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Abstract: Continuous sampling plans are used to ensure a high level of quality for items produced
in long-run contexts. The basic idea of these plans is to alternate between 100% inspection and a
reduced rate of inspection frequency. Any inspected item that is found to be defective is replaced
with a non-defective item. Because not all items are inspected, some defective items will escape to
the customer. Analytical formulas have been developed that measure both the customer perceived
quality and also the level of inspection effort. The analysis of continuous sampling plans does not
apply to short-run contexts, where only a finite-size batch of items is to be produced. In this paper,
a simulation algorithm is designed and implemented to analyze the customer perceived quality
and the level of inspection effort for short-run contexts. A parameter representing the effectiveness
of the test used during inspection is introduced to the analysis, and an analytical approximation is
discussed. An application of the simulation algorithm that helped answer questions for the U.S. Navy
is discussed.

Keywords: CSP-1; sampling plan; harold dodge; simulation algorithm; imperfect testing;
short-run contexts

1. Introduction

Harold F. Dodge developed the initial continuous sampling plan, referred to as CSP-1, as an effort
to ensure a high level of quality for items without the burden of 100% inspection [1]. Under CSP-1,
some defective items escape to customers because of a reduced inspection rate. Dodge’s work included
analytical formulae for performance metrics that are easy to use. However, those formulas were
designed for long-run production contexts, and therefore do not apply to finite-size batches of items.
In addition, those formulas were designed under the assumption of perfect testing, and therefore do
not apply to imperfect testing.

Dodge’s original long-run framework has been adapted to handle imperfect testing, and the
appreciable effect of imperfect testing on the performance parameters of the sampling plan is
well-understood [2]. The original long-run production framework was also adapted to account for
short-run contexts [3,4]; however, the assumption of perfect testing was retained. In these references,
analytical formulae were derived using a Markov chain modeling approach that was later generalized
by a renewal-process approach so that more general continuous sampling plans could be analyzed [5].
Formulas for performance metrics of CSP plans resulting from the renewal-process approach were
implemented in FORTRAN code [6]. It should be emphasized, however, that the formulas implemented
in the FORTRAN code reflect an assumption of perfect testing.

This research develops a simulation algorithm for CSP-1 plans to provide a mechanism to
understand the combined impact of short-run contexts and imperfect testing. To the best of our
knowledge, this is the first attempt to combine these two important practicalities of CSP-1 sampling
contexts. The simulation algorithm implements a test effectiveness parameter that enables recognition
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that defective items can escape the test procedure. A key output of the simulation is the probability
distribution for the number of defective items that escape to customers. An application that answers
sampling design questions for the United States Navy is presented and comparisons with analytical
formula are discussed. User-friendly R code that implements the simulation algorithm is provided.

2. Background

2.1. Continuous Sampling Plans

Continuous sampling plans, introduced by Harold F. Dodge in 1943, are useful for establishing
and improving the quality of production line items [1]. The process inspects items by alternating
between 100% inspection, where all items are inspected, and reduced inspection, where only a fraction
of the items are inspected. It then labels them as either defective or non-defective. When an inspected
item is found to be defective, it is replaced with a non-defective item. Dodge’s plan estimates the
Average Outgoing Quality (AOQ), which is the expected value of the defective rate for the process.

CSP-1 was the initial continuous sampling plan. However, modified versions, such as CSP-2
and CSP-3, were later published by Dodge and Torrey in 1951 [7]. The CSP-2 plan is a less-stringent
modification of CSP-1, in that CSP-2 reverts back to 100% inspection only when two defective items
occur spaced less than k units apart, where k is a specified value. The CSP-3 plan is identical to the CSP-2
plan, except when a defective item is found, the next four items require inspection. CSP-3 provides a
method of inspection to avoid clusters of defective items. Readers are referred to [8] for a comparison
and contrast of the different varieties of CSP plans.

2.2. Operating Procedures for CSP-1

The CSP-1procedure is depicted in Figure 1. The process begins in 100% Inspection, in which
every single item is sampled. The process breaks out of 100% Inspection when a specified number
of consecutive non-defective items is reached, denoted as n. When the consecutive number of
non-defective items is reached, the sampling procedure enters reduced inspection where the sampling
process skips a specified number of items, skip. For example, if skip = 4 then you inspect every 5-th item.
Sampling remains under reduced inspection until an item sampled is found to be defective. At that
point, the process returns to 100% Inspection. Every time a sampled item is found to be defective, it is
replaced with a non-defective item.

Figure 1. Operating Procedures for the initial continuous sampling plan (CSP-1).
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The analytical formulas developed for CSP-1 assume infinite batch sizes and assume that the
test is perfect. That is, defective items do not test as non-defective and non-defective items do not
test as defective. The simulation algorithm we describe in the next section, and have implemented
in the R code, relaxes both of these assumptions in order to extend the applicability of CSP-1 plans
to short-run contexts that have imperfect testing. Navy applications often fall into this category,
particularly since the units under examination can be very sophisticated electronic equipment that are
difficult to exhaustively test.

3. Simulation Algorithm

The R function in Appendix A encodes the logic shown by the flowchart in Figure 2. The inputs
to the R function are described in Section 3.1, and the outputs are described in Section 3.2.

Figure 2. Coding Flowchart. AOQ = Average Outgoing Quality; APS = Average Percent Sampled.
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3.1. Inputs

Table 1 gives a description of the input variables. In Table 1, N represents the total number of
items to be produced and delivered to the customer as a batch. F is the expected number of failures
among the N items. In practice, a range of values for F can be considered to understand the influence
it might have on AOQ. The required run length under 100% Inspection is denoted by n. The skip
parameter represents the number of items skipped over while on reduced inspection. The parameter
θ represents the probability a defective item is found to be defective by the test. We do not need to
consider the case of a non-defective item testing as defective, because even if this were to happen the
item would be replaced with another non-defective item.

Table 1. Input variables.

Variable Description

N Batch size
F Failures in the batch
n Required run under 100% inspection

skip Items to skip over in reduced inspection
θ Test effectiveness parameter

3.2. Outputs

Table 2 gives a description of the key output variables. For a given set of inputs, the algorithm
runs 10,000 simulations of CSP-1 and outputs the AOQ and Average Percent Sampled (APS) values.
AOQ is computed as the average (across the simulations) of the percentage of items in the batch that
escape to the customer as defective, and the APS is computed as the average (across the simulations)
number of items in the batch that are sampled. The algorithm can be used to tabulate AOQ as a
function of F by running it with multiple choices for F. This will create multiple AOQ values, and the
maximum of these values is defined as the Average Outgoing Quality Limit (AOQL).

Table 2. Output variables.

Variable Description

AOQ Average Outgoing Quality
APS Average Percent Sampled

3.3. Algorithm Design

Figure 2 shows a flowchart that guided the design of the simulation algorithm. The essential
idea of the design is to populate a matrix of 10,000 rows and N columns with 0 s and 1 s subject to
the constraint that each row has F 1 s randomly slotted into the columns. The rows of the matrix are
processed independently as batch replicates.

For each row, CSP-1 is simulated according to Figure 1. However, when a failed item is
encountered, as indicated by reading a 1 from the row-column position, a Bernoulli (θ) random
variable is simulated and the failure is only marked as detected if the Bernoulli outcome is also a 1.
After each row of the matrix is processed, the total number of items sampled and the total number of
failures in each batch are available for summary analyses.

The execution time of the simulation algorithm will depend primarily on the value of N. However,
for our own use of the algorithm with batch sizes of 3200, the algorithm completed the calculations in
less than a minute when executed on a typical Windows laptop computer.
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4. Navy Applications

4.1. Background

The motivation for this research stemmed from a question the U.S. Navy wanted to answer.
The U.S. Navy chose CSP-1 because it would allow them to be more efficient with time and money
while still maintaining quality. Two particular CSP-1 plans were proposed and they sought advice on
which was preferable. Both plans have N = 3200, F = 64, and skip = 4. However, the first plan, Plan 1,
used n = 100, while the second, Plan 2, used n = 30.

4.2. Perfect Testing

For Plan 1, in which n = 100, the AOQ after CSP-1 is 0.66% and the APS is equal to 67.38%.
For Plan 2, in which n = 30, the AOQ is equal 1.36% and the average percent sampled is equal
to 32.18%. While the second CSP-1 plan sampled half as many items, the AOQ was twice as high.
The Navy’s original question did not involve the implementation of the test effectiveness parameter;
therefore, the testing procedure is assumed to be perfect in these two plans.

Figure 3 below illustrates the AOQ versus Initial Defective Rate and the APS versus Initial
Defective Quality for both plans while varying the number of failures F from 0 to 320, where the Initial
Defective Rate (IDR) is defined as F/N. We can see in Figure 3 that there is a mound shape to the AOQ
graph, and the maximum AOQ is defined as the Average Outgoing Quality Limit (AOQL).

Figure 3. AOQ and APS for Navy sampling plans with perfect testing (top row is Plan 1 and bottom
row is Plan 2). The top-left shows AOQ versus Initial Defective Rate for Plan 1 with perfect testing; the
top-right shows APS versus Initial Defective Rate for Plan 1 with perfect testing; the bottom-left shows
AOQ versus Initial Defective for Plan 2 with perfect testing; the bottom-right shows APS versus Initial
Defective Rate for Plan 2 with perfect testing.
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4.3. Imperfect Testing

This next example uses the same input values as the Perfect Testing example; however, the testing
is imperfect with θ = 0.8, meaning that defective items are correctly identified 80% of the time.

For Plan 1, the AOQ after CSP-1 is 1.07% and the APS is equal to 58.15%. In Plan 2, the AOQ is
1.52% and the APS is 29.69%. In comparison to the perfect testing example, the AOQ is higher and the
APS is lower. AOQ increases because defective items can escape the test procedure and end up in the
batch that is delivered to the customers. APS decreases because some defective items are counted as
non-defective, making it easier to switch to reduced inspection and therefore inspect less items.

Figure 4 below illustrates the AOQ versus Initial Defective Rate and the APS versus Initial
Defective Rate for both plans while varying the number of failures F from 0 to 320. In this case, there
is no mound shape and that is a consequence of imperfect testing. If θ ≥ 0.82, the mound shape
returns. With imperfect testing, AOQ starts at 0 and increases to 1 − θ, with no guarantee that there is
going to be a mound shape. The upper limit on AOQ of 1 − θ can be explained by considering what
happens when the initial defect rate is large. In that case, it becomes increasingly difficult to move
from 100% Inspection to reduced inspection, and under 100% Inspection the fraction of failed items
that go undetected will be equal to the probability that the test fails to detect them, namely 1 − θ.

Figure 4. AOQ and APS for Navy sampling plans with imperfect testing (top row is Plan 1 and bottom
row is Plan 2). The top-left shows AOQ versus Initial Defective Rate for Plan 1 with imperfect testing;
the top-right shows APS versus Initial Defective Rate for Plan 1 with imperfect testing; the bottom-left
shows AOQ versus Initial Defective Rate for Plan 2 with imperfect testing; the bottom-right shows
APS versus Initial Defective Rate for Plan 2 with imperfect testing.
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5. Analytical Comparisons

5.1. Calibration

Dodge developed mathematical expressions for AOQ and APS under his assumed context of
infinite items being produced and perfect testing [1,9]. Let f denote the fraction of items inspected
under Reduced Inspection.

f =
1

skip + 1

Dodge’s formulas derived
AOQ = p(1 − APS)

APS =
u + f v
u + v

where
u =

1 − qn

p qn

v =
1

f p

p = probability o f a de f ect

q = 1 − p

The formulas for AOQ and APS hold under perfect testing and when N = ∞. In order to apply
them for a short-run context with perfect testing, we assign p as

p =
F
N

.

Note that this definition of p is the initial probability of defect, which is not constant throughout
sampling procedure in short-run contexts. Consequently, the formula above for AOQ and APS will
be approximations.

5.2. Illustrations

In this section, we revisit the analysis of Plan 1 with perfect testing. Table 3 compares the output
of the simulation for AOQ and APS with the approximations in Section 5.1 and with analytical formula
available in the previously discussed references.

Table 3. Plan 1 with perfect testing.

Metric Simulation Section 5.1 Approximation Formulas in References [3,4]

AOQ 0.66% 0.69% 0.65%
APS 67.38% 65.34% 67.27%

The calculation using the Section 5.1 formula is close to the calculation of the simulation because
F/N is small. The simulation results agree nicely with the analytical formulas available in the literature
that can be used in short-run contexts provided there is perfect testing.

As a second illustration we revisit the analysis of Plan 1 with imperfect testing. Table 4 compares
the output of the simulation for AOQ and APS with results obtained from naively using the imperfect
testing formulas in [2]. The naiveté results from ignoring the effect of the short-run context, since the
formulas in [2] are valid only under long-run contexts.
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Table 4. Plan 1 with imperfect testing.

Metric Simulation Formulas in Reference [2]

AOQ 1.07% 1.11%
APS 58.15% 55.6%

The differences in the results shown above expose the fact that even in relatively large batches,
the naïve use of the formulas in [2] can lead to non-trivial discrepancies with the correct simulation
answers. As a sensitivity study, we evaluated a modification where the batch size was doubled to
6400 and the number of failures was also doubled to 128 (preserving the initial 2% probability of a
defect). With the larger batch size, the short-run context becomes closer to a long-run context and the
simulation estimates of AOQ and APS change to 1.09% and 56.94%, respectively, which are closer to
the results given by the long-run formulas.

6. Summary

CSP-1 was designed under the assumption that the number of items to be inspected was infinitely
large, as in a production line assembly context, for example. In addition, an implicit assumption
of perfect testing was made. While subsequent research separately relaxed the infinite batch size
and perfect testing assumption, to our knowledge our work is the first that simultaneously relaxes
these two assumptions. Our research developed a simulation algorithm, and implemented it in the R
programming language, for CSP-1 plans in short-run contexts and in the presence of imperfect testing.
One of the outputs of the R code is the distribution of the number of failed items in the batch that
escape detection, which is a performance measure that has not been studied in previous literature.

We illustrated the simulation algorithm by comparing two alternative CSP-1 designs that were of
interest to the United States Navy for batch sizes of 3200. The two plans differed in the length of the
required run under 100% Inspection before switching to reduced inspection (n = 100 versus n = 30,
respectively). If perfect testing is assumed, the trade-off is that Plan 2 reduces the amount of sampling
by about 50%, but also approximately doubles the AQO from 0.66% to 1.36%. The decision-maker at
the Navy will judge if 1.36% is still an acceptable level of quality, and if so, the benefit of Plan 2 in
terms of less testing effort is very compelling.

Comparing the two plans under 80% test effectiveness shows that Plan 2 offers a similar reduction
in the amount of sampling, but the impact of imperfect testing is more noticeable for Plan 1 where the
AOQ increases by 62% compared to an increase of 12% for Plan 2. The reason for the bigger impact
on Plan 1 is because more items are tested and therefore more failed items escape as a result of the
imperfect test.

For future work, an analytical analysis of CSP-1 plans with imperfect testing and in short-run
contexts would be interesting. The simulation algorithm could be modified to include other types of
CSP plans and a detailed comparison could be carried out, including a comparison with single-stage
sampling plans.

Acknowledgments: Mirella Rodriguez received a research stipend from the UCR undergraduate program for
Research in Science and Engineering (RISE).

Author Contributions: Daniel R. Jeske conceived the research problem, communicated with the Navy to
understand their design questions, and guided Mirella Rodriguez on formulating the simulation algorithm.
Mirella Rodriguez developed the R code for the simulation algorithm and took primary responsibility for drafting
the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Algorithms 2018, 11, 46 9 of 11

Appendix A. User Manual

Description

This function is used to simulate CSP-1 for any production line assembly context with a finite
number of items and an indicated level of effectiveness regarding the testing procedure. The function
csp1 (), with the parameters below, runs 10,000 simulations of CSP-1 and outputs the Average Outgoing
Quality and Average Percent Sampled.

Usage: csp1 (N, n, skip, θ, F)

Arguments

N Total number of items
n Failures among the N items
skip Items to skip over in reduced inspection
θ Test Effectiveness Parameter
F Failures among N items

Details: If θ = 1, then the testing procedure is perfect.
N should be greater than n.
set.seed (1) was used

Example: ≥csp1 (3200, 100, 4, 1, 64)
Average Outgoing Quality: 0.666125
Average Percent Sampled: 67.38524

Appendix B. R Code for the Implementation of the Simulation Algorithm

csp1 <- function(N, n, skip, theta,F)
{
# N is total number of units
# F is number of failures among the N units
# n is the required run under 100% inspection
# skip is the reduced sampling jump value
# theta is the test effective parameter
AOQ <- vector("numeric")
pctsampled <- vector("numeric")

F <- F
N<- N
n<- n
skip<- skip
nsim<-10000
fulldata<-matrix(0,nsim,N)
# set seed for reproducibility
set.seed(1)
#initialize counter for for loop
j <- 1
# the for-loop below simulates nsim sequences of N items that have F failures randomly dispersed
for (j in 1:nsim)
{
fail<-rep(1,F)
success<-rep(0,N-F)
fulldata[j, ]<-sample(c(fail,success),N)

}
# vector for how many samples per simulation
totalsamples <- vector("numeric", nsim)
# vector for number of missed failures per simulation
residualfailures <- vector("numeric", nsim)
#initialize counter for for loop
k <- 1
# for loop for selecting single rows of fulldata
for (k in 1:nsim)
{
data <- fulldata[k, ]
# indx = keeps track of what slot you are at
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# currentrun = how many consecutive zeros you have had
# sampled = how many I have sampled
# failures = how many failures have I observed
#initializing counting and interation variables
indx <- 1
sampled <- 0
failures <- 0
while(indx <= N) #loop checked all elements of vector data
{
#start checking vector
#100% inspection
currentrun = 0
while(currentrun < n)
{
if(indx > N)
{
break
}
else
{
#checking value of spot/slot/element
if(data[indx]==0)
{
currentrun=currentrun + 1
}
else
{
effective = rbinom(1,1,theta)

if (effective == 1)
{

failures=failures+1
#keep currentrun=0 in case currentrun != 0, but needs to be reset
currentrun=0
}

else
{
}
}

sampled = sampled +1
indx = indx +1
}
}
#break out of loop to reduced sampling
stopreduced = 0
while(stopreduced == 0)
{
indx = indx + skip
#if index is still outside vector
if(indx > N)
{
stopreduced = 1
break
}
#if index is inside vector
else
{
#if element of position index is equal to 1
if(data[indx] == 1)
{

effective = rbinom(1,1,theta)
if(effective == 1)
{

failures = failures + 1
stopreduced = 1
}

else
{
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}
}

sampled=sampled+1
indx=indx+1
}
}
}
totalsamples[k] = sampled
residualfailures[k]= (F - failures)
k = k+1
}
#average outgoing quality per simulation
AOQ <- (mean(residualfailures))/N * 100
#percent of entire simulation vector sampled
pctsampled <- (mean(totalsamples)/N) * 100

cat("Average Outgoing Quality:", AOQ, "n")
cat("Average Percent Sampled:", pctsampled, "n")
}
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