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Abstract: Hybrid electric vehicles are a compromise between traditional vehicles and pure electric
vehicles and can be part of the solution to the energy shortage problem. Energy management strategies
(EMSs) are highly related to energy utilization in HEVs’ fuel economy. In this research, we have
employed a neuro-dynamic programming (NDP) method to simultaneously optimize fuel economy
and battery state of charge (SOC). In this NDP method, the critic network is a multi-resolution wavelet
neural network based on the Meyer wavelet function, and the action network is a conventional
wavelet neural network based on the Morlet function. The weights and parameters of both networks
are obtained by an algorithm of backpropagation type. The NDP-based EMS has been applied
to a parallel HEV and compared with a previously reported NDP EMS and a stochastic dynamic
programing-based method. Simulation results under ADVISOR2002 have shown that the proposed
NDP approach achieves better performance than both the methods. These indicate that the proposed
NDP EMS, and the CWNN and MRWNN, are effective in approximating a nonlinear system.

Keywords: parallel hybrid electric vehicle; energy management; neuro-dynamic programming;
wavelet neural network; multi resolution analysis

1. Introduction

Hybrid electric vehicles (HEVs) are regarded as an energy-saving solution in the vehicle industry.
An energy management strategy (EMS) that coordinates the output power from an internal combustion
engine (ICE) and an electric motor simultaneously is important for a HEV because EMSs affect fuel
economy and battery state of charge (SOC) directly.

Many approaches have been taken to EMS, from effective but vehicle design sensitive rule-based
strategies [1] to optimal control choices [2]. The global optimal solutions can be obtained based on
a Pontryagin’s minimum principle (PMP) under reasonable assumptions [3]. However, the global
optimal solution for a realistic vehicle problem suffers from two disadvantages: requiring complete
knowledge of a drive cycle in advance, and the heavy computational burden induced by too large
state space and control space. The most famous global optimal control law is based on a Bellman
optimality principle [4]. A typical EMS of this kind is the dynamic programming (DP) approach,
which is often utilized in two aspects. The first is to evaluate other algorithms; the second is to analyze
vehicle control laws, extract implementable rules in controls (e.g., transitioning between different
operating modes and gear shift sequences), and improve rule-based methods [5]. We can infer that
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the DP-based global optimal solution is driving cycle sensitive. To enhance the robustness of an EMS
method to the driving cycle sensitive problem, a stochastic dynamic programming (SDP) approach in
an infinite-horizon form is proposed to solve a future driving cycle with a statistical Markov chain
model [6]. The stochastic approach optimizes the control policy over a broader set of driving patterns:
the best policy achieves a minimum of the expected cost, which is an average over all sample paths of
the stochastic model. However, the method still has a high computational burden, and relies on the
Markov chain model.

With the development of artificial intelligence, some neural network-based approaches have
been proposed to relax the driving cycle sensitive problem [7]. In [8], a supervised competitive
learning vector quantization neural network was used to predict real-time driving patterns. Chaining
neural network, multi-layer perceptron model, and convolutional neural networks were all employed
to predict velocity with the help of information provided by vehicle-to-vehicle communication
technology, vehicle-to-infrastructure communication technology, and other intelligent transportation
technologies [9,10]. A forecasting velocity was used in an equivalent consumption minimization
approach to improve the performance of EMS. In [11], a PMP-based method was used to obtain
optimal control of different driving cycles. A neural network was trained to learn the optimal SOC
curves. Then, with the partial trip information provided by the intelligent transportation system, a
reference optimal SOC curve was produced by the neural network and used for a fuzzy logic controller.
We can conclude that the studies mentioned above usually train one kind of neural network and
then use it online to predict some variables (e.g., vehicle velocity, optimal SOC curve, optimal value
function, etc.). These methods are still not a real online EMS. In [12,13], fully data-driven EMSs based
on deep reinforcement learning (DRL) approach were proposed. The DRL-based method needs huge
learning samples and significant computational resources. Although an online learning architecture
was proposed in [13], utilizing a real-time ITS system, it was still not applied in a real vehicle. In [14],
a neural dynamic programming (NDP)-based EMS was first proposed. In this NDP, a radial basis
function neural network (RBFNN) is adopted both in critic network and action network. However,
the RBFNN requires too long a training time for the large network architecture.

This study focuses on developing a near-optimal torque split control strategy for online application
potential that will improve the fuel economy and prevent battery degradation without previewing
future traffic information. Control using torque instead of power can handle a velocity of zero.
This research also investigates a NDP EMS. However, different to [14], the critic network in this
EMS utilizes a multi-resolution wavelet neural network (MRWNN), and the action network adopts a
conventional wavelet neural network (CWNN). The CWNN action network does not need clustering
preprocessing on the input data, which is essential in the RBFNN action network. Meanwhile, MRWNN
benefits from less training time for the dilation and the translation in every activation function being
determined in advance, and it is less redundant than RBFNN for orthonormal characteristics—that
is, each activation function in the hidden layer is different from each other, and there is no overlap.
In the critic network, the MRWNN is based on multi-resolution theory, Meyer scaling, and wavelet
functions. The proposed NDP EMS is then applied to the simplest torque-coupling parallel HEV to
simulate its performance.

In this paper, the preparation of knowledge on the proposed NDP EMS is presented in Section 2.
This knowledge includes the structure of the studied parallel hybrid powertrain, the EMS optimal
control problem to be solved, the topology and training method of the traditional wavelet neural
network, the multi-resolution analysis theory for a function, and the topology and training approach
for a MRWNN. After that, neuro-dynamic programming based on a MRWNN and a CWNN, and its
implementation procedure, is described in Section 3. In addition, the NDP-based EMS performance of
the parallel HEV is shown and compared with that of two other EMS in Section 4. Finally, conclusions
about the proposed NDP EMS are given in Section 5.
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2. Preparation of Knowledge about the NDP EMS

In this section, we first give a short description of the studied parallel HEV powertrain. Secondly,
the optimal EMS problem is demonstrated in Section 2.2, which introduces the HEV modeling, key
concepts of the EMS control problem, and instantaneous cost in optimization, which have been
described in [6]. We present the preparation of knowledge for the proposed NDP method, which
contains a wavelet transformation theory, in Section 2.3; a CWNN in Section 2.4; a multi-resolution
analysis theory of a function in Section 2.5; and a multi-resolution wavelet neural network in Section 2.6.
A CWNN is based on a wavelet transformation theory and traditional background neural network.
The MRWNN in this research is based on a CWNN and multi-resolution analysis for a function.

2.1. Hybrid Powertrain

This research selects a torque-coupling parallel HEV as the objective HEV. Vehicle parameters for
simulation are listed in Table 1. Figure 1 shows the parallel hybrid powertrain that has a spark ignition
engine, an electric motor, a nickel metal hydride battery pack, an automatic clutch, a gearbox, and a
final drive. The electric motor is located between the engine and the transmission. In this configuration,
the motor rotor works as the torque coupler. When the clutch is engaged, the engine and motor have
the same speed. The advantage of this architecture is the elimination of the mechanical torque coupler,
which results in a simple and compact drivetrain. This configuration also benefits from abundant
operational modes, where the motor functions as an engine starter, along with an electrical generator
for regenerative braking and an engine power assistant. Here, a vehicle control unit directly commands
the torque required from both power sources of the vehicle. The powertrain information has been
shown in [6].

Table 1. Parameters of the parallel HEV.

Item Value

Final drive gear efficiency (%) 0.9296
wheel radius (m) 0.275

Coefficient of aerodynamic drag 0.25
Vehicle frontal area (m2) 1.9

Air density (kg/m3) 1.2
Rolling resistance coefficient 0.0054

Vehicle mass (kg) 1000
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2.2. Optimal Control Problem

In this section, we demonstrate key concepts for the EMS control problem. For example,
state vector, control vector, control constraints, and instant cost function.

In this research, we model the parallel HEV as a discrete-time dynamic system as follows:

x(k + 1) = f (x(k), u(k)), k = 0, 1, · · · , N − 1, (1)

where k represents the current discrete time step; N is the total sampling time of the whole driving cycle;
x(k) is the state variables which summarize past information that is relevant for future optimization;
u(k) is the control variables, which is the decision to be selected at time step k from a given set; f (.) is
a function according to which the HEV updates. We choose torque demand at the driven wheels
from the driver Tdem(k), wheel speed ωw, and battery state of charge SOC(k) as state variables (e.g.,
x(k) = (Tdem(k), ωw(k), SOC(k))T) and engine torque Te(k) and gear ratio gr(k) as control variables
(e.g., u(k) = (Te(k), gr(k))T).

The optimal control problem for this EMS is to find an optimal control sequence to minimize
the fuel economy, and constrain the battery SOC within a reasonable scope during a driving cycle.
The optimal control action u∗(k) can be obtained by solving the following Bellman equation:

J∗(x(k)) = min
u(k)

[L(x(k), u(k)) + J∗(x(k + 1))], 0 ≤ k < N − 1

J∗(x(N − 1)) = min
u(N−1)

[L(x(N − 1), u(N − 1))], k = N − 1
, (2)

where J∗(k) is the optimal cumulated cost function from time step k to the end of the driving cycle.
As for the infinite horizon, Equation (2) will change to the following equation:

J∗(x(k)) = min
u(k)

E
{

∞
∑

i=k
δi−kL(x(i), u(i))

}
= min

u(k)
E{L(x(k), u(k)) + δJ∗(x(k + 1))}

, (3)

where δ ∈ (0, 1) is a discount factor, which ensures the total cost function convergence and indicates
the importance of future cost to current cost; L(x(k), u(k), w(k)) denotes the cost incurred at time
step k.

L(x(k), u(k)) = L f uel(k) + βLSOC(k), (4)

where L f uel(k), and LSOC(k) are the fuel consumption and SOC derivation from a desired value from
time step k to time step k + 1, respectively; the weight β provides tunable parameters that meet the
SOC constraints.

When solving the above optimal control problem, the following boundary conditions should be
satisfied to guarantee that the parallel HEV components will work properly:

ωe_min ≤ ωe(k) ≤ ωe_max

Te_min(ωe(k)) ≤ Te(k) ≤ Te_max(ωe(k))
Tm_min(ωm(k), SOC(k)) ≤ Tm(k) ≤ Tm_max(ωm(k), SOC(k))
SOCmin ≤ SOC(k) ≤ SOCmax

. (5)

2.3. Wavelet Transformation Theory

In this section, we will give a brief introduction to a wavelet transformation theory, which is the
basis of a CWNN.
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If a function ψ(t) ∈ L2(R) satisfies the following item:

Cψ =
∫

R

∣∣ψ̂(ω)
∣∣2

|ω| dω < ∞, (6)

where ψ̂(ω) is the Fourier transformation of ψ(t), which is called a wavelet or mother wavelet.
Given a wavelet ψ(t), a family of wavelets

{
ψa,b(t)

}
can be derived with different a and b from

the following equation:

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
, (7)

where a > 0 is a dilation factor and b is a translation factor. ψa,b(t) is called the wavelet basis function.
For a function f (t) ∈ L2(R), we can get its wavelet transform WTf (a, b) from the following

equation:

WTf (a, b) =
1√
a

∫
R

f (t)ψ∗
(

t− b
a

)
dt =

〈
f (t), ψa,b(t)

〉
, (8)

where ψ∗(t) is the conjugate function of ψ(t). WTf (a, b) is the inner product of f (t) and a family of
wavelets

{
ψa,b(t)

}
.

For a common input x defined in discrete state, and the dilation set at 2, we can get the following
wavelets:

ψm,k(x) =
1√
2m

ψ

(
x− k · 2m

2m

)
=
√

2−mψ
(
2−mx− k

)
, (9)

where m ∈ Z and k ∈ Z.

2.4. Common Wavelet Neural Network

The wavelet neural network is based on a wavelet transformation theory and neural network.
Different from broadly used back propagation neural network (BPNN) and RBFNN, a wavelet neural
network, which we call a common wavelet neural network (CWNN), utilizes a wavelet function as the
activation function in the hidden layer. Compared with a RBFNN, a CWNN does not need a clustering
preprocessing on the input data, and has same approximation ability. A commonly used topology of a
CWNN is shown in Figure 2.
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In the CWNN, the input of hidden layer is as follows:

h′h =
I

∑
i=1

ωihxi, h = 1, 2, · · · , H, (10)
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where X = {x1, · · · , xi, · · · , xI} is the input vector; I and H are the total neuron number of the input
layer, and hidden layer, respectively; and ωih is the weight factor between the ith input neuron and
the hth hidden layer.

The output of the hidden layer is as follows:

hh = f
(

h′h − bh

ah

)
= f


I

∑
i=1

ωihxi − bh

ah

, h = 1, 2, · · · , H, (11)

where bh is the shift factor of the wavelet basis function; ah is the scaling factor; ωih is the weight factor
between input layer to hidden layer; and f (.) = f (x) is the activation function in the hidden layer,
which is a wavelet function, such as a Morlet function.

The input of the output layer is as follows:

yj =
H

∑
h=1

ωhjhh, j = 1, 2, · · · , O, (12)

where ωhj is the weight factor between the hth hidden neuron and the jth output neuron; O is the total
neuron number of the output layer; Y =

{
y1, · · · , yj, · · · , yO

}
is the output vector of the network.

In a CWNN, the weight factors are trained according to a gradient descent algorithm, while the
prediction error propagates backwards. The network parameters (m + 1)th training is as follows:

ω
(m+1)
hj = ω

(m)
hj − η(m+1) ∂E

∂ω
(m)
hj

ω
(m+1)
ih = ω

(m)
ih − η(m+1) ∂E

∂ω
(m)
ih

a(m+1)
h = a(m)

h − η(m+1) ∂E
∂a(m)

h

b(m+1)
h = b(m)

h − η(m+1) ∂E
∂b(m)

h

, (13)

where E = 1
2

O
∑

j=1
e2

j =
1
2

O
∑

j=1

(
yj − y′j

)2
is the prediction error indication of the network; η is the learning

rate of the network. Meanwhile, ∂Ea

∂ω
(m)
ahj

, ∂Ea

∂ω
(m)
aih

, ∂Ea

∂a(m)
h

and ∂Ea

∂b(m)
h

are as follows:



∂E
∂ω

(m)
hj

= ∂E
∂ej

∂ej
∂yj

∂yj
∂ωhj

= ej · hh

∂E
∂ω

(m)
ih

=
O
∑

j=1

(
∂E
∂ej

∂ej
∂yj

∂yj
∂hh

)
· ∂hh

∂h′h

∂h′h
∂ωih

=
O
∑

j=1

(
ej ·ωhj

)
· f ′(h′h)

ah
· xi

∂E
∂b(m)

h

=
O
∑

j=1

(
∂E
∂ej

∂ej
∂yj

∂yj
∂hh

)
· ∂hh

∂bh
=

O
∑

j=1

(
ej ·ωhj

)
·
(
− f ′(h′h)

ah

)
∂E

∂a(m)
h

=
O
∑

j=1

(
∂E
∂ej

∂ej
∂yj

∂yj
∂hh

)
· ∂hh

∂ah
=

O
∑

j=1

(
ej ·ωhj

)
·
(
− f ′(h′h)

a2
h

)
·
(
h′h − bh

)
. (14)

2.5. Multi-Resolution Analysis of Functions

The multi-resolution analysis of functions is based on the theory of multi-resolution analysis
proposed by Mallat in [15,16].

Let Vm (m ∈ Z) is a closed subspace of a square-integrable space L2(R) at the resolution 2m, which
is also the sampling interval. The subspace family {Vm} has the following features:
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(1) Causality and consistency.

· · · ⊂ Vm+1 ⊂ Vm ⊂ Vm−1 ⊂ · · · , m ∈ Z (15)

(2) Scaling regularity. When we approximate a function f (x) ∈ L2(R) with fm(x) = Am f (x) at the
resolution 2m, where Am is a projection of f (x) in subspace Vm. Then the following equation will
be satisfied:

fm(x) = Am f (x) ∈ Vm ⇔ fm−1(x) = Am−1 f (2x) ∈ Vm−1, m ∈ Z. (16)

(3) Gradual completeness.
m=+∞
∩

m=−∞
Vm = {0},

m=+∞
∪

m=−∞
Vm = L2(R) (17)

(4) Orthogonal basis existence.
Vm = linear span{φmk, k ∈ Z}, (18)

where φ(t) ∈ V0 is a unique function, called a scaling function. Meanwhile, φmk(x) =√
2−mφ(2−mx− k), m ∈ Z and k ∈ Z.

When we approximate a function f (x) with fm(x) = Am f (x) at the resolution 2m, we can conclude
the following equation based on Feature (4):

fm(x) = Am f (x) =
+∞

∑
k=−∞

amkφmk(x). (19)

We define Wm be the orthogonal space of Vm in Vm−1. In other words, Vm−1 = Vm ⊕Wm and
Vm⊥Wm. Then,

fm−1(x) = Am−1 f (x) = [Am ⊕ Dm] f (x) = Am f (x)⊕ Dm f (x), (20)

where Dm is a projection of f (x) on the space Wm. We can say Dm f (x) is a detail of function f (x)
at resolution 2m. Mallat has pointed out that a unique wavelet ψ(x) exists, whose dilations and
translations constitute a family of functions {ψmk}, m ∈ Z, k ∈ Z. These {ψmk} are the orthonormal
basis of space Wm. As a result, we get the following equation:

Dm f (x) =
+∞

∑
k=−∞

dmkψmk(x), (21)

where dmk is the projection of f (x) on the orthonormal basis ψmk(x). We obtain the following equation:

fm−1(x) = Am f (x)⊕ Dm f (x) =
+∞

∑
k=−∞

amkφmk(x) +
+∞

∑
k=−∞

dmkψmk(x). (22)

In other words, at the resolution 2L−1,

f (x) ≈ fL−1(x) =
+∞
∑

k=−∞
amkφmk(x) +

+∞
∑

k=−∞
dmkψmk(x)

=
nL
∑

k=1
aLkφLk(x) +

nL
∑

k=1
dLkψLk(x)

= fL(x) +
nL
∑

k=1
dLkψLk(x)

, (23)
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where L is the lowest resolution and nL is the total number of scaling functions. In a real application,
we can obtain L according to the following equation:

L = int(lg(xmax − xmin)/lg2) or L = int(lg(xmax − xmin)/lg2)± 1, (24)

where xmax, and xmin are the maximum and minimum value of x. Using Equation (19), we will get the
following equation at resolution 20:

f (x) ≈ f0(x) = f1(x) +
2L−1nL

∑
k=1

d1kψ1k(x) =
nL

∑
k=1

aLkφLk(x) +
L

∑
m=1

2L−mnL

∑
k=1

dmkψmk(x). (25)

Equations (19) and (21) are the multi-resolution analysis of functions proposed by Moody in [17].

2.6. Multi-Resolution Wavelet Neural Network

In this research, we proposed a multi-resolution wavelet neural network (MRWNN) based on
the theories mentioned in Sections 2.4 and 2.5. The structure of the proposed MRWNN is shown in
Figure 3. Different to RBFNN, the hidden layer in MRWNN contains two types of nodes: wavelet
nodes (ψ-nodes, which are in the green ellipse) and scaling nodes (φ-nodes, which are in the blue
ellipse, where one red circle represents the scaling nodes at a same resolution). Compared with
RBFNN, the MRWNN does not need a clustering preprocessing for the input data, and enjoys faster
convergence and higher approximate accuracy for the orthogonal characteristic of activation function
in hidden nodes.
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The output of the proposed MRWNN is as follows:

y ≈



nL
∑

k=1
aLkφLk(H1(k)), at resolution 2L

nL
∑

k=1
aLkφLk(H1(k)) +

nL
∑

k=1
dLkψLk(H2(m, k)), at resolution 2L−1, m = L

...
nL
∑

k=1
aLkφLk(H1(k)) +

L
∑

m=1

2L−mnL
∑

k=1
dmkψmk(H2(m, k)), at resolution 20

, (26)

where H1(k) =
N
∑

i=1
ωikxi is the input of the kth hidden layer or scaling node; H2(m, k) =

N
∑

i=1
ωipxi

(p = 2L−mnL + k) is the input of the pth hidden layer or the (p− nL)th wavelet node.
In real applications, we usually train the network at resolution 2L. If the output does not meet our

precision requirements, we keep the scaling nodes and add the detail of resolution 2L at resolution
2L−1. We proceed like this until the training precision meets our requirements.

In this MRWNN, the weight factors are trained according to the same gradient descent algorithm
as in Equations (13) and (14). The weight factor between the hth hidden node and the output node is
as follows:

ωh =

{
aLh, h = 1, 2, · · · , nL
dmk, h = 2L−mnL + k

. (27)

In this research, we use the Meyer wavelet, which is infinitely differentiable with effective support
and defined in the frequency domain. In [18], Valenzuela and de Oliveira give the closed analytical
expression for the Meyer scaling function and Meyer wavelet function shown as follows:

φ(t) =


2
3 + 4

3π , t = 0
sin( 2π

3 t)+ 4
3 t cos( 4π

3 t)
πt− 16π

9 t3 , t 6= 0
, (28)

where φ(t) is the scaling function. The wavelet function is as follows:

ψ(t) = ψ1(t) + ψ2(t), (29)

where 
ψ1(t) =

4
3π (t− 1

2 ) cos[ 2π
3 (t− 1

2 )]−
1
π sin[ 4π

3 (t− 1
2 )]

(t− 1
2 )−

16
9 (t− 1

2 )
3

ψ2(t) =
8

3π (t− 1
2 ) cos[ 8π

3 (t− 1
2 )]+

1
π sin[ 4π

3 (t− 1
2 )]

(t− 1
2 )−

64
9 (t− 1

2 )
3

. (30)

The Meyer wavelet and scaling functions in time domain are shown in Figure 4.
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3. Proposed NDP for Parallel HEVs

Figure 5 is the structure of the proposed NDP method, which contains a critic network, an action
network, a correction model for the output of action network, and a time delay from time step k to time
step k + 1. The critic network utilizes a MRWNN presented in Section 2.5. The action network utilizes a
CWNN, in which the activation function is a Morlet function. The correction model modifies the output
variable Te of action network to fit for Limitation (5). Because the output gear ratio of action network
is a continuous variable, we also use the correction model to discretize the continuous gear ratio to
the real vehicle gear ratio of the vehicle. The critic network, action network, and implementation
procedure of the proposed NDP EMS will be described in this section.
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3.1. Critic Network Description

In the NDP method, the critic network is used to get the approximate value J(k) of the optimal
value function J∗(k), which is shown in Equation (2), and used in dynamic programming. As a result,
we get the following equation:

J(x(k)) = min
u(k)

[
L(x(k), u(k)) + J(x(k + 1))

]
, 0 ≤ k < N − 1. (31)

J(k) will be obtained by training the weights of the network according to current state variables
x(k) and control variables u(k).

In this paper, the critic network is a MRWNN, described in Section 2.5. In this critic network,
Xc(k) = (Tdem(k), ωw(k), SOC(k))T is the input vector, and Yc = yc = J is the output vector.
The prediction error is defined according to a TD(λ) learning approach as follows:

ec(k) = L(x(k), u(k)) + γJ(k + 1)− J(k), (32)

where γ ∈ (0, 1) is a discount factor; L(x(k), u(k)) used as a reinforcement signal, is the instantaneous
cost, and can be calculated according to Equation (4).

Meanwhile, the prediction error indication of the critic network is defined as follows:

Ec(k) =
1
2

e2
c (k). (33)

In the critic network, the weight factors (e.g., ωch and ωcih) are adapted according to Equations
(13) and (14).

3.2. Action Network Description

The objective of the action network is to find an action u(k) to approximate the optimal control
u∗(k) shown in Equation (2), which is done by adapting the weights and parameters of the network
according to the variation of the output of critic network J(k). In this network, the state vector of the
vehicle is the input vector (Xa(k) = (Tdem(k), ωw(k), SOC(k))T), and the control vector of the vehicle
is the output vector (Ya(k) = (Te(k), gr(k))T).

In this paper, the action network is a common wavelet neural network (CWNN) consisting of
three layers of neurons—input, hidden, and output layer—as shown in Section 2.4. The adaptation of
the action network is achieved by back-propagating the following prediction error ea:

ea(k) =
∂J(k)
∂u(k)

=

[
ea1

ea2

]
=

 ∂J(k)
∂Te(k)
∂J(k)

∂gr(k)

. (34)

Meanwhile, the prediction error indication of the action network is defined as follows:

Ea(k) =
1
2

eT
a (k)ea(k). (35)

In the action network, the weight factors (e.g., ωaih and ωahj) and wavelet function parameters
(e.g., ah and bh) are adapted according to the same gradient descent algorithm in Equations (13) and
(14).

3.3. NDP Implementation Procedure

The NDP implementation procedure is presented as follows:
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1. Select an appropriate structure for the critic network and action network separately, which means
determining the number of hidden layers. In this design, the number of hidden layers of the critic
network and action network is 30 and 11, respectively.

2. Initialize the weights and parameters of both networks according to a rule-based EMS. Initialize
the output of the critic network, the maximum training error of critic network Ec, the maximum
of the norm for weights of action network variation ε, and maximum times for training both
networks, Nc and Na. In this research, the maximum training times for the action network and
critic network are all 50.

3. Set the whole iteration time i = 0 and L(x(0), u(0)) = 0.
4. Set i = i + 1. Calculate the current control vector u(i).
5. Set the iteration time of critic network to m = 0.
6. Set m = m + 1. Calculate the error of critic network em

c (i) and Em
c (i) according to Equations (32)

and (33). Update the weights and parameters of the critic network according to Equations (13)
and (14);

7. When m ≥ Nc or Em
c ≤ Ec, save the weights and parameters of the critic network as the weights

and parameters at time step k, and proceed to step 8. Otherwise, return to step 6.
8. Set the iteration time of action network to m = 0.
9. Set m = m + 1. Calculate the error of action network em

a (i) and Em
a (i) according to Equations (34)

and (35). Update the weights and parameters of the action network according to Equations (13)
and (14);

10. When m ≥ Na or Em
a ≤ Ea, save the weights and parameters of the critic network as the weights

and parameters at time step k, and proceed to step 11. Otherwise, return to step 9.
11. When the norm of weights for action network variation is less than ε, save the weights of both

networks as the weights at the current time step; otherwise, return to step 4.

4. Results and Discussion

In the simulation test of the proposed NDP-based EMS, the detailed model of the parallel HEV is
built in ADVISOR2002 (Advanced Vehicles Simulator) to accurately reflect the vehicle performance,
which is based on Simulink. The simulation was carried out on a computer with Intel Core 2 Duo 3.10
GHZ CPU and 32G memory. We have compared the proposed NDP method with the NDP method
in [14] to test the proposed NDP based on CWNN and MRWNN. We have also compared the NDP
EMS with a SDP method proposed in [6], which is an optimal method, in driving cycles of CYC_UDDS,
CYC_1015 and a composite driving cycle, which is composed of a CYC_1015, a CYC_UDDS, and a
CYC_WVUCITY driving cycle, to test the optimality of the proposed NDP method.

According to Section 2.2, the orientation of the EMS is to maximize the fuel economy and to
satisfy SOC constraint. In simulations, we evaluate fuel economy with miles per gallon (mpg) gasoline
equivalent. The SOC constraint is to ensure battery SOC ∈ [0.3, 0.8]. Meanwhile, we evaluate the
component efficiency of the parallel HEV with engine average efficiency, average motoring efficiency,
and average generating efficiency.

Table 2 shows the fuel economy and HEV component efficiency of the proposed NDP and NDP
EMS in [14] in driving cycles of CYC_UDDS. From Table 2, we can see that the proposed NDP improves
fuel economy by about 5.4%, average generating efficiency by about 7.6%, and average motoring
efficiency by about 1.2% compared with the NDP in [14]. The two NDP methods keep SOC in nearly
the same range of 0.55–0.7. These indicate that the proposed NDP with CWNN and MRWNN has
better control results in the UDDS driving cycle than the NDP with RBFNN in [14]. In the NDP in [14],
they are 25 and 20. This may be due to the CWNN and MRWNN enjoying better approximation and
learning ability in handling nonlinear problems than a RBFNN. To further improve the performance of
the proposed NDP EMS, we can increase the maximum training time of the action and critic network,
or decrease the training error of the two networks.
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Table 2. Control orientation improvement with other NDP EMS.

EMS NDP in [14] Proposed NDP

Fuel Economy (mpg) 81.6 86.0
SOC range 0.55–0.7 0.54–0.7

Engine Eff. (%) 34.6 35.0
Motoring Eff. (%) 91.6 86.1

Generating Eff. (%) 92.7 99.7

Tables 3–5 show the fuel economy and component efficiency of SDP, and the proposed NDP-based
EMS in driving cycles of CYC_UDDS, CYC_1015, and the composite driving cycle. We can conclude
that, compared with the SDP in [6], the proposed NDP EMS improves fuel economy by about 25.9%,
6.2%, and 25.6%, respectively, under CYC_UDDS, CYC_1025, and the composite driving cycle. In the
three driving cycles, the proposed NDP and SDP all keep SOC in nearly the same range. The proposed
NDP EMS also improves the average generating efficiency by about 6.7%, 5.2%, and 4%, respectively,
under CYC_UDDS, CYC_1025, and the composite driving cycle. This shows that the proposed NDP
is better than the SDP method. There are three reasons for the simulation results. The first is that
the state space and action space are all discretized in SDP and successive in NDP, which reduces the
error induced by low discretization resolution. The second reason is that the NDP-based method
has generalization ability and improves the generating efficiency in braking. Last but not least,
the probability transfer matrix of SDP method is built with the UDDS driving cycle, which induces
that the SDP is only suitable for driving cycles with the same probability transfer matrix.

Table 3. Control orientation improvement with another optimal method under CYC_UDDS.

EMS SDP Proposed NDP

Fuel Economy (mpg) 68.3 86.0
SOC range 0.54–0.7 0.54–0.7

Engine Eff. (%) 35.7 35.0
Motoring Eff. (%) 91.1 86.1

Generating Eff. (%) 93.4 99.7

Table 4. Control orientation improvement with another optimal method under CYC_1015.

EMS SDP Proposed NDP

Fuel Economy (mpg) 58.2 61.8
SOC range 0.54–0.7 0.55–0.7

Engine Eff. (%) 36.1 33.5
Motoring Eff. (%) 87.0 88.6

Generating Eff. (%) 90.5 95.2

Table 5. Control orientation improvement with another optimal method under CYC_1015 +
CYC_UDDS + CYC_WVUCITY.

EMS SDP Proposed NDP

Fuel Economy (mpg) 62.1 78.0
SOC range 0.54–0.7 0.53–0.7

Engine Eff. (%) 36.3 36.1
Motoring Eff. (%) 86.1 83.7

Generating Eff. (%) 91.8 95.5

Figure 6 shows the torque demand at the input of gear box, engine torque, motor torque, SOC,
and gear ratio variation of proposed NDP EMS results in CYC_UDDS driving cycle. We can see that
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the engine is in a higher torque output mode most of the time, and the motor provides energy in peak
and engine starting times. Battery SOC is constrained in the region of 0.55–0.7, which ensures safe
battery usage.
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Figure 8 shows the motor operation efficiency in NDP EMS. We can see that, in most situations,
the motor is in an efficiency region larger than 0.8. The operation points in the lower efficiency
region are distributed uniformly, which coincides with the actual operational points of the motor in
real applications.
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5. Conclusions

For an HEV, EMS design is critically related to the fuel economy and battery SOC degradation.
In this paper, a neuron-dynamic program (NDP) has been designed for the EMS problem of a
parallel HEV. In this NDP, a multi-resolution wavelet neural network is used as the critic network to
approximate the cumulated value function; a common wavelet neural network is employed to train
the optimal action according to current state vector and the output of the action network. A gradient
descent algorithm is utilized to train both the neural networks.

ADVISOR2002 simulation results show that the proposed NDP EMS achieves better performance
in fuel economy, generating better efficiency and average engine efficiency than the NDP reported
before with RBFNN as a critic network and an action network under CYC_UDDS driving cycle.
The simulation results also indicate that, compared with the SDP approach in three different driving
cycles, the proposed NDP EMS significantly improves fuel economy and average generating efficiency.
The NDP method also guarantees battery SOC at a safe range of 0.55–0.7 from the start of one cycle
to the end. The performance of the NDP EMS demonstrates the usefulness of the NDP in online
applications. The comparison with RBFNN-based NDP EMS confirms the efficiency of the CWNN
and MRWNN.
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