14 826.14 836.44

61 101 142 19 10.58
(1.17) (0.39) (0.46) (0.00) (0.00) (1.25)

CMT4 1028.42

1067.57
a

1048.89
a 1040.23 1029.54 1042.8 1059.13

113 223 378 61 11.82
(3.81) (1.99) (1.15) (0.11) (1.4) (2.99)

CMT5 1291.29

1345.84
a 1323.89 1348.73

a 1294.13 1324.01 1348.27

188 413 1049 129 16.37
(4.21) (2.51) (4.44) (0.22) (2.53) (4.41)

CMT6 555.43

556.68
a 555.43 555.43 555.43 555.43 555.43

21 30 28 3 9.11
(0.23) (0.00) (0.00) (0.00) (0.00) (0.00)

CMT7 909.68

952.77
a

917.68
a 909.68 909.68 909.68 917.94

42 69 99 17 7.23
(4.74) (0.88) (0.00) (0.00) (0.00) (0.91)

CMT8 865.95

877.84
a 867.01 868.61 868.45 870.03 884.2

61 115 118 53 19.41
(1.37) (0.12) (0.31) (0.29) (0.47) (2.11)

CMT9 1162.55
Inf a 1181.14

a 1171.94 1164.35 1177.14 1190.07

125 295 506 94 25.21
(Inf) (1.6) (0.81) (0.16) (1.25) (2.37)

CMT10 1395.85

1465.66
a 1428.46 1454.81

a 1396.18 1436.84 1452.23

208 517 939 181 31.04
(5.00) (2.34) (4.22) (0.024) (2.93) (4.04)

CMT11 1042.12

1051.87
a

1052.34
a 1042.12 1044.03

a 1042.12 1056.88

89 93 197 32 8.58
(0.94) (0.98) (0.00) (0.18) (0.00) (1.42)
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Table 12. Cont.

CMT12 819.56

820.62
a 819.56 819.56 819.56 819.56 819.56

60 88 149 23 10.08
(0.13) (0.00) (0.00) (0.00) (0.00) (0.00)

CMT13 1541.14

1566.32
a 1546.2 1562.64

a 1544.18 1546.36 1558.35

86 160 321 25 15.54
(1.63) (0.33) (1.4) (0.197) (0.34) (1.12)

CMT14 866.37

867.13
a 866.37 866.37 866.37 866.37 866.37

64 99 173 22 11.07
(0.09) (0.00) (0.00) (0.00) (0.00) (0.00)

Average
– – – – – –

84.1 163.1 302.58 48.13 13.33
(1.788) (0.874) (0.913) (0.084) (0.64) (1.52)

Inf indicates when an algorithm could not achieve any feasible solution. a indicates the results compared to those
BLS-PSO has obtained better results.

Figure 8 shows clearer comparative graphical representations of the performances of the
PSO-based algorithms dealing instances in Set CMT. Here, BLS-PSO has obtained results equal to
the best known results with an average gap of 0.64% whereas SR1, SR2, PACO and HybPSO have
gap of 1.788%, 0.874%, 0.913% and 0.084% respectively. However, the average of the reported CPU
times required by BLS-PSO is only 13.33 s to solve the instances in Set CMT whereas the average
of the best times required by SR1, SR2, PACO and HybPSO are 84.1 s, 163.1 s, 302.58 s and 48.13 s,
respectively. Hence, although the gap values obtained by the proposed algorithm are higher than the
other methods for some instances, BLS-PSO is found to reach to the best known results for most of the
cases in significantly lower computational times as compared to the other algorithms. This advocates
for its efficiency.
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5. Conclusions

In this article, we have proposed a bilayer local search-based Particle Swarm Optimization
(BLS-PSO) incorporated with a simple chromosome structure to apply PSO operations easily. We have
also proposed a decoding technique that depends on the number of vehicles needed to serve the
customers which is specified in the problem statement of benchmark instances considered in this
article, and then build the routes in a comprehensible solution on which we apply the proposed local
searches. The first layer of the proposed bilayer local search approach searches the neighborhood of
all particles to find better solution whereas the second layer is applied on the pool of the best particle
of different generations. The first layer is important for exploring the neighborhoods of the particles
before modifying the chromosomes by PSO operations, and the second layer gives more chances to the
best selected particles to exploit more of their neighborhoods. Such a contribution helps the search
strategy to obtain optimal or near optimal solutions with the expense of very short computational time,
which is also evident from the experimental results obtained by applying the method on different
benchmark problem sets.

The proposed decoding method can also be easily integrated with other population-based
metaheuristics to solve CVRP where a solution is encoded as a permutation of customer nodes.
The bilayer search strategy may also enhance the performances of other nature-inspired searching
strategies. Moreover, introduction of a probabilistic approach to the decoding algorithm may also
contribute to generate different potential solutions. The estimation procedure of the required number
of vehicles may also be enhanced by using a stochastic technique other than taking as input from the
problem statement to solve generalized vehicle routing problems. We leave all these possibilities to be
investigated in our future endeavors.
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