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Abstract: In this paper, a new tuning method is proposed, based on the desired dynamics
equation (DDE) and the generalized frequency method (GFM), for a two-degree-of-freedom
proportional-integral-derivative (PID) controller. The DDE method builds a quantitative relationship
between the performance and the two-degree-of-freedom PID controller parameters and guarantees
the desired dynamic, but it cannot guarantee the stability margin. So, we have developed the
proposed tuning method, which guarantees not only the desired dynamic but also the stability
margin. Based on the DDE and the GFM, several simple formulas are deduced to calculate directly the
controller parameters. In addition, it performs almost no overshooting setpoint response. Compared
with Panagopoulos’ method, the proposed methodology is proven to be effective.

Keywords: two-degree-of-freedom PID; the desired dynamics equation; the generalized frequency
method; stability margin

1. Introduction

The proportional-integral-derivative (PID) controller, which is by far the most common control
algorithm, is widely used in the industry due to its simplicity and ease of tuning [1,2]. It is well-known
that PID controllers can be implemented in two forms: single-degree-of-freedom (1-DOF) PID and
two-degree-of-freedom (2-DOF) [3]. Because the design of the control system can be seen as a
multi-objective optimization [4], and because there is a trade-off between the setpoint response
and the load disturbance attenuation in the 1-DOF PID structure [5,6], the 2-DOF PID structure was
proposed [7]. Due to its superiority, the 2-DOF PID has drawn great attention from many researchers,
and a great number of tuning methods have been proposed, such as the dominant poles method [8,9],
the internal model control (IMC) [10–12], the gain–phase margin method (GPM) [13], the maximum
sensitivity method [14,15], the desired dynamic equation method (DDE) [16–18], etc.

The tuning method proposed is an improvement of the DDE method. The DDE is a 2-DOF tuning
method based on the desired dynamic, disturbance estimate, and disturbance compensation. The DDE
method has the following advantages. On the one hand, it endows the controller parameters with
physical meanings [19,20], because it can build the equivalent relationship between the 2-DOF PID
structure and the Tornambe controller (TC) [21] structure, which is characterized by clear physical
meanings. On the other hand, due to the equivalent relationship between the 2-DOF PID structure
and the TC, the DDE makes the parameter settings of the 2-DOF PID not dependent on a precise
model [22,23]. The nature of the TC is that a disturbance observer estimates the total disturbance and
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then dynamically compensates it; therefore, the model error can be seen as an internal disturbance
that is estimated and then compensated. However, the major drawback of the DDE method is that the
stability margin cannot be guaranteed. So, we propose using the generalized frequency method (GFM)
in addition to the DDE method, because this DDE–GFM can guarantee both the desired dynamic and
the stability margin [24].

The GFM can guarantee the stability margin by limiting the closed-loop poles to a stability sector
area in the left half-plane. What is more, it can not only accurately guarantee the specified stability
margin by only one parameter but also calculate the controller parameter directly and analytically,
whereas Ms (the maximum sensitivity) and GPM cannot realize these two purposes simultaneously.
In addition, the GFM has been used to set single-degree-of-freedom PID parameters [25]. Thus, the
GFM has been chosen to be the stability margin criterion.

In [24,25], the GFM builds the relationship between the controller parameters and the stability
margin. Moreover, it is known that the DDE method builds the relationship between the 2-DOF PID
and the TC, and the TC builds the relationship between the controller parameters and the desired
dynamic. So, the desired dynamic, represented as the controller parameters h0 and h1, and the stability
margin, represented as the controller parameter m, can be specified. Then, a contour, characterized by
the same m, h0, and h1, is obtained. In the contour, an appropriate work point is derived to calculate
the controller parameters. Finally, an appropriate work point to calculate the controller parameters can
be obtained. This is the principle of the DDE–GFM.

The tuning steps of the DDE–GFM are briefly shown as follows. It is known that the parameters of
the 2-DOF PID

(
kp, ki, kd, b

)
have been converted into the parameters of the TC (h0, h1, k, l) according to

the DDE. Firstly, h0, h1, and m are specified based on the desired dynamic and the stability margin, then
k and l are converted into 1/l and k/l. Next, the contour is depicted in the (k/l, 1/l) plane, restraining
the stability margin with the GFM. Finally, an appropriate work point is derived, which possesses a
big enough k to improve the estimation of the total disturbance to calculate the controller parameters.

The proposed method not only guarantees the desired dynamic but also the stability margin.
Moreover, several simple formulas were deduced to calculate directly the controller parameters.
In addition, it performs almost no overshooting setpoint response because the desired dynamic is in
critically damped system. Compared with Panagopoulos’ method [15], the settling time is shortened
and the overshooting is drastically decreased, while the maximum sensitivity stays the same.

This paper is organized as follows. Section 2 describes the related tuning methods (i.e., the desired
dynamics equation method and the generalized frequency method) and the steps of setting the
controller parameters. Section 3 offers some examples with simulations to illustrate the analysis of
the controller parameters in detail. A comparison with Panagopoulos’ method is also included in this
section. Section 4 is the conclusion.

2. The Related Tuning Methods

2.1. The Desired Dynamics Equation (DDE) Method

Consider the transfer function given by:

Gp(s) =

r
∑

i=0
bisi

n
∑

j=0
ajsj

(1)

where aj and bi are unknown parameters. It can be transformed to the following state space form:
.
z1 = z2
.
z2 = f

(
z1, z2, · · · , zn, u,

.
u, · · · , u(r)

)
+ lu

y = z1

(2)
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where u,
.
u, · · · , u(r) are the plant input and its derivatives; y is the plant output; z1, z2, · · · , zn are

the system states; l is a proper positive constant number; and f
(

z1, z2, · · · , zn, u,
.
u, · · · , u(r)

)
is the

total disturbance.
The desired dynamic equation is as follows:

Y(s)
R(s)

=
h0

s2 + h1s + h0
(3)

To reach Equation (3), the corresponding control law should be:

u =
[
−h0(z1 − yr)− h1z2 − f̂

]
/l (4)

where h0 and h1 are the coefficient of the desired dynamic and are determined by the requirements of
the control system; and f̂ is the estimation of total disturbance f

(
z1, z2, · · · , zn, u,

.
u, · · · , u(r)

)
.

To obtain the estimation of total disturbance f̂ , the following disturbance observer is used.{
f̂ = ξ + kz2.
ξ = −kξ − k2z2 − klu

(5)

where k is the coefficient of the disturbance observer and indicates the speed of tracking disturbance;
and ξ is an intermediate variable.

Equation (5) structures a disturbance observer. Equation (4) offers the control law to achieve
the desired dynamic Equation (3). The disturbance observer estimates the total disturbance and
compensates the systems to be the desired dynamic in real time and dynamically.

By substituting Equations (2), (3) and (5) into Equation (4), we can obtain

u =
(h0 + kh1)e + kh0

∫
edt + (h1 + k)

.
e− kh1yr

l
(6)

where yr is the target value; and e is the error between the plant output and the target value.
The detailed derivation is shown in Appendix A.

From Equation (6), we can obtain the two-degree-of-freedom PID controller parameters,
kp = (h0 + kh1)/l
ki = kh0/l
kd = (h1 + k)/l
b = kh1/l

. (7)

The corresponding two-degree-of-freedom PID controller structure is shown in Figure 1.

Figure 1. Two-degree-of-freedom proportional-integral-derivative (PID) controller structure.

When the desired dynamic equation is as follows:

Y(s)
R(s)

=
h0

s + h0
, (8)
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we can analogously obtain the two-degree-of-freedom PID controller parameters,
kp = (h0 + k)/l
ki = kh0/l
b = k/l

. (9)

In general, the DDE endows the 2-DOF PID controller parameters with clear physical meaning,
which makes some of the parameters specified and then decreases the number of unknown parameters.
Moreover, the model error is imposed into the total disturbance and is compensated, so the precise
model is not necessary.

2.2. Generalized Frequency Method (GFM)

The GFM can calculate the controller parameters directly and analytically and can accurately
guarantee the specified stability margin with only one parameter, which is called the attenuation index
m. The attenuation index m determines the two rays, which shape a sector area shown in Figure 2,
and the GFM can make all the closed-loop poles lie in the resulting sector area. The equation of the two
rays is s = −|mω|+ jω, where m > 0, m = tan α. m is a constant and α is the included angle between
the ray and the imaginary axis.

Figure 2. Generalized frequency characteristic.

The stability margin increases with attenuation index m. Each pair of conjugate complex poles
have a corresponding mn, mn = tan β and the corresponding mn equal to infinity for the real poles.
The minimum mn is equal to the specified attenuation index m, i.e., min{mn} = m.

Next, we will illustrate the relationship between the maximum sensitivity (Ms) and the attenuation
index m to explain the rationality of the attenuation index m as the stability margin criterion. G(s) =
1/(s + 1)4 is taken as an example. Substitute s = −mω + jω into G(s), and the Nyquist plots of
m = 0, 0.1, 0.2 are shown in Figure 3.

In Figure 3, the Nyquist plots are shown with full lines, and m = 0, m = 0.1, and m = 0.2 are
respectively shown with a red line, green line, and blue line; dashed lines represent the maximum
sensitivity Ms = 1/R and the dashed red line, green line, and blue line respectively represent R0, R1,
and R2. The stability margin of G(−mω + jω) decreases with the attenuation index m increasing. So,
when designing the controller parameters, make the transfer function G(−mω + jω)C(−mω + jω) to
give G(jω)C(jω) as the stability margin, where C represents the transfer function of the controller.
From above, the attenuation index m can give a system stability margin in parameter design stage,
and thus, it can be a stability margin criterion.
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Figure 3. The relation between the maximum sensitivity Ms and the attenuation index m in
Nyquist plots.

2.3. Setting PID Controllers Parameters

In this subsection, first a set of tuning equations is derived, and then, controller parameters are
analyzed. Finally, the steps of the tuning method are given.

For the control system in Figure 1, its stability is determined by the closed-loop characteristic equation:

1 +
(
kp + ki/s + kds

)
Gp(s) = 0. (10)

Substitute s = −mω + jω into Equation (10), define Gp(−mω + jω) = M0(m, ω)ejϕ0(m,ω),
and compare the real and imaginary parts; the following equation is obtained

kp = − 1
M0(m,ω)

[
m sin ϕ0(m, ω)

+ cos ϕ0(m, ω)

]
+ 2mωkd

ki = ω
(
1 + m2)[ωkd − 1

M0(m,ω)
sin ϕ0(m, ω)

] (11)

Under certain m, Equation (11) structures a marginal stability surface with various ω.
The marginal stability surface divides the

(
kp, ki, kd

)
space into two parts: meeting stability margin

and not meeting stability margin.
Employing the following variable substitution,{

p = 1/l
q = k/l

, (12)

Equation (7) is expressed as 
kp = h0 p + h1q
ki = qh0

kd = ph1 + q
b = qh1

. (13)

Substitute Equation (13) into Equation (11), and the following equation is obtained
(h1 − 2mω)q + (h0 − 2mωh1)p
= −m sin ϕ0(m,ω)+cos ϕ0(m,ω)

M0(m,ω)[
h0 −ω2(1 + m2)]q−ω2(1 + m2)h1 p

= −ω(1+m2) sin ϕ0(m,ω)

M0(m,ω)

. (14)
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Under certain h0, h1, m and ω, Equation (14) becomes a linear equation. Then, if its Jacobian
determinant J is nonsingular, it has a unique local solution (q, p). Under various ω and certain h0, h1

and m, Equation (14) has a unique local solution curve (q(ω), p(ω)) (i.e., marginal stability curve).
The marginal stability curve divides the (q, p) plane into two parts: meeting stability margin and not
meeting stability margin. The curve is the contour. Then, once an appropriate work point in the contour
is obtained, the controller parameters can be calculated. The method of choosing a work point is shown
after the analysis of the parameter k, because the parameter k can influence the choosing method.

Next, the function of the controller parameters (h0, h1, m, k) is analyzed, and the method for
obtaining them is shown.

h0 and h1 are coefficients of the desired dynamic equation. They are chosen based on the
requirements of control system, such as settling time, overshooting, and so on. Because the desired
dynamic equation is a second-order system, h0 and h1 can be calculated according to the second-order
system, as follows:

h1 = 2ζωn = 8/tsd, h0 = h2
1/4ζ2. (15)

where tsd is the desired settling time; ζ is the damping of desired dynamic system; and ωn is the
natural frequency of desired dynamic system.

In order to make the overshooting as small as possible and make the settling time as short as
possible, ζ = 1 is chosen. Considering the error between the actual dynamic and the desired dynamic,
Equation (15) becomes

h1 =
8 ∼ 25

tsd
, h0 = h2

1/4. (16)

The stability margin increases with the increasing of the attenuation index m. It is well-known that
there is a trade-off between performance and robustness [26,27]. Therefore, choosing an appropriate m
is important to avoid the conflict with both h0 and h1. According to our experience, the reasonable
selecting region of m is generally (0.2, 2). One other thing to note is that a greater m is needed when
the model is imprecise.

Combine Equation (2) with Equation (5) and do a Laplace transform, and the following equation
is obtained:

f̂ =
k

s + k
f . (17)

Its derivation is shown in Appendix B.
As shown in Equation (17), the response rate of the disturbance observer speeds up with k

increasing. So, the work point should be chosen nearby the q-axis in order to make k as large as
possible because k = q/p in the (q, p) plane.

The work point is chosen as follows.
First, substitute q = 0 into Equation (14), and the following equation is obtained.

(h0 − 2mωh1)

= −m sin(ϕ0(m,ω))+cos(ϕ0(m,ω))
M0(ϕ0(m,ω))

ωh1 p = sin(ϕ0(m,ω))
M0(ϕ0(m,ω))

. (18)

Solve Equation (18), and pq=0 and ωq=0 can be obtained.
Then, define

p∗ = pq=0/( 10 ∼ 50) (19)

and substitute p∗ into Equation (14), so q∗ and ω∗ can be obtained. The point (q∗, p∗) is the work point
in the (q, p) plane.

Finally, substitute p∗ and q∗ into Equation (13), and the controller parameters are obtained.
The steps of setting the controller parameters are shown as follows:
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(1) Obtain the system model and choose proper h0, h1 and m values according to the requirements
of system;

(2) Solve Equation (18), and then get pq=0 and ωq=0;
(3) Get p∗ from Equation (19), substitute p∗ into Equation (14), and then get q∗ and ω∗;
(4) Substitute p∗ and q∗ into Equation (13) to calculate the controller parameters. If there are

closed-loop poles outside of the sector area, decrease both h0 and h1 simultaneously or only m,
and then turn to step (2); otherwise, continue;

(5) Do the step response and calculate the settling time and overshooting. If the settling time is not
met, then increase both h0 and h1 or decrease m, and turn to step (2); if the overshooting is too
great, then decrease both h0 and h1 or increase m, and turn to step (2); otherwise, continue;

(6) End.

3. Illustrative Examples

To demonstrate the application of the 2DOF PID tuning method proposed in the previous sections,
now the simulation results for different processes are presented using MATLAB. In this section,
firstly the previous theoretical analysis of the controller parameters is verified with simulation. Then,
compared with Panagopoulos’ method [15], the proposed method is effective and superior.

3.1. PID Controller Parameters Analysis with Simulation

In this subsection, the influence of the controller parameters (m, k, h0, h1) will be analyzed
through simulation.

Consider a process given by G = 1
(s+1)3 .

If the settling time is less than 10 s, the desired dynamic coefficient (h0, h1) can be calculated from
Equation (16). h1 = 1.5 and h0 = 0.5625 are chosen. The m contours are shown in Figure 4 where m is
equal to 0.5, 0.6, 0.7, and 0.8 respectively.

As shown in Figure 4, the greater the m, the closer to origin the contour. Parameter ω increases in
the counter-clockwise direction. In order to analyze the influence of parameter m and parameter k on the
behavior of the closed-loop time response and the frequency response, seven points A, B, C, D, E, F, and
G are chosen. Among them, points C, D, E, and F are characterized by the same stability margin m = 0.6,
and points A, B, C and G are characterized by roughly the same disturbance observer coefficient k, which
is big enough. The coordinates of the seven points in the (q, p) plane are listed in Table 1.

Figure 4. The m contours.
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Table 1. The coordinates of points from A–G in the (q, p) plane.

A B C D E F G

q 1.398 1.689 2.128 1.967 1.342 0.4648 2.84
p 0.0895 0.0903 0.1106 0.7344 1.567 2.475 0.1279

The closed-loop time response and the closed-loop frequency response of process G(s) for points
C, D, E, and F are shown in Figures 5–7, which show the influence of parameter k. In the time response
case, load disturbance is introduced at t = 50 s.

Figure 5. The time response of process G(s) for points C, D, E, and F. Load disturbance is introduced
at t = 50 s.

On the one hand, from the simulation results of Figure 5, it can be observed that the setpoint
response is closer to the desired dynamic with the increasing k. Furthermore, the influence of k is
weakened when k adds up to certain values that are too great. In Figure 6, the frequency characteristic
of the low-frequency range is closer to the desired dynamic with the increasing k. On the other hand,
in Figure 5, the load disturbance response is also improved with the increasing k. The reason is that
the integral coefficient ki enlarges with the increasing k. In addition, the influence of k is weakened
when k adds up to certain high values. In Figure 7, the amplitude of the low-frequency range is lower
with the increasing k.

Figure 6. The closed-loop setpoint frequency response of the process G(s) for points C, D, E, and F.
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Figure 7. The closed-loop load disturbance frequency response of the process G(s) for points C, D, E,
and F.

The closed-loop time response and the closed-loop frequency response of process G(s) for points
A, B, C, and G are shown in Figures 8–10 from which the influence of parameter m can be seen. In the
time response case, the load disturbance is introduced at t = 25 s.

On the one hand, in Figure 8, the setpoint response rate is slower with the increasing m. In Figure 9,
the magnitude of the low-frequency range is also closer to 0 dB. On the other hand, in Figure 8, the load
disturbance response is deteriorated with the increasing m. In Figure 10, it is shown that the magnitude
of the low-frequency range is higher with a greater m. The above phenomena are a result of the stability
margin increasing with the increasing m, and there is a trade-off between performance and robustness.

Figure 8. The time response of process G(s) for points A, B, C, and G. Load disturbance is introduced
at t = 25 s.

Figure 9. The closed-loop setpoint frequency response of the process G(s) for points A, B, C, and G.
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Figure 10. The closed-loop load disturbance frequency response of the process G(s) for points A, B, C,
and G.

To demonstrate the influence of h0 and h1, the same m and = different (h0, h1) are chosen, and
then, the h contours are depicted in Figure 11 where m = 0.6 and (h0, h1) are respectively equal to
(0.36, 1.2), (0.5625, 1.5), and (0.81, 1.8).

Figure 11. The h contours.

As shown in Figure 11, the h contour is closer to the origin with the increasing of both h0 and h1.
To analyze the influence of both h0 and h1, three points H, C, and I were chosen. The coordinates of
these points in the (q, p) plane are listed in Table 2.

Table 2. The coordinate of points H, C, and I in the (q, p) plane.

H C I

q 1.546 2.128 2.712
p 0.0927 0.1106 0.1251

The closed-loop time response and the closed-loop frequency response of process G(s) for points
H, C, and I are shown in Figures 12 and 13, which show the influence of the parameters h0 and h1.
In the time response case, the load disturbance is introduced at t = 25 s.

On the one hand, Figure 12 shows that the setpoint time response speeds up by increasing both h0

and h1. From Figure 13, it can be observed that the magnitude of the low-frequency range is closer to
0 dB. The above phenomena result from the fact that the desired dynamic is faster with greater h0 and
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h1. On the other hand, Figure 12 also shows that the load disturbance response returns to the target
faster, and the peak is higher with greater h0 and h1.

Figure 12. The closed-loop time response of process G(s) for points H, C, and I.

Figure 13. The closed-loop setpoint frequency response of the process G(s) for points H, C, and I.

The simulation results of the nine points A~I have not only shown the influence of the parameters
(m, k, h0, h1), but also prove that the specified stability margin can be met as follows. All the closed-loop
poles of points from A to I are shown in Table 3, and it can be seen that all the closed-loop poles lie in
the specified sector region. From Table 3, it can be also observed that among all the mn corresponding
to the poles, the smallest is equal to the previous specified m.

Table 3. The closed-loop poles and the corresponding smallest m of all points A~ I.

The Closed-Loop Poles The Smallest mn

A −0.868 + 1.085i −0.868 − 0.085i −0.632 + 0.089i −0.632 − 0.089i 0.8
B −0.8456 + 1.2079i −0.8456 − 1.2079i −0.6544 + 0.0939i −0.6544 − 0.0939i 0.7
C −0.8316 + 1.3859i −0.8316 − 1.3859i −0.6684 + 0.1071i −0.6684 − 0.1071i 0.6
D −0.9996 + 1.666i −0.9996 − 1.666i −0.5004 + 0.2067i −0.5004 − 0.2067i 0.6
E −1.1377 + 1.896i −1.1377 − 1.896i −0.3623 + 0.152i −0.3623 − 0.152i 0.6
F −1.2462 + 2.0772i −1.2462 − 2.0772i −0.3947 −0.1129 0.6
G −0.8145 + 1.6289i −0.8145 − 1.6289i −0.6855 + 0.1083i −0.6855 − 0.1083i 0.5
H −0.6852 + 1.142i −0.6852 − 1.142i −0.8148 + 0.2052i −0.8148 − 0.2052i 0.6
I −0.9654 + 1.6088i −0.9654 − 1.6088i −0.6266 −0.4426 0.6

3.2. Comparison with Panagopoulos’ Method

This section will present the results compared with Panagopoulos’ method [15] to show the
superiority of the proposed tuning method.
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The control law of Panagopoulos’ method is as follows:
u(t) = k(b1y′r(t)− y(t)) + k

Ti

t∫
0
(y′r(τ)− y(τ))dτ

+kTd

(
− dy(t)

dt

)
y′r(s) =

1
(1+sTsp)

yr(s)

Under the condition that Ms = 2, eight different processes [15] serve as examples. The eight
processes cover high–order process, non–minimum phase process, time–delay process, and integrating
process, which are listed as follows:

G1 =
1

s(s + 1)3

G2 =
e−5s

(s + 1)3

G3 =
1

(s + 1)(0.2s + 1)(0.04s + 1)(0.008s + 1)

G4 =
1

(s + 1)4

G5 =
1

(s + 1)5

G6 =
1

(s + 1)6

G7 =
1

(s + 1)7

G8 =
−2s + 1

(s + 1)3

Table 4 collects the related parameters of the DDE−GFM, including h0, h1, m, kp, ki, kd, and b,
and the related parameters of Panagopoulos’ method, which covers k, Ti, Td, b1 and Tsp.

Table 5 presents the position of the work point in the (q, p) plane of the DDE−GFM and the
control signal and time response of the two methods. On the one hand, it can be seen that the work
points of all the processes are positive, as well as the nearby q−axis, which can make parameter k large
enough. Consequently, the estimation of the total disturbance is more precise. On the other hand,
the settling time of the DDE−GFM for G3 and G8 is obviously shorter than that of Panagopoulos’
method. Moreover, compared with Panagopoulos’ method, the overshooting of the DDE−GFM is
substantially smaller, except for G3 for which the overshooting is zero.

Table 4. The related parameters of the DDE−GFM and Panagopoulos’ method.

DDE–GFM Panagopoulos’ Method

h0 h1 m kp ki kd b k Ti Td b1 Tsp

G1 0.0625 0.5 0.35 0.6999 0.0863 1.4594 0.69 0.68 4.5 2.27 0 0.08
G2 0.25 1 0.5 0.5495 0.1365 0.5608 0.5458 0.555 3.21 1.74 0 1.61
G3 16 8 0.35 44.767 88.768 5.7393 44.384 43.13 0.189 0.13 0 0.81
G4 0.49 1.4 0.35 2.1591 0.7389 1.6449 2.1112 2.27 1.91 0.98 0 0.53
G5 0.25 1 0.3 1.6934 0.4118 1.8324 1.647 1.47 2.33 1.25 0 0.72
G6 0.16 0.8 0.3 1.3189 0.2605 1.7107 1.3024 1.15 2.74 1.49 0 0.97
G7 0.2025 0.9 0.4 0.9721 0.2149 1.1373 0.9549 0.982 3.14 1.73 0 1.24
G8 0.64 1.6 0.85 0.5757 0.2276 0.3722 0.5691 0.542 2.07 0.79 0 1.03
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Table 5. The simulation results covering the position of the work point in the (q, p) plane and the control signal and time response comparing the DDE−GFM and
Panagopoulos’ method.

Process Work Point in (q, p) Plane Control Signal of DDE−GFM and
Panagopoulos’ Method

Time Response of DDE−GFM and
Panagopoulos’ Method

G1

G2

G3
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Table 5. Cont.

Process Work Point in (q, p) Plane Control Signal of DDE−GFM and
Panagopoulos’ Method

Time Response of DDE−GFM and
Panagopoulos’ Method

G4

G5

G6



Algorithms 2018, 11, 48 15 of 18

Table 5. Cont.

Process Work Point in (q, p) Plane Control Signal of DDE−GFM and
Panagopoulos’ Method

Time Response of DDE−GFM and
Panagopoulos’ Method

G7

G8



Algorithms 2018, 11, 48 16 of 18

Further details of the simulation results can be seen in Table 6, which includes the settling
time, the overshooting, the integral absolute error (IAE), and the maximum sensitivity Ms of the
two methods. It can be seen that the settling time is shortened by 15~60%. Except for G3 for which
the overshooting is zero, the overshooting of the other processes are all reduced by more than 70%.
Furthermore, the overshooting of G5, G6, and G8 are even directly reduced to zero. The IAE index of
the two methods for each process are approximately equal except for that of G3 for which the IAE
index is approximately zero. In addition, the maximum sensitivity Ms of two methods for all the
processes are equal to 2.

Table 6. The performance for the DDE−GFM and Panagopoulos’ method.

Methods Settling Time
(s)

Overshooting
(%) IAE Ms

G1
DDE−GFM 16.952 1.56 11.96 2

Panagopoulos’ 28.678 16.77 9.252 2

G2
DDE−GFM 24.232 6.89 8.6902 2

Panagopoulos’ 39.392 21.68 9.1035 2

G3
DDE−GFM 1.4 0 0.0113 2

Panagopoulos’ 3.344 0 0.0058 2

G4
DDE−GFM 11.368 0.57 1.441 2

Panagopoulos’ 13.022 23.47 1.3511 2

G5
DDE−GFM 15.468 0 2.4522 2

Panagopoulos’ 19.429 27.24 2.749 2

G6
DDE−GFM 20.829 0 3.8433 2

Panagopoulos’ 25.273 27.39 4.1654 2

G7
DDE−GFM 24.521 2.81 5.2316 2

Panagopoulos’ 30.931 26.72 5.5291 2

G8
DDE−GFM 11.003 0 5.67 2

Panagopoulos’ 17.027 10.19 6.1111 2

4. Conclusions

A new tuning method is proposed for a two-degree-of-freedom PID controller, which combines
the advantages of the DDE and the GFM. Firstly, choose appropriate h0, h1, and m. Secondly, calculate
pq=0 using Equation (18). Thirdly, calculate p∗ using Equation (19), and then substitute p∗ into
Equation (14) to calculate q∗. Finally, substitute (q∗, p∗) into Equation (13), and then, calculate the
controller parameters. The main advantage of the proposed method is that the desired dynamic and
the stability margin can be guaranteed simultaneously. In addition, a set of formulas were obtained to
calculate the controller parameters. Moreover, the method can perform a fast setpoint response with
minimal overshooting. Compared with Panagopoulos’ method, the proposed method is more effective
and superior.
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Appendix

From Equation (5), the following equation is obtained:

u = −(ξ + kz2)/l− .
ξ/kl. (A1)
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Substitute f̂ = ξ + kz2 into Equation (4), and the following equation is obtained:

u = − ξ + kz2

l
− h0(z1 − yr) + h1z2

l
. (A2)

Compare Equation (A1) with Equation (A2); the following equation is obtained:

.
ξ = kh0(z1 − yr) + kh1z2. (A3)

Integrate Equation (A3), and the following equation is obtained:

ξ = kh0

∫
(z1 − yr)dt + kh1z1. (A4)

Substitute Equation (A4) into Equation (A2), and define e = yr − z1; the following equation is
obtained:

u = − kh0
∫
(z1−yr)dt+kh1z1+kz2

l − h0(z1−yr)+h1z2
l

=
(h0+kh1)e+kh0

∫
edt+(h1+k)

.
e−kh1yr

l

(A5)

Appendix

Take the derivative of the first equation in Equation (5), and the following equation is obtained:

.
f̂ =

.
ξ + k

.
z2 (A6)

Substitute the second equation in Equation (5) and the second equation in Equation (2) into
Equation (A6), and the following equation is obtained:

.
f̂ = −k(ξ + kz2) + k f (A7)

Substitute the second equation in Equation (5) into Equation (A7), and the following equation is
obtained: .

f̂ = −k f̂ + k f (A8)

Take the Laplace transform of Equation (A8), and the following equation is obtained:

f̂ =
k

s + k
f (A9)
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