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Abstract: Text on the Internet is written in different languages and scripts that can be divided
into different language groups. Most of the errors in language identification occur with similar
languages. To improve the performance of short-text language identification, we propose four
different levels of hierarchical language identification methods and conducted comparative tests in
this paper. The efficiency of the algorithms was evaluated on sentences from 97 languages, and its
macro-averaged F1-score reached in four-stage language identification was 0.9799. The experimental
results verified that, after script identification, language group identification and similar language
group identification, the performance of the language identification algorithm improved with
each stage. Notably, the language identification accuracy between similar languages improved
substantially. We also investigated how foreign content in a language affects language identification.

Keywords: language identification; character N-gram; script identification; language group
identification; similar language identification

1. Introduction

Language identification (LI) is generally viewed as a form of text categorization. It is a process that
attempts to classify text in a language into a pre-defined set of known languages [1]. LI is the first step
in text mining, information retrieval, speech processing and machine translation [2–4]. Although LI
is often considered a solved problem, studies have verified that LI accuracy rapidly drops when
identifying short text [5–7], and confusion errors often occur between languages in the same family or
in similar language groups [3,4,8]. Therefore, considerable room for improvement exists in terms of
improving short-text LI performance and similar language identification performance.

Languages are written in different scripts, and each script has a unique defined code range in
Unicode. This helps identify different parts of a script within a document [9]. Languages belong
to different families, and language families can be divided into similar phylogenetic units [10].
A remarkably similar pattern is exhibited by languages within a phylogenetic unit [11], and this
can be leveraged in LI to allow discrimination between different language groups written in the same
script to narrow the range of identification.

In our earlier research [12], we presented tree-stage short-text language identification and evaluated
the algorithm on 51 languages’ sentences belonging to three different scripts. The experimental results
verified that, after script identification and language group identification, LI accuracy improved.

Similar languages often reflect a common origin and are members of a dialect continuum.
In addition, these languages share similar syntactic structures, so a strong lexical overlap exists
between them [13]. Hence, LI confusion errors often occur with similar languages in the same language
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group. Some studies have been completed on the identification of similar languages within similar
languages and similar language groups within similar language groups. However, the identification of
similar language in real LI systems has rarely been studied, and in our earlier research, we also did not
analyze similar language identification.

Similar languages often mix with other languages by using the same script or same language
group and share same the scripts, vocabulary and character N-grams. Distinguishing similar languages
from each other requires a larger feature set than distinguishing languages without similar languages
in LI. Similar language groups, because they have a highly similar structure, can be discriminated from
other languages within the overall language group or same-script languages, and similar language
group members can be identified within the similar language group. For LI systems to better handle
similar languages, we propose two different hierarchical language identification algorithms to analyze
similar language group identification using same-script languages and language groups and similar
language identification within similar language groups.

In this paper, we present three new hierarchical LI algorithms. To analyze the advantages and
disadvantages of the different levels of hierarchical LI systems, we completed comparative experiments
on five different LI systems. In our earlier research, we did not provide hierarchical LI corpora’s
annotation process, did not complete a detailed analysis and interpretation of the algorithm principle
and workflow and did not compare hierarchical LI to any other open source LI tools. With this paper,
we intend to address these shortcomings. We also compare hierarchical methods to open-source LI
langid.py in selecting 97 languages initially supported by langid.py.

In our earlier research, we selected character two-gram and three-gram as features and used
a term-frequency-based feature selection and a weighting method commonly used in LI. In the
subsequent research process, we found that, when increasing the number of languages in LI,
the term-frequency-based feature selection and weighting method was not suitable for short-text LI.
Moreover, language group identification accuracy also dropped, and character three-gram and
two-gram are not suitable for LI for a larger number of languages. In addition, comparative research
about feature selection in LI is lacking. For LI systems to identify language groups from a large number
of languages and to further improve LI accuracy, we chose more advanced feature-selection methods,
as well as a weighting method, and selected eight different types of character N-gram as features.
We determined which feature selection, feature weighting and character N-grams are more suitable for
language identification.

2. Related Work

Many LI studies’ experimental results verified that LI accuracy drops when increasing the number
of languages. Baldwin and Lui [7] compared naïve Bayes (NB), support vector machine (SVM)
and three-distance-measure-based methods with datasets containing different sizes of documents
and different numbers of languages. Their experimental results verified that the LI task becomes
significantly more complex for shorter documents, larger numbers of languages, multilingual
documents and higher-class skew. Abainia et al. [2] conducted comparative tests using 11 similarity
measures combined with several types of character N-grams and proposed five high-frequency
approaches. Their datasets included forum documents belonging to 32 languages, and their
experimental results showed that LI is more accurate for small datasets containing fewer languages.
Sibun and Reynar [14] used relative entropy to discriminate language similarity; their dataset included
27 languages written in the Roman script, and their experimental results verified that LI accuracy was
higher when fewer languages were involved. Majlis [15] used five algorithms for LI tests on 30, 60 and
90 languages. The experimental results verified that increasing the number of languages reduced the
accuracy of LI systems and increased prediction and training time.

Some researchers studied how to cluster natural languages, but their methods cannot be applied
to LI. Gamallo et al. [16] defined two quantitative distances to measure the distances between two
languages in a set of 44 languages. They found that groups of languages with short distances between



Algorithms 2018, 11, 39 3 of 27

them tend to form a language family or sub-family. Souter et al. [17] explored the correlation between
the frequency of bigrams and trigrams for nine European languages, and their results adhered to
the Indo-European family tree predicted by historical linguists. Damashek [18] selected character
five-grams, measured similarities among documents in 31 languages and revealed a similarity-based
clustering of languages. Damashek’s experimental results led to a conclusion that accurate family
groups can be identified by grouping languages with similar scores. However, only the impressive
performance of their system in language discrimination was verified; no LI-related data were provided.
Goldhahn and Quasthoff [19] selected character trigrams and the most frequently-used words to
cluster 108 languages and reported that the former yielded better results, showing that the clustering
results identified the genealogical relations among languages.

Since 2014, the Discrimination between Similar Languages (DSL) shared task has been organized
every year, providing researchers an opportunity to evaluate their LI systems in discriminating
between similar languages, varieties and dialects. In the four DSL shared tasks, SVM outperformed
the other classification methods in most situations [20–23]. Although some researchers attempted
to use deep-learning-based approaches [24–26], most performed poorly compared to traditional
classifiers [22,23].

Every DSL shared task provided the DSL dataset, in which the similar language groups were
manually selected and implemented similar language identification (SLI) [20–23]. Some researchers
studied similar language group identification methods in DSL shared tasks. The proposed similar
language group prediction algorithm predicted the similar language group to which a given language
belonged and then discriminated among languages within the group. Goutte et al. [27] proposed a
language group classifier using character four-grams as features that exhibited excellent performance.
However, its prediction time was longer in tests than in training. Porta and Sancho [28] used a
simple token-based feature and maximum-entropy classifier to predict language groups. Lui et al.,
Fabra-Boluda et al. and Ács et al. used two-stage similar language identification approaches, as well [29–31].
However, the above five research efforts did not provide any testing data with which to evaluate
the efficiency of their similar language group identification methods. The above-mentioned similar
language group identification approaches cannot be directly applied to LI tasks because similar
languages are often presented as being mixed with other languages belonging to the same language
group. Therefore, we first had to find the similar language group amongst the other languages and
then identify languages within similar language group.

Goutte et al. investigated the progress made between the 2014 and 2015 DSL shared tasks,
estimated an upper bound on possible performance using ensemble and oracle combination and
analyzed the learning curves for both similar language group prediction and similar language
identification [32]. Their experimental results verified that similar language group prediction reaches
perfect performance using relatively few examples, and almost all of the errors are always within a
group of similar languages or variants.

Each script in Unicode has its own code range, and this advantage was previously used [9]
to traverse every letter in a text to find the starting and ending code points in a given script, detect
different scripts portions in the text and distinguish the language used in each. However, the authors [9]
analyzed all the languages in the system when predicting the language rather than those using the
same script.

3. Proposed Method

3.1. LI Corpora

We used the Leipzig Corpora Collection, Project Gutenberg, the European legislature datasets
and discriminative similar language (DSL) Corpus Collections to create the LI corpora [20–23,33].
Among them, the Leipzig Corpora Collection has the most languages. To evaluate our proposed LI
algorithm, we compared it to other LI open-source projects, such as Polyglot [34] and langid.py [35].
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During evaluation, we used the same language corpora for both our algorithm and the open-source LI
project. Polyglot can identify more than 196 languages, but we were unable to access all the language
sources in Polyglot from currently available corpora sets. langid.py was pre-trained on 97 languages,
all of which can be accessed in the Leipzig Corpora Collection. langid.py is superior to most other
open-source LI tools in terms of short-text LI accuracy [36]. For these reasons, we selected the Leipzig
Corpora Collection to create our LI corpora and selected langid.py as the baseline approach.

Another reason for choosing the Leipzig Corpora Collection was that our research objective was to
identify short text language. The Leipzig Corpora Collection contains randomly selected sentences in
the language of the corpus. The sources were newspapers or text randomly collected from the web and
split into sentences [37,38]. In our experiment, we used sentences from the Leipzig Corpora Collection
to train, test and evaluate the LI algorithm. The minimum length for most languages’ sentences in our
test was approximately 20 characters.

We used ISO 639-2/T codes to annotate language [39]. In this coding scheme, each language
is represented by a three-letter code. Node that “Code” in the tables is the language ISO code.
The 97 languages initially supported by langid.py belong to 25 writing scripts. Among them, 20 scripts
have only one member (Table 1). The other five writing scripts—Arabic, Cyrillic, Devanagari, Latin
and Eastern Nagari—have many languages (Tables 2–5). According to language family knowledge,
the Arabic-, Cyrillic- and Latin-script members in the corpora belong to different language groups
(Tables 2–4). Some similar language groups also exist in the Latin-script datasets. In Table 2,
the languages in parentheses represent the similar language group within the relevant language group.
In our test, we selected the 10K-format dataset from the Leipzig Corpora Collection, in which each
language has 10,000 sentences. Of the 97 languages used in langid.py, 93 can be directly downloaded
from the Leipzig Corpora Collection’s website. For the other four languages, we contacted the
paper’s [37] authors, who provided the remaining languages.

Table 1. Script datasets with only one member.

Script Code Script Code Script Code Script Code

Armenian hye Japanese Braille jpn Ge’ez amh Georgian kat
Greek ell Gujarati guj Gurmukhi pan Hebrew heb

Kannada kan Khmer khm Korean kor Tamil tam
Lao lao Odia ori Sinhala sin Telugu tel
Thai tha Simplified Chinese zho Tibetan dzo Tirhuta mal

Table 2. Latin script dataset.

Language Group ISO Language Code List

Afro-Asiatic/Semitic Mlt
Austroasiatic/Vietic vie

Austronesian/Malayo-Polynesian (MP) (Ind, msa), jav, mlg, tgl
constructed language vol

International auxiliary language epo
Indo-European/Albanian sqi

Indo-European/Balto-Slavic (bos, hrv), ces, lav, lit, pol, slk, slv
Indo-European/Celtic bre, cym, gle

Indo-European/Germanic afr, dan, deu, eng, fao, isl, ltz, nld, nno, (nob, nor), swe
Indo-European/Italic arg, cat, fra, glg, hat, ita, lat, oci, por, ron, spa, wln

Language isolate (Vasconic) eus
Niger–Congo/Atlantic–Congo swa, xho, zul, kin
Quechuan languages/Quechua que

Altaic/Turkic azj, tur
Uralic/Finnic est, fin

Uralic/Finno-Ugric hun
Uralic/Sami sme
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Table 3. Arabic script dataset.

Language Group ISO Code List Language Group ISO Code

Afro-Asiatic/Semitic ara Altaic/Turkic uig
Indo-European/Indo-Iranian fas, kur, pus, urd

Table 4. Cyrillic script dataset.

Language Group ISO Code

Indo-European/Balto-Slavic bel, bul, mkd, srp, rus, ukr
Altaic/Mongolic mon

Altaic/Turkic kaz, kir

Table 5. Nagari and Devanagari script dataset.

Script Language Group ISO Language Code List

Devanagari Indo-European/Indo-Iranian hin, mar, nep
Eastern Nagari Indo-European/Indo-Iranian asm, ben

3.2. Script Identification

Each script in Unicode has its own defined code range, and this facilitates the detection of different
parts of a script in text. We propose a regular-expression matching-based script identification (SI)
algorithm (REMSI). Based on the code range of the scripts in Unicode, we created a regular expression
for every script. The proposed SI stage consists of the following steps:

Step 1. Identify the character encoding format. If it is not UTF-8, convert it to UTF-8.
Step 2. Remove items that are not alphabets, spaces and characters from the sentence.
Step 3. Use regular expressions to match the sentence to each script’s regular expressions to judge

whether relevant script contents are in the sentence.
Step 4. Calculate the length of each matching result, and if the length is nonzero, save it in a list.

Sort the list by decreasing length.
Step 5. Select the top item on the list as the main script of the text. If a script only has one member,

return the language; otherwise, return its script, and further identify its language within languages
using the same script.

To effectively use a sentence’s script in hierarchical LI, we designed our algorithm to return
the language’s ISO code when a script has only one member language; otherwise, the script name
is returned, and the sentence language is further identified within same-script languages. In the
pseudocode of this paper, if the script identification’s result length is equal to three, the language has
been determined and the language returned.

3.3. Two-Stage LI

Different scripts in Unicode have different code ranges. We can use this advantage to identify a
text’s script. Although some languages are written by multiple scripts that have different Unicode code
ranges, they share common scripts or words with other languages using the same script. Text script is
easier to identify than its language. Hence, analyzing all languages in LI is unnecessary when identifying
a language. We used this advantage to design two-stage LI. The script of a given text is identified in the
first stage. If the SI’s result is a language ISO code, return language; otherwise, the language of the text is
identified within the same script languages in the second stage. When annotating this method’s corpora,
we use each sentence’s language-relevant ISO code.

The pseudocode of the algorithm is shown in Figure 1. In the pseudocode of this paper, if the script
identification’s result is a three-letter language ISO code, it indicates that the script has only one member
and return language. The eighth line creates a vector based on the LI feature list. Sections 4.6 and 5
discuss how to determine the LI task’s feature list. The same design was used in the algorithms, which
are introduced below.
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Figure 1. Pseudocode of two-stage language identification (LI).

3.4. Three-Stage LI-1

The majority of confusion errors in LI occur between similar languages. Similar languages
have similar syntactic structures and strong lexical overlap between. This advantage can be used to
discriminate similar language groups (SLGs) within the same script languages. Distinguishing similar
languages from each other requires a larger feature set than distinguishing languages when no similar
languages exist in LI. More features are needed to improve the recognition efficiency of similar
languages, but more memory and more time will be required compared with using a small number of
features. Additionally, the identification accuracy of other languages is almost unchanged.

To improve similar language identification efficiency, we implemented similar language group
dentification (SLGI) in script and designed a three-stage LI-1. Two kinds of three-level hierarchical LI
exist: three-stage LI-1 and three-stage LI-2. The script of a given text is identified in the first stage. If the
SI’s return is a language ISO, return language. Otherwise, the language of the text is identified within
the same script languages in the second stage. If the second stage’s return value is a language ISO
code, it means that the sentence’s language is identified, and return language. Otherwise, the return
value is a similar language group, and we further identify the language within a similar language
group in the third step, and return language. When annotating the second stage’s corpora, if the
sentence is a member of a similar language group, we used a similar language group name to annotate
it. Otherwise, we used its language ISO code. For example, when annotating the Latin script language
sentences in Table 2, we use “eng” for the English language sentences and “nor-nob” to annotate
the Norwegian and Bokmål language sentences, because Norwegian and Bokmål are highly similar
languages. For the third stage’s corpora, we used the sentence language ISO code to annotate the
sentences. The pseudocode of three-stage LI-1 is shown in Figure 2.

Figure 2. Pseudocode of three-stage LI-1.
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3.5. Three-Stage LI-2

Languages in the same phylogenetic unit are similar in terms of vocabulary and structure.
This advantage can be used to discriminate between different language groups (LGs) among languages
using the same script. This helps reduce the number of languages in LI and should improve the LI
accuracy. In our earlier research, this inspired us to implement language group identification (LGI)
in LI, and we designed a three-stage hierarchical LI system called three-stage LI-2. It includes SI
and LGI within languages using the same script and language identification within the language
group (LI in LG). Second-stage LGI returns the language group name or language ISO code. If the
language ISO code is returned, the LI has identified and returned the sentence’s language. If it returns
the language group name, we further identified the sentence language within the language group.
When annotating the LGI corpora, if the LG has only one language, we annotated this language group’s
sentences with its ISO code. Otherwise, we annotated the sentence with the relevant language group
name. For example, when annotating Cyrillic script LGI corpora in Table 4, three targets were found:
Balto-Slavic, Common-Turkic and “mon.” Because the Altaic/Mongolic language group has only one
member in our test, we used its language ISO code “mon” to annotate its language group. For the last
stage’s corpora, we used the sentence language ISO code to annotate the sentences. The pseudocode of
the three-stage LI-2 is shown in Figure 3.

Figure 3. Pseudocode of three-stage LI-1.

3.6. Four-Stage LI

In three-stage LI-2, if the LG contains a similar language group, a high number of confusion errors
still exist between similar languages in LI in LG. This phenomenon inspired us to explore the possibility
of first identifying similar language groups within a language group and then identifying similar
languages within a similar language group. Therefore, we improved three-stage LI-2 to four-stage LI.
The pseudocode of four-stage LI is shown in Figure 4.

Four-stage LI includes SI and LGI within languages using the same script, language identification
within the language group (LI in LG) and language identification in similar language groups
(LI in SLG). Third-stage LI in LG returns the similar language group (SLG) name or language ISO code.
If the language ISO code is returned, the LI has identified and returned the sentence’s language. If it
returns the SLG name, we further identified the sentence language within the SLG. When annotating
this stage’s corpora, if the sentence language did not belong to any SLG, we used the language ISO
code to annotate it; otherwise, we used the SLG name. For example, when annotating LI in LG corpora
for the Austronesian/Malayo-Polynesian (MP) language group in Table 2, four targets were returned:
“ind-msa,” “jav,” “mlg” and “tgl.” The first target represents a SLG that includes Indonesian and
Malayan languages.
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Figure 4. Pseudocode of four-stage LI.

3.7. Toy Example

To illustrate the hierarchical LI process, we chose a toy example for four-stage LI. Table 6 shows
four sentences in four different languages. Sentence A is a Korean sentence, and during the SI process,
A’s script was identified as “kor”. Because the Korean script in our corpora has only one member,
the LI system returns A’s language as “kor”. For sentence B, its script can be identified in the first step
as Latin. Because the Latin script in our corpora has many language groups, further identification is
needed to determine the language group in the Latin script to which it belongs. In the second step,
its language group can be identified as “hun,” because the Uralic/Finno-Ugric language group in our
experiments has only one member. For C and D, the SI also returns Latin, but the second step returns
Germanic because the Germanic language group has many members. In the third step, to further
identify the language, whether the language is a certain language or a member of a similar language
group is determined. Sentence D can be identified as nor-nob, a group whose members consist of the
Norwegian and Bokmål languages. Next, D must be further identified within the similar language
group and was identified as nor. For sentence C, in the third step, its language can be identified as
“eng” because English does not belong to any similar language groups in our test.

Table 6. Toy example sentences. SLG, similar language group.

ID Content Language Script LG SLG

A 저는유학생입니다 Korean Korean
B Egy nemzetközi diák vagyok. Hungarian Latin Finno-Ugric
C I’m an international student. English Latin Germanic
D Jeg er en internasjonal student. Norwegian Latin Germanic nor-nob

4. Experimental Setup

4.1. Preprocessing

Two kinds of preprocessing were used in our experiments, as follows:
Preprocessing in SI: When identifying a sentence script, its encoding format was first identified.

If its encoding format was not UTF-8, we changed it to UTF-8. Except for alphabets, spaces and
characters, items were then removed from the sentence; multiple spaces were replaced with a single
space; and spaces at the beginning and end of the sentence were removed. The return value of this
preprocessing step is the input for the next preprocessing step.
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Preprocessing in LI in SI, LGI, SLGI, LI in LG and LI in SLG: The preprocessing for each of the
above classification tasks was basically the same, addressing languages using the same script. In the
preprocessing step, contents containing other scripts were removed from the sentences.

4.2. Character N-Gram

In LI, statistical models can be generated using the number of words [4] or letters in the given
text [2], N-gram statistics [3,8] or a combination of the two [2]. The dominant statistical approach used
in the literature is the character-based N-gram model, which is superior to the word-based model for
small text fragments and performs equally well on large fragments. It is also tolerant of errors in text,
requires no prior linguistic knowledge, is highly accurate and easily creates and computes any given
text. Hence, most LI systems use character N-grams [2,3,8]. We therefore restricted the feature sets we
used to character N-grams.

An N-gram is a sequence of n consecutive letters. The N-gram-based approach for LI divides the
text into character strings of equal size [5]. Some languages are assumed to use certain N-grams more
frequently than others. An example of the decomposition of the sentence “good boy” into character
N-grams is presented in Table 7. The symbol “-” represents a space, which is used to capture the start
and end of words.

Table 7. Example of the decomposition of a sentence into character N-grams.

N-Gram Type N-Gram

1-gram g, o, o, d, b, o, y
2-gram -g, go, oo, od, d-, -b, bo, oy, y-
3-gram -go, goo, ood, od-, d-b, -bo, -boy, oy-
4-gram -goo, good, ood-, od-b, d-bo, -boy, boy-

4.3. Feature Selection

In this paper, four feature-selection methods were applied. The brief preliminary notations are
outlined in Table 8. The feature-selection methods are as follows:

Chi-squared (CHI) is a well-known feature-selection method used in pattern recognition and
measures the correlation between the term ti and the category Cj [40], expressed as:

χ2(ti, Cj
)
=

N(ad− bc)
(a + b)(a + c)(b + d)(c + d)

, (1)

CHI(ti) = max
j∈(1,M)

χ2(ti, Cj
)
, (2)

where a, b, c, d and M are explained in detail in Table 8.
The distinguishing feature selector (DFS) is a novel filter-based probabilistic feature-selection

method [41]. It measures whether a term frequently occurs in only one class of the highest importance
in discriminating different classes. DFS also determines whether a term frequently occurs in some
classes, is relatively discriminative and considers the term irrelevant in other situations. It can be
defined as:

DFS(ti) = ∑M
i=1

P(Cj
∣∣ti)

P
(

ti
∣∣Ci
)
+ P

(
ti
∣∣Cj
)
+ 1

, (3)

where P(Cj
∣∣ti) , P

(
ti
∣∣Ci
)
, P
(
ti
∣∣Cj
)

and M are explained in detail in Table 8.
The normalized different measure (NDM) is a modified balanced accuracy measure (ACC2) [42].

NDM’s feature selection concept is that an important term that is in the document’s frequency in the
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positive class (tp) or negative class ( f p) should be closer to zero, along with a high |tpr− f pr| value,
which is relatively more important. It can be expressed as:

NDM =
|tpr− f pr|

min(tpr, f pr)
, (4)

where tpr and f pr are explained in detail in Table 8.
The odds ratio (OR) reflects the odds of the item occurring in the positive class normalized by

that of the negative class [43]. OR is defined as:

OR
(
ti, Cj

)
=

P
(
ti
∣∣Cj
)(

1− P
(
ti
∣∣Cj
))(

1− P
(
ti
∣∣Cj
))

P
(
ti
∣∣Cj
) (5)

Feature(ti) = max
j∈(1,M)

OR
(
ti, Cj

)
(6)

where P
(
ti
∣∣Cj
)

and P
(
ti
∣∣Cj
)

are explained in detail in Table 8.

Table 8. Preliminary notations.

Notation Value Meaning

M M is the number of classes
a count

(
ti, Cj

)
Number of documents belonging to class Cj and containing term ti.

b count
(
ti, CJ

)
Number of documents not belonging to class Cj and containing term ti.

c count
(

ti, Cj

)
Number of documents belonging to class Cj and not containing term ti.

d count
(
ti, CJ

)
Number of documents not belonging to class Cj and not containing term ti.

N (a + b + c + d) Total number of documents in the training corpora.
P(Ci|t) a/(a + b) The probability of class Cj when word ti is present.
P
(

t
∣∣Ci
)

c/(a + c) The probability of other items ti when class Cj is present.

P
(

t
∣∣∣Cj

)
or f pr b/(b + d) The probability of item ti when other class Cj is present.

p
(
ti
∣∣CJ
)

or tpr a/(a + c) The probability of item ti when other class Cj is present.

4.4. Document Representation

After selecting the feature subsets, all sentences were represented by a feature vector with the
term frequency-inverse document frequency (TFIDF) weighting function [44]. The weight of the term
ti in sentence dj is calculated by the following formula:

TFIDF
(
ti, dj

)
=

t f
(
ti, dj

)
log N

n(ti)√
∑M

k=1

{
t f
(
tk, dj

)
log N

n(ti)

}2
, (7)

where t f
(
ti, dj

)
denotes the number of times ti occurs in sentence dj, n(ti) is the number of sentences

in which ti occurs at least once, N is the total number of sentences in the training corpus and M is the
size of the feature subset.

4.5. Method Classification and Evaluation

We used two classifiers for the experiments: SVM and Bayes NB [45]. The reason for this selection
is that the SVM outperformed the other classifiers in four DSL shared tasks, and our baseline approach,
langid.py, was implemented in NB. In our experiments, for NB, we selected scikit-learn’s multinomial
NB and used Lidstone smoothing α = 0.05. For the SVM, we selected a linear kernel and used
parameters C = 1 and class_weighted = balanced.

The standard success measure method, macro-averaged F1-score, was used in this study to
measure the performance of the TLI tasks. In macro-averaging, the macro F-measure is computed for
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each class within the dataset, and then, the average for all classes is obtained [46]. Using this method,
equal weight is assigned to each class regardless of class frequency. Macro-F1 can be formulated as:

Macro− F1 =
∑C

k=1 Fk

C
, Fk =

2PkRk
Pk + Rk

(8)

Pk =
TPk

TPk + FNk
, Rk =

TPk
TPk + FPk

(9)

where C is the number of existing classes, TPk is the number of correctly classified documents for
class Ck, FPk is the number of incorrectly classified documents for class Ck, and FNk is the number of
incorrectly classified documents relative to other classes.

4.6. Comparative Experiment Design

To evaluate our proposed algorithm’s efficiency, we performed seven group tests:
(1) regular-expression matching-based SI versus SI proposed in Hanif et al. [9], (2) one-stage LI,
(3) two-stage LI, (4) three-stage LI-1, (5) three-stage LI-2, (6) four-stage LI and (7) the effect of
foreign-language content in the LI corpus on the LI.

During the tests, we found that some languages, especially the Xhosa language, include a
significant amount of foreign language. This creates noise during the feature selection and classification
processes, and its sentences are often misclassified into other languages that do not belong to the same
LG. Therefore, to investigate the effects of noisy language content on LI performance, we performed
comparative tests using 96 languages (Sections 5.3–5.7). We then completed comparative tests using
97 languages (Section 5.8).

We split our corpora into training, testing and evaluation. Among these, the testing corpora
included 1000 sentences for every language, and 10-fold cross-validation was used to evaluate the
performance of the different levels of hierarchical LI. In each classification task, different feature
selection methods were used to select the feature sets in different N-gram feature types, and each
feature set used a different feature range for training and testing classifiers. Finally, we compared the
different classifiers’ macro F1-scores in different feature sizes and selected the optimal classification
model (OCM) for each task. The OCM is a classification model whose accuracy does not improve or
minimally improves when more features are added, even when the feature size increases considerably.
The OCM was selected to perform comparative tests for different levels of hierarchical LI and LI in
langid.py tests.

5. Results and Discussion

5.1. Performance Evaluation of Script-Identification Algorithm

To evaluate our proposed algorithm, we used REMSI and SI to identify each sentence’s script in
our evaluation corpora, for a total of 96,250 sentences in 97 languages. The macro-averaged F1-scores
for both methods were the same, and the identification accuracy was very high. Most errors originated
from Latin-script languages, especially English, which is used in other scripts’ sentences or other
scripts’ contents in Latin-script sentences. REMSI is superior in execution time to SI. The results for SI
are provided in Table 9. In this paper, the time unit format is hour:minute:second.millisecond.

Table 9. Script identification results.

REMSI Score Time SI Macro F1 Time

F1 score 0.9986 0.978 0.00:58.26 0.9981 0.03:53.50
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5.2. N-Gram Distribution in Different Corpora

To evaluate the effect of the number of languages on LI, we calculated different N-gram numbers
in different LI corpora. The results are given in Table 10, and we verified that fewer different N-gram
numbers were found in shorter N-gram feature types than in longer N-gram feature types. From the
results, we observed that more different N-grams exist in a corpus containing more languages than in
a corpus containing fewer languages. Thus, narrowing the LI identification range can be beneficial for
feature selection, noise reduction and training, thus improving LI accuracy.

Table 10. Different N-gram numbers in different LI corpora.

ID In All 97 Languages In Latin Script In Germanic LG In Nor-Nob SLG

2-gram 256,629 7389 3203 1706
3-gram 973,319 78,320 31,516 13,781
4-gram 2,342,861 438,945 164,640 57,012
5-gram 4,174,524 1,391,955 445,814 114,227

5.3. One-Stage LI

One-stage LI is an original LI. SI, LGI and SLGI do not occur during the LI process. The text’s
language is directly identified from all languages in LI. The results for one-stage LI, when a CHI
feature-selection method was used, are shown in Table 11, and the confusion matrix and F1-scores
related to the similar languages are shown in Table 12. Note that the number after the classification
name is the relevant feature type used in the classification and ‘’FS” in the tables is the feature size.
From the results, we conclude that a mixture of N-grams is suitable for one-stage LI, and SVM’s
accuracy was higher than NB. SVM was more accurate than NB for most LI tasks in our experiment.
Due to space limitations, we only provide LI results related to SVM. The selected OCM for one-stage LI
is when use SVM, use a mixture of three-grams and two-grams and feature size is 15,000. We used the
selected OCM to perform one-stage LI testing. The results are given in Table 24. From the confusion
errors in Table 12, we determined that most errors in LI occur between similar languages.

Table 11. Results of LI in one-stage LI. FS, feature size.

FS 1000 3000 5000 10,000 15,000 20,000 25,000 30,000

NB-2 0.440 0.870 0.920 0.942 0.952 0.952 0.952 0.957
SVM-2 0.423 0.879 0.933 0.955 0.964 0.964 0.964 0.964
NB-3 0.590 0.763 0.874 0.916 0.932 0.935 0.936 0.950

SVM-3 0.588 0.768 0.886 0.932 0.949 0.952 0.952 0.963
NB-4 0.446 0.667 0.776 0.864 0.878 0.899 0.905 0.914

SVM-4 0.448 0.672 0.781 0.878 0.892 0.913 0.919 0.928
NB-5 0.334 0.560 0.670 0.775 0.800 0.822 0.840 0.851

SVM-5 0.339 0.566 0.676 0.786 0.813 0.836 0.855 0.866
NB-30 0.690 0.834 0.920 0.945 0.950 0.952 0.952 0.963

SVM-30 0.697 0.845 0.937 0.953 0.968 0.970 0.970 0.970
NB-40 0.692 0.815 0.899 0.937 0.947 0.949 0.949 0.961

SVM-40 0.698 0.829 0.918 0.957 0.966 0.968 0.968 0.969

Table 12. Confusion matrix and F1-scores related to similar languages in one-stage LI.

ID Bos Hrv ID Ind Msa ID Nob Nor

bos 768 207 ind 714 262 nob 555 322
hrv 205 710 msa 229 756 nor 407 428

F1-score 0.771 0.735 0.772 0.744 0.544 0.468

5.4. Two-Stage LI

The languages in our corpus belong to 25 different scripts. Among them, 20 scripts only have one
member. Thus, the language can be identified during the SI process. The other five scripts have many
members. After script identification, their members are identified within the same script languages.
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The pseudocode is shown in Figure 1. The classification results for LI in the same script languages
are shown in Figures 5–10 and Table 13. After examining the results in the figures, we found that
the shorter character N-gram requires fewer features to reach its optimal value than longer character
N-grams, and combinations of different types of N-grams are more efficient than single-length N-grams.
Two types of mixed N-grams exist in our tests: a mixture of three-grams and two-grams and a mixture
of two-grams, three-grams and four-grams. The two types have nearly the same efficiency, which is
better than that of the other single-type N-grams in some LI tasks. This is because when using a hybrid
N-gram model, we can use different lengths of prefixes, suffixes and roots to create the basic unit of
words. The above situation also occurs with the other LI tasks.

Table 13. Results of LI in non-Latin script languages when using SVM, distinguishing feature DFS
and 2-gram.

FS 300 500 700 1000 1500 2000

Arabic 0.997 0.998 0.998 0.998 0.998 0.998
Cyrillic 0.978 0.988 0.990 0.991 0.992 0.992

Devanagari 0.992 0.992 0.993 0.993 0.993 0.993
Nagari 0.999 0.999 0.999 0.999 0.999 0.999

Figure 5. Results of LI in Latin script languages when selecting SVM and two-gram.

Figure 6. Results of LI in Latin script languages when selecting SVM and three-gram.

Figure 7. Results of LI in Latin script languages when selecting SVM and four-gram.
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Figure 8. Results of LI in Latin script languages when select SVM and five-gram.

Figure 9. Results of LI in Latin script languages when selecting SVM and mix-gram (2–3).

Figure 10. Results of LI in Latin mix-gram (2–4) Latin script languages.

For longer feature types, such as four-gram and five-gram, accuracy continued to increase,
as shown in Figures 5–10 and Table 11. This reveals that if longer feature types are selected for LI, more
features are needed to reach optimal accuracy than for shorter N-gram feature types. This is because
when longer N-gram feature types are selected, a larger number of different N-gram numbers exist
than in shorter feature types. Thus, longer N-gram feature types require longer feature sizes to cover
enough distinct features. The above situation also occurred in the other LI tasks.

The LI results in Table 13 reveal that only using character two-grams to reach high classification
accuracy is possible with fewer languages and no similar languages within the same-script language
group, for example, in LI of Arabic, Cyrillic, Devanagari and Nagari scripts. A similar situation
occurred in other tasks in the remaining experiments. The reason for this result is that several
hundreds or thousands of two-grams that can cover the majority of the two-grams in the language
group contain few languages. Moreover, little lexical overlap exists between the languages because no
similar languages were in the group. In this situation, there are enough distinct features to identify the
language. Therefore, after SI, we did not need a large number of features for language groups that
contain fewer languages and do not contain similar languages.

In this paper, we used four feature-selection methods, CHI, NDM, DFS and OR, to perform
comparative tests. From the results in Figures 5–10, we found that the efficiencies of DFS and NDM
are better than the other two feature selection methods. The reason for this result is that they prefer to
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select the features frequently occurring in single classes and do not select features that frequently occur
in multiple classes [38,39]. Their advantages mean these methods are suitable for LI. We also concluded
that for classifiers that use the same feature type, but with different feature selection methods, as the
number of features increases to a certain value, their LI values are the same and close to the maximum
value. The same situation appeared in other LI tasks. Due to space limitation, the following analysis
only provides the LI results when using DFS.

The LI classification in Latin script was lower than for other scripts. Because it has more
languages than the others and some highly similar language groups are found within Latin-script
languages, confusion errors occur between similar languages. After examining the classification results,
we selected the OCM for two-stage LI (Table 14). We used the selected OCMs to perform two-stage
LI testing. The results are given in Table 24. From the comparative results, we concluded that the
accuracy of the two-stage LI is higher than that of one-stage LI and that the two-stage LI execution
time is shorter than that of one-stage LI. Because the use of SI can narrow the LI algorithm’s range,
it helps to reduce noisy features, feature selection and training. The confusion matrix related to similar
languages is shown in Table 15. From the confusion matrix results in Tables 12 and 15, we concluded
that SI similar language identification accuracy significantly increased.

Table 14. Optimal classification method (OCM) for LI in different scripts in two-stage LI.

ID Model FS F1-Score ID Model FS F1-Score

Arabic SVM-2 500 0.998 Cyrillic SVM-2 1500 0.992
Devanagari SVM-2 700 0.993 Latin SVM-(2–3) 10,000 0.965

Nagari SVM-2 300 0.999

Table 15. Confusion matrix and F1-scores related to similar languages in two-stage LI.

ID Bos Hrv ID Ind Msa ID Nob Nor

bos 758 236 ind 770 218 nob 528 414
hrv 52 940 msa 167 828 nor 330 588

F1-score 0.836 0.842 0.784 0.801 0.562 0.578

5.5. Three-Stage LI-1

Three-stage LI-1 includes three sub-tasks: SI, LI in script and LI in similar language group (SLG);
the pseudocode is shown in Figure 2. In second-stage LI in script, the process text language is identified
as either a specific language or a member of a similar language group. If the second stage’s return is a
similar language group, the text’s language is further identified within the similar language group.
In our experiments, three highly similar language groups were placed in the Latin-script languages
(Table 2), and no highly similar languages in other scripts’ languages were in our test. Their LI in
script is the same as two-stage’s LI in script. Their results are shown in Table 13, and the selected
OCM is given in Table 14. The LI in Latin script results are shown in Figure 11. For LI in Latin script,
the result’s macro F1-score was 0.989. This reveals that similar language groups can be accurately
identified from the other languages using the same script, and similar language group identification
does not affect other language identification.

The results for LI in SLG are shown in Figures 12–14. Notably, the last feature numbers in these
three figures are the total feature numbers in the task in our experiment. The results verify that,
to obtain high LI accuracy for similar languages, more features are needed than other languages in the
same script. The reason for this is the high similarity in structure and high lexical overlap in similar
languages. If we increase the feature size in two-stage LI, more storage and time were needed to
predict languages. However, LI accuracy was minimally improved or not at all. Therefore, to improve
similar language LI accuracy, we first identified the similar language group and then identified the
languages within a similar language group. From the LI in SLG results, we also found that when
feature size increased up to a certain point, LI’s accuracy reached an optimal value, and after that,



Algorithms 2018, 11, 39 16 of 27

accuracy decreased. This implies that there is still room for improvement in feature selection and
weighting for similar language identification. We also found that the performance of NB in LI in SLG
was better than SVM.

The selected OCM for LI in Latin script and SLI in three SLG in three-stage LI-1 are shown
Table 16. We used the selected OCM to perform three-stage LI-1 testing. From the results given in
Table 24, we found that three-stage LI-1’s accuracy was higher than that of two-stage LI. The reason for
this result is that we accurately identified similar language groups from other languages, and their
identification did not affect other language identification. In addition, similar languages obtained
enough features in LI in a similar language group. However, the time efficiency of this method was
slightly lower than two-stage LI. This is because identifying similar languages requires more features
than other languages, and similar language group identification also consumes time. The confusion
matrix related to similar languages is shown in Table 17. Compared with the confusion matrix results
in Tables 12, 15 and 17, we concluded that, after SI and similar language group identification (SLGI),
the similar language identification accuracy significantly increased.

Table 16. Selected OCM for LI in Latin script and SLI in three SLG in three-stage LI-1.

ID Model FS F1-Score ID Model FS F1-Score

LI in Latin SVM-(2–3) 10,000 0.989 LI in bos-hrv NB-5 30,000 0.936
LI in ind-msa NB-5 20,000 0.930 LI in nob-nor NB-5 20,000 0.794

Table 17. Confusion matrix and F1-score related to similar languages in three-stage LI-1.

ID Bos Hrv ID Ind Msa ID Nob Nor

bos 914 81 ind 889 101 nob 595 367
hrv 145 837 msa 120 877 nor 407 549

F1 score 0.886 0.867 0.876 0.886 0.583 0.562

Figure 11. Results of LI (SLGI) in Latin script languages.
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Figure 12. LI in similar language groups (SLG) including bos and hrv.

Figure 13. LI in SLG consisting of ind and msa.
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Figure 14. LI in SLG consisting of nob and nor.

5.6. Three-Stage LI-2

Three-stage LI-2 includes three sub-tasks: SI, LGI in using same script languages and LI in LG; the
pseudocode is shown in Figure 3. In the LGI process, the language group to which the text’s language
belongs is determined using the same script languages. In the third stage, the language within the
language group is identified. In our experiments, Arabic-, Cyrillic- and Latin-script languages were
divided into several language groups, as shown in Tables 2–4. The Devanagari and Nagari scripts
also have many members (Table 5), but their respective members only belong to one language group.
Identifying their members after SI is equivalent to the LGI process; the results are shown in Table 13,
and their selected OCM is shown in Table 14.

The results of LGI on Arabic, Cyrillic and Latin scripts are shown in Figure 15 and Table 18.
From the results, we found that if there are fewer members in the script groups, using only two-gram
features is sufficient to reach the optimal LGI score. If more languages are used in the scripts, three-gram
or mixtures of N-grams are more suitable for LGI. LGI’s accuracy is very high, revealing that we can
discriminate between different LG in the same script languages. The results for LI in LG are shown in
Figures 16–19 and Table 19. Comparing the LI in LG results to the LI in script results, we concluded
that the majority of the LI in LG’s feature size, which reached optimal accuracy, is lower than the LI in
script’s feature size. It also revealed that narrowing the identification range is beneficial to language
identification. From the results in Table 19, we also concluded that if there are fewer members or no
similar language group in LG, using only two-gram features is sufficient to reach the optimal LI score.
The boldface or underscore numbers in Table 19 highlights the LG that includes similar languages or
has more members. Therefore, during identification, their members need more features and longer
feature types than other LGs.
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Table 18. LGI in different script languages when using DFS and two-gram.

FS 300 500 700 1000 2000 3000 5000 7000

Arabic 0.999 0.999 0.999 0.999 0.999 0.999
Cyrillic 0.998 0.999 0.999 0.999 0.999
Latin 0.960 0.980 0.986 0.989 0.991 0.992 0.992 0.992

Figure 15. LGI in Latin script languages.

Figure 16. LI in Indo-European/Germanic in Latin script languages.

Figure 17. LI in Indo-European/Italic in Latin script languages.
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Figure 18. LI in Austronesian/Malayo-Polynesian (MP) in Latin script languages.

Figure 19. LI in Indo-European/Balto-Slavic in Latin script languages.

The selected OCM for LGI is given in Table 20. The three-stage LI-2 result is shown in Table 24,
and from the results, we concluded that the three-stage LI-2’s macro F1-score is higher than the of
two-stage LI. The reason for this result is that we accurately identified language groups by using similar
script languages and identification language within a language group. Narrowing the identification
range is beneficial to LI, improving the LI’s accuracy. The confusion matrix related to similar languages
is shown in Table 21. Comparing the results in Tables 15 and 21, similar language identification
accuracy in three-stage LI-2 is higher than that of two-stage LI. The reason for this finding is that,
after LGI narrowing of the identification range, there are more than enough features to discriminate
similar languages.

Although the accuracy of three-stage LI-2’s is higher than that of two-stage LI, the majority of
confusion errors still occur between similar languages. The prediction time was slower than two-stage
LI’s because the LGI process also consumes time.
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Table 19. LI in LG when using two-gram.

FS 100 300 500 700 1000 3000

Arabic Indo-European/Indo-Iranian 0.993 0.997 0.998 0.998 0.998

Cyrillic Altaic/Turkic 0.993 0.997 0.998 0.998 0.998
Indo-European/Balto-Slavic 0.946 0.982 0.986 0.989 0.989

Latin

Niger-Congo/Atlantic-Congo 0.996 0.999 0.999 0.999 0.999
Indo-European/Celtic 0.997 0.999 0.999 0.999 0.999

Altaic/Turkic 0.977 0.981 0.982 0.981 0.981
Uralic/Finnic 0.996 0.997 0.998 0.998 0.998

Indo-European/Germanic 0.778 0.849 0.872 0.878 0.883 0.882
Indo-European/Italic 0.883 0.953 0.965 0.969 0.971 0.971

Austronesian/Malayo-Polynesian 0.832 0.865 0.871 0.872 0.872
Indo-European/Balto-Slavic 0.795 0.888 0.912 0.920 0.927 0.935

Table 20. Selected OCM for LGI and LI in LG in three-stage LI-2.

ID Model FS F1-score

LGI in Arabic script languages SVM-2 300 0.999
LGI in Cyrillic script languages SVM-2 500 0.999
LGI in Latin-script languages SVM-(2–3) 5000 0.995

LI in Indo-European/Indo-Iranian in Arabic script SVM-2 500 0.998
LI in Indo-European/Balto-Slavic in Cyrillic script SVM-(2–3) 5000 0.995
LI in Turkic-Common/Turkic in Cyrillic in Cyrillic SVM-2 300 0.999

LI in Indo-European/Germanic in Latin SVM-(2–3) 15,000 0.924
LI in Indo-European/Italic in Latin SVM-(2–3) 10,000 0.989

LI in Niger-Congo/Atlantic-Congo in Latin SVM-2 300 0.999
LI in Austronesian/Malayo-Polynesian (MP) in Latin SVM-(2–3) 10,000 0.945

LI Indo-European/Celtic in Latin SVM-2 300 0.999
LI in Turkic-Common/Turkic in Latin SVM-3 3000 0.983

LI in Indo-European/Balto-Slavic in Latin SVM-(2–3) 10,000 0.966
LI in Uralic/Finnic Latin SVM-3 500 0.999

Table 21. Confusion matrix and F1-score related to similar languages in three-stage LI-1.

ID Bos Hrv ID Ind Msa ID Nob Nor

bos 739 227 ind 852 144 nob 572 404
hrv 35 957 msa 131 865 nor 380 598

F1-score 0.851 0.863 0.850 0.857 0.580 0.589

5.7. Four-Stage LI

Four-stage LI includes four sub-tasks: SI, LGI in same script languages, LI in LG and LI in SLG;
the pseudocode is shown in Figure 4. In third-stage LI in LG, a sentence language identifies whether
a certain language or a member of a similar language group is in an LG. A member of a similar
language group further identifies its language within a similar language group. In our experiments,
three highly similar language groups exist in three language groups in Latin-script languages (Table 2).
The SLGLI in LG results are shown in Figures 20–22. Other scripts’ language groups do not contain
similar language groups; their LI in LG result is the same as that of three-stage LI-2. Four-stage
LI’s second-stage result is the same as that of three-stage, and its fourth-stage result is the same as
three-stage LI-1’s third-stage result.

From the SLGLI in LG results in Figures 20–22, we found that a similar language group can be
accurately identified within a language group. The selected OCM is shown in Table 22. We used the
selected OCM for four-stage LI and performed four-stage LI testing. The result is shown in Table 24,
which shows that its macro F1-score is the same as that of three-stage LI-2, and the prediction time
is slower than that of three-stage LI-2. This is because if a language belongs to a similar language
group, we need an LI in the SLG process, which also consumes time. The confusion matrix related
to the similar language is shown in Table 23. From the confusion-matrix results in Tables 21 and 23,
we concluded that, after LGI and LI in SLG, similar language identification accuracy also improved.
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Figure 20. LI in Austronesian-Malayo/Polynesian (MP) in Latin.

Figure 21. LI in Indo-European/Balto-Slavic in Latin.

Figure 22. LI in Indo-European/Germanic in Latin.

To evaluate our proposed methods’ efficiency, we compared it to the open source LI tool langid.py.
The comparison results are shown in Table 24. From the results, we concluded that our proposed
hierarchical LI’s efficiency is higher than that of langid.py, demonstrating that our proposed method is
suitable for short text LI.

To evaluate how different levels of hierarchical language identification affect LI, we used
Indo-European/Germanic group languages’ F1-scores with different LI methods in (Table 25).
Comparing the different level hierarchical LI results in Tables 24 and 25, we concluded that, after
using SI, LGI or SLGI to narrow the LI’s identification range, LI’s accuracy improved each stage.
The improvement in similar language identification accuracy was especially significant.
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Table 22. Selected OCM for SLGI in three LG in four-stage LI.

ID Model FS F1-Score

LI in Austronesian-Malayo/Polynesian (MP) in Latin SVM-(2–3) 1000 0.994
LI in Indo-European/Balto-Slavic in Latin SVM-(2–3) 5000 0.995
LI in Indo-European/Germanic in Latin SVM-(2–3) 5000 0.984

Table 23. Confusion matrix between similar languages in LI in LG.

ID Bos Hrv ID Ind Msa ID Nob Nor

bos 915 81 ind 894 102 nob 609 376
hrv 145 847 msa 120 874 nor 414 568

F1 score 0.885 0.877 0.879 0.883 0.594 0.576

Table 24. Comparison results for different levels of hierarchical LI.

Type One-Stage Two-Stage Three-Stage 1 Three-Stage 2 Four-Stage Langid.py

Macro-F1 0.9659 0.9757 0.9792 0.9797 0.9799 0.8766
Time 0:00:44.41 0:00:42.70 0:00:47.64 0:01:15.81 0:01:18.97 0:01:18.97

Table 25. F1-score for Indo-European/Germanic languages in Latin for different levels of
hierarchical LI.

ID Afr Dan Deu Eng Fao Isl Ltz Nld Nno Nob Nor

One-stage 0.989 0.908 0.983 0.962 0.969 0.973 0.980 0.978 0.872 0.543 0.468
Two-stage 0.995 0.965 0.989 0.980 0.988 0.989 0.982 0.991 0.934 0.562 0.577

Three-stage 1 0.994 0.968 0.990 0.981 0.990 0.992 0.986 0.990 0.946 0.583 0.561
Three-stage 2 0.993 0.983 0.992 0.977 0.992 0.996 0.886 0.994 0.973 0.579 0.588

Four-stage 0.994 0.980 0.991 0.977 0.994 0.997 0.985 0.995 0.974 0.594 0.576
langid.py 0.893 0.868 0.916 0.900 0.693 0.811 0.926 0.904 0.811 0.217 0.552

5.8. Foreign Language Content in LI Corpora Effect on LI

Foreign language items within the LI corpora affect the LI training and prediction processes and
reduce accuracy. During the experiment, we found that the Xhosa (xho) language, which belongs to the
Niger-Congo/Atlantic-Congo group, was often misclassified into other languages. A similar situation
also occurred in the langid.py test. In our research, Xhosa corpora has 10,000 sentences. According to
the experimental test, seven of the sentences belonged to other scripts. Sentence length statistics are
given in Table 26. We added this language to perform comparative tests. The results are presented in
Table 27. The confusion matrix related to Xhosa in two-stage LI is given in Table 28.

From the confusion matrix, we see that Xhosa sentences are often predicted as Afrikaans (afr),
which belongs to the Germanic language group and not to the Atlantic-Congo group. Theoretically,
the probability of Xhosa’s sentences being misclassified into the same language group’s language
is greater than being misclassified into another language group’s language. However, in our tests,
90 Xhosa sentences were misclassified into Afrikaans, which belongs to another language group,
and 25 sentences were misclassified into Zulu (zul), which belongs to the same language group. A total
of 996 of the 1000 Afrikaans sentences were correctly classified as Afrikaans when LI did not include
Xhosa. Additionally, 948 of the 1000 Afrikaans sentences were correctly classified to Afrikaans when LI
included Xhosa. The results verified that when foreign content is included in the corpora, LI accuracy
drops because foreign content creates noise during the feature selection and classification processes.
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Table 26. Xhosa corpora statistics.

Length Unit Max Min Average

Character 260 19 112.14
Word 61 2 15.78

Table 27. Comparative results of the effect of noisy content on LI.

Test Type One-Stage Two-Stage Three-Stage 1 Three-Stage 2 Four-Stage Langid.py

Macro-F1 0.9620 0.9726 0.9748 0.9753 0.9754 0.8736
Time 0:00:45.167 0:00:44.537 0:00:44.376 0:01:19.102 0:01:20.765 0:01:20.960

Table 28. Confusion matrix related to Xhosa.

Including Xhosa Not Including Xhosa

afr kin swa xho zul afr kin swa zul
afr 948 47 afr 996
kin 996 2 kin 998
swa 996 swa 998
xho 90 839 25 zul 1000
zul 16 984

Macro-F1 0.927 0.997 0.996 0.861 0.977 0.995 0.998 0.998 0.999

6. Conclusions

Languages are written using different scripts and belong to different language groups.
Languages in the same language group are similar in terms of vocabulary and structure, and the
majority of errors occur between similar languages in LI. Considering these facts, we presented three
different hierarchical LI algorithms in this paper. To evaluate the proposed algorithms, we performed
comparative tests on different levels of hierarchical LI algorithms and the open source LI tool, langid.py.
The experimental results verified that, after SI, LGI and SLGI, the accuracy improved with each stage.
This proves that narrowing the LI range can improve accuracy, especially between similar languages.
Our proposed method’s efficiency is superior to the open source LI tool langid.py.

We used different-length N-gram feature types to perform comparative LI tests. The experimental
results verified that if there are fewer languages or no similar language groups, using only a shorter
N-gram feature type and a relatively small feature size can result in optimal LI accuracy. When mixing
the different N-gram feature types to select a feature, the accuracy was superior to that of single
N-gram feature types for most of the LI tasks. Further research is required to determine how to extract
different length character sequences that can represent prefixes, suffixes, roots and stems in a language
and how to apply them to the field of LI.

In our experiments, we selected NB and SVM classifiers to perform the LI tasks. From the
experimental results, we concluded that for the SLI in SLG task, SVM’s classification accuracy
was higher than NB. We also used the four feature-selection methods, CHI, NDM, DFS and OR,
to perform comparative tests. From the experimental results, we concluded that DFS and NDM’s
efficiencies are better than the other two feature selection methods. The experimental results
verified that the feature-selection and feature-weighting methods used are suitable for short-text
language identification.

LGI and SLGI are beneficial for narrowing the LI range and increasing LI’s accuracy. However,
LGI and SLGI data are highly imbalanced data, which negatively impact feature selection. Thus, LGI
and SLGI efficiency can still be improved. If we improve the LGI and SLGI efficiency, we can select
relatively small features for discriminating different LG or SLG when there are more languages in the
same script, which can further improve LI efficiency.
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We also investigated how foreign language content in a particular language corpus affects the LI.
The experimental results showed that accuracy was reduced. A method for automatically removing
foreign language content from the LI corpora requires further investigation.
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