
Article

Evaluating Typical Algorithms of Combinatorial
Optimization to Solve Continuous-Time Based
Scheduling Problem

Alexander A. Lazarev *, Ivan Nekrasov *,† and Nikolay Pravdivets †

Institute of Control Sciences, 65 Profsoyuznaya Street, 117997 Moscow, Russia; pravdivets@ya.ru
* Correspondence: jobmath@mail.ru (A.A.L.); ivannekr@mail.ru (I.N.); Tel.: +7-495-334-87-51 (A.A.L.)
† These authors contributed equally to this work.

Received: 22 February 2018; Accepted: 12 April 2018; Published: 17 April 2018
����������
�������

Abstract: We consider one approach to formalize the Resource-Constrained Project Scheduling
Problem (RCPSP) in terms of combinatorial optimization theory. The transformation of the original
problem into combinatorial setting is based on interpreting each operation as an atomic entity that has
a defined duration and has to be resided on the continuous time axis meeting additional restrictions.
The simplest case of continuous-time scheduling assumes one-to-one correspondence of resources and
operations and corresponds to the linear programming problem setting. However, real scheduling
problems include many-to-one relations which leads to the additional combinatorial component in
the formulation due to operations competition. We research how to apply several typical algorithms
to solve the resulted combinatorial optimization problem: enumeration including branch-and-bound
method, gradient algorithm, random search technique.

Keywords: RCPSP; combinatorial optimization; scheduling; linear programming; MES; Job Shop

1. Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) has many practical applications.
One of the most obvious and direct applications of RCPSP is planning the fulfilment of planned orders
at the manufacturing enterprise [1] that is also sometimes named Job Shop. The Job Shop scheduling
process traditionally resides inside the Manufacturing Execution Systems scope [2] and belongs to
principle basic management tasks of any industrial enterprise. Historically the Job Shop scheduling
problem has two formal mathematical approaches [3]: continuous and discrete time problem settings.
In this paper, we research the continuous-time problem setting, analyze its bottlenecks, and evaluate
effectiveness of several typical algorithms to find an optimal solution.

The continuous-time Job Shop scheduling approach has been extensively researched and applied
in different industrial spheres throughout the past 50 years. One of the most popular classical problem
settings was formulated in [4] by Manne as a disjunctive model. This problem setting forms a basic
system of restrictions evaluated by different computational algorithms depending on the particular
practical features of the model used. A wide overview of different computational approaches to the
scheduling problem is conducted in [5,6]. The article [5] considers 69 papers dating back to the XX
century, revealing the following main trends in Job Shop scheduling:

- Enumerating techniques
- Different kinds of relaxation
- Artificial intelligence techniques (neural networks, genetic algorithms, agents, etc.)

Artificial intelligence (AI) techniques have become mainstream nowadays. The paper [6] gives a
detailed list of AI techniques and methods used for scheduling.

Algorithms 2018, 11, 50; doi:10.3390/a11040050 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/11/4/50?type=check_update&version=1
http://www.mdpi.com/journal/algorithms
http://dx.doi.org/10.3390/a11040050

Algorithms 2018, 11, 50 2 of 13

From the conceptual point of view, this paper deals with a mixed integer non-linear (MINLP)
scheduling problem [5] that is relaxed to a combinatorial set of linear programming problems due to the
linear “makespan” objective function. As a basic approach we take the disjunctive model [4]. A similar
approach was demonstrated in [7] where the authors deployed the concept of parallel dedicated
machines scheduling subject to precedence constraints and implemented a heuristic algorithm to
generate a solution.

2. Materials and Methods

In order to formalize the continuous-time scheduling problem we will need to introduce several
basic definitions and variables. After that, we will form a system of constraints that reflect different
physical, logical and economic restrictions that are in place for real industrial processes. Finally,
introducing the objective function will finish the formulation of RCPSP as an optimization problem
suitable for solving.

2.1. Notions and Base Data for Scheduling

Sticking to the industrial scheduling also known as the Job Shop problem, let us define the main
notions that we will use in the formulation:

• The enterprise functioning process utilizes resources of different types (for instance machines,
personnel, riggings, etc.). The set of the resources is indicated by a variable R = {Rr},
r = 1, . . . , |R|.

• The manufacturing procedure of the enterprise is formalized as a set of operations J tied with
each other via precedence relations. Precedence relations are brought to a matrix G =< gij >,
i = 1, . . . , |J|, j = 1, . . . , |J|. Each element of the matrix gij = 1 iff the operation j follows the
operation i and zero otherwise gij = 0.

• Each operation i is described by duration τi. Elements τi, i = 1, . . . , |J|, form a vector of operations’
durations −→τ.

• Each operation i has a list of resources it uses while running. Necessity for resources for
each operation is represented by the matrix Op =< opir >, i = 1, . . . , |J|, r = 1, . . . , |R|.
Each element of the matrix opir = 1 iff the operation i of the manufacturing process allocates the
resource r. All other cases bring the element to zero value opir = 0.

• The input orders of the enterprise are considered as manufacturing tasks for the certain amount
of end product and are organized into a set F. Each order is characterized by the end product
amount v f and the deadline d f , f = 1, . . . , |F|. Elements inside F are sorted in the deadline
ascending order.

Using the definitions introduced above, we can now formalize the scheduling process as residing
all |J| operations of all |F| orders on the set of resources R. Mathematically this means defining the
start time of each operation i = 1, . . . , |J| of each order f = 1, . . . , |F|.

2.2. Continuous-Time Problem Setting

The continuous-time case is formulated around the variables that stand for the start moments of
each operation i of each order f : xi f ≥ 0, i = 1, . . . , |J|, f = 1, . . . , |F| [3]. The variables xi f ≥ 0 can
be combined into |F| vectors −→x f ≥ 0. The main constraints of the optimization problem in that case are:

• Precedence graph of the manufacturing procedure:

G−→x f ≥ (−→x f +
−→τ), f = 1, . . . , |F|.

• Meeting deadlines for all orders

x|J| f + τ|J| ≤ d f , f = 1, . . . , |F|.

Algorithms 2018, 11, 50 3 of 13

The constraints above do not take into consideration the competition of operations that try to
allocate the same resource. We can distinguish two types of competition here: competition of operations
within one order and competition of operations of different orders. The competition of operations on
parallel branches of one order is considered separately by modelling the scheduling problem for a
single order (this is out of the scope of this paper). The main scope of this research is to address the
competition of operations from different orders. Assuming we have the rule (constraint) that considers
the competition of operations within one and the same order let us formalize the competition between
the operations of different orders. Consider we have a resource, which is being allocated by K different
operations of |F| different orders.

For each resource r = 1, . . . , |R| let us distinguish only those operations that allocate it during
their run. The set of such operations can be found from the corresponding column of the resource
allocation matrix Op =< opir >, i = 1, . . . , |J|, r = 1, . . . , |R|.

xr = x|colr(Op) = 1.

The example for two competing operations of two different orders is shown in Figure 1.

Figure 1. Competing operations on one resource.

For each resource r = 1, . . . , |R| each competing operation i = index(xr) = 1, . . . , K of order
f = 1, . . . , |F| will compete with all other competing operations of all other orders, i.e., going back to
the example depicted in Figure 1 we will have the following constraint for each pair of operations:

xiϕ ≥ xjψ + τj XOR xjψ ≥ xiϕ + τi,

where indexes are as follows i, j = 1, . . . , K; ϕ, ψ = 1, . . . , |F|; ϕ 6= ψ. Implementing an additional
Boolean variable ck ∈ {0, 1} will convert each pair of constraints into one single formula:

ck · xi,ϕ + (1− ck) · xjψ ≥ ck · (xjψ + τj) + (1− ck) · (xiϕ + τi).

From the above precedence constraints, we can form the following set of constraints for the
optimization problem:

gi,j · xi, f ≥ xi, f + τi, f = 1, . . . , |F|, i = 1, . . . , |J|, j = 1, . . . , |J|, (1)

x|J| f + τ|J| ≤ d f , f = 1, . . . , |F|, (2)

ck · xi,ϕ + (1− ck) · xjψ ≥ ck · (xjψ + τj) + (1− ck) · (xiϕ + τi), ϕ, ψ = 1, . . . , |F|, ϕ 6= ψ, (3)

xi f > 0, f = 1, . . . , |F|,
ck ∈ {0, 1}, k = 1, . . . , K.

Algorithms 2018, 11, 50 4 of 13

where the variables xi f > 0, f = 1, . . . , |F|, i = 1, . . . , |J| are continuous and represent the start times
of each operation of each order; and variables ck ∈ {0, 1}, k = 1, . . . , K are Boolean and represent the
position of each competing operation among other competitors for each resource.

2.3. Combinatorial Optimization Techniques

From the mathematical point of view, the resulting basic problem setting belongs to linear
programming class. The variables ck ∈ {0, 1}, k = 1, . . . , K form a combinatorial set of subordinate
optimization problems [8]. However, we must suppress that the combinatorial set ck ∈ {0, 1},
k = 1, . . . , K, is not full as the sequence of operations within each order is dictated by manufacturing
procedure. Consequently, the number of combinations is restricted only to those variants when the
operations of different orders trade places without changing their queue within one order. Let us
research possible ways to solve the given combinatorial set of problems. In this article, the optimization
will be conducted with “makespan” criterion formalized with the formula:

|F|

∑
f=1

x|J| f → min.

2.3.1. Enumeration and Branch-and-Bound Approach

Enumerating the full set of combinations for all competing operations is an exercise of exponential
complexity [9]. However, as we have mentioned above the number of combinations in constraint (3)
is restricted due to other constraints (2) and (1). The precedence graph constraint (1) excludes the
permutations of competing operations within one order making the linear problem setting non-feasible
for corresponding combinations. The way we enumerate the combinations and choose the starting
point of enumeration also influences the flow of computations significantly. The common approach to
reducing the number of iterations in enumeration is to detect the forbidden areas where the optimal
solution problem does not exist (e.g., the constraints form a non-feasible problem or multiple solutions
exist). The most widely spread variant of the technique described is branch-and-bound method [10]
and its different variations.

Let us choose the strategy of enumerating permutations of operations in such a way that it
explicitly and easily affords to apply branch-and-bound method. The starting point of the enumeration
will be the most obvious positioning of orders in a row as shown in Figure 2. We start from the point
where the problem is guaranteed to be solvable—when all orders are planned in a row—which means
that the first operation of the next order starts only after the last operation of the previous order is
finished. If the preceding graph is correct and the resources are enough that means the single order
can be placed on the resources that are totally free (the problem is solvable—we do not consider the
unpractical case when the graph and/or resources are not enough to fulfill a single order). Infeasibility
here can be reached only in the case when we start mixing the orders. This guarantees that the linear
programming problem is solvable, however, this combination is far from being optimal/reasonable.

Figure 2. Initial state: all orders are placed in a row.

Algorithms 2018, 11, 50 5 of 13

The enumeration is organized by shifting the operations of the last order to the left in such a way
that they trade their places with previous competing operations of preceding orders (see Figure 3).
As soon as the operation reaches its leftmost feasible position and the current combination corresponds
to a linear programming problem with no solution we roll back to the previous combination,
stop shifting operations of the last order and switch to the operations of the previous order. After the
enumeration for orders on the current resource is over, we proceed the same iterations with the
next resource. The formal presentation of the designed branch-and-bound algorithm is described by
Procedure 1.

Procedure 1: branch-and-bound

1. Find the initial solution of the LP problem (1)–(3) for the combination ck ∈ {0, 1}, k = 1, . . . , K
that corresponds to the case when all orders are in a row (first operation of the following order starts
only after the last operation of preceding order is completed).

2. Remember the solution and keep the value of objective function Φ as temporarily best result
Opt = Φ.

3. Select the last order f = |F|.
4. Select the resource r = |R| that is used by last operation i = |J| of the precedence graph G of

the manufacturing process.
5. The branch < i, r, f > is now formulated.
6. Condition: Does the selected resource r have more than one operation in the manufacturing

procedure that allocates it?
6.1. If yes then

Begin evaluating branch < i, r, f >

Shift the operation i one competing position to the left
Find the solution of the LP problem (1)–(3) for current combination and calculate the

objective function Φ

Condition: is the solution feasible?
If feasible then

Condition: Is the objective function value Φ better than temporarily best result Opt?
If yes then

save current solution as the new best result Opt = Φ.
End of condition
Switch to the preceding operation i = i − 1 of currently selected order f for the

currently selected resource r.
Go to the p. 5 and start evaluating the new branch

If not feasible then
Stop evaluating branch < i, r, f >

Switch to the preceding resource r = r− 1
Go to the p. 5 and start evaluating the new branch

End of condition: is the solution feasible?
End of condition: p. 6
7. Switch to the preceding order f = f − 1
8. Repeat pp. 4–7 until no more branches < i, r, f > are available
9. Repeat pp. 3–8 until no more feasible shifts are possible for all operations in all branches.

Iterating combinations for one order on one resource can be considered as evaluating one
branch of the algorithm [10]. Finding the leftmost position for an operation is similar to detecting
a bound. Switching between branches and stopping on bounds is formalized with a general
branch-and-bound procedure.

Algorithms 2018, 11, 50 6 of 13

Figure 3. Permutations of competing operations in branch-and-bound algorithm.

2.3.2. Gradient-Alike Algorithm

The opposite of the mentioned above approach would be searching for a local minimum among
all combinations with a gradient algorithm [11]. Here, we will compute an analogue of the derivative
that is used to define the search direction at each point [12]. ‘Derivative’ for each competing operation
is calculated by trying to shift it by one position to the left. In case the objective function reduces
(or increases for maximization problems) we shift the operation to the left with the defined step
(the step ratio is measured in a number of position operation skips moving to the left). The formal
presentation of the designed gradient-alike algorithm is described by Procedure 2.

Procedure 2: gradient algorithm

1. Find the initial solution of the LP problem (1)–(3) for the combination ck ∈ {0, 1}, k = 1, . . . , K
that corresponds to the case when all orders are in a row (first operation of the following order starts
only after the last operation of preceding order is completed).

2. Remember the solution and keep the value of objective function Φ as temporarily best result
Opt = Φ.

3. Select the last order f = |F|.
4. Select the resource r = |R| that is used by first operation i = 1 of the sequence graph of the

manufacturing process.
5. The current optimization variable for gradient optimization is selected—position of

operation i of the order f on the resource r < i, r, f >.
6. Condition: Does the selected resource r have more than one operation in the manufacturing

procedure that allocates it?
6.1. If yes then

Begin optimizing position < i, r, f >

6.1.1. Set the step of shifting the operation to maximum (shifting to the leftmost position).
D(i, r, f) = max

6.1.2. Find the ‘derivative’ of shifting the operation i to the left
Shift the operation i one position to the left
Find the solution of the LP problem (1)–(3) for current combination and calculate the

objective function Φ

Condition A: is the solution feasible?
If feasible then

Condition B: Is the objective function value Φ better than temporarily best result Opt?
If yes then

We found the optimization direction for position < i, r, f >, proceed to p. 6.1.3
If not then

Algorithms 2018, 11, 50 7 of 13

No optimization direction for the current position < i, r, f >

stop optimizing position < i, r, f >

switch to the next operation i = i + 1
go to p 6 and repeat search for position < i + 1, r, f >

End of condition B
If not feasible then

No optimization direction for the current position < i, r, f >

stop optimizing position < i, r, f >

switch to the next operation i = i + 1
go to p 6 and repeat search for position < i + 1, r, f >

End of condition A
6.1.3. Define the maximum possible optimization step for the current position < i, r, f >,

initial step value D(i, r, f) = max
Shift the operation i left using the step D(i, r, f).
Find the solution of the LP problem (1)–(3) for current combination and calculate the

objective function Φ

Condition C: Is the solution feasible and objective function value Φ better than
temporarily best result Opt?

If yes then
save current solution as the new best result Opt = Φ

stop optimizing position < i, r, f >

switch to the next operation i = i + 1
go to p 6 and repeat search for position < i + 1, r, f >

If not then
reduce the step twice D(i, r, f) = D(i,r, f)

2 and repeat operations starting from p. 6.1.3
End of condition C

Switch to the next operation i = i + 1, go to p. 6 and optimize position < i, r, f >

7. Switch to the preceding resource r = r− 1
8. Repeat pp. 5–7 for currently selected resource < i, r− 1, f >

9. Switch to the preceding order f = f − 1
10. Repeat pp. 4–9 for currently selected order < i, r, f − 1 >.
11. Repeat pp. 3–10 until no improvements and/or no more feasible solutions exist.

The optimization variables in gradient algorithm represent positions of all competing operations
relative to each other. The maximum optimization step for each iteration is detected on-the-fly by
trying to shift the current operation to the leftmost position (as it is shown in Figure 4) that shows the
LP problem (1)–(3) is solvable and the objective function is improved.

Figure 4. Permutations of competing operations in gradient algorithm.

Algorithms 2018, 11, 50 8 of 13

3. Results of the Computational Experiment

As a reference trial example let us take the following scheduling problem. The manufacturing
procedure contains 13 operations that require 6 different resources. The schedule of the manufacturing
procedure for a single order is shown in Figure 5. In this example, we want to place two orders at the
depicted resources and start evaluating from the point ‘all orders in a row’ (see Figure 6).

Figure 5. Gannt diagram for single order manufacturing procedure.

Figure 6. Gannt diagram for starting point of two orders schedule optimization.

The results of evaluating branch-and-bound and gradient algorithm are placed in the following
Table 1. The resulting schedules are depicted in Figure 7 (for branch-and-bound algorithm) and
Figure 8 (for gradient algorithm).

Algorithms 2018, 11, 50 9 of 13

Figure 7. Branch-and-bound optimization result.

Figure 8. Gradient algorithm optimization result.

Results of analysis gives us understanding that for a modest dimensionality scheduling problem
both considered approaches are applicable. However, as the number of operations in manufacturing
procedure grows and the number of orders increases, we will experience an enormous growth of
algorithm iterations for enumeration (branch-and-bound) technique and the gradient-alike algorithm
will obviously detect local optimum as the best achievable solution (which means the optimization
results will differ more and more compared to the digits in Table 1). Rising difference between the
results is shown in Table 2.

Expanding the previous problem for a procedure of 500 operations in 2 orders we will get the
results presented in Table 3.

Algorithms 2018, 11, 50 10 of 13

Table 1. Algorithms test results: small number of operations (13 operations).

Algorithm
Resulting “Makespan”

Objective Function
Times of Orders Finished Full Number of Operations Permutations

(Including Non-Feasible)
Number of

Iterated Permutations
Number of Iterated

Non-Feasible Permutations
Calculation Time,

SecondsOrder 1 Order 2

B&B 235 86 149 318 25 11 3.6
gradient 238 91 147 318 18 4 2.8

Table 2. Results for 2 orders with number of operations increasing.

Number of
Operations Algorithm

Resulting “Makespan”
Objective Function

Times of Orders Finished Number of
Iterated Permutations

Number of Iterated
Non-Feasible Permutations

Calculation Time,
SecondsOrder 1 Order 2

25 B&B 348 134 214 71 29 5.4
gradient 358 139 219 36 9 3.1

50 B&B 913 386 527 201 59 25
gradient 944 386 558 84 22 3.7

65 B&B 1234 488 746 490 70 112
gradient 1296 469 826 126 66 11.2

100 B&B 1735 656 1079 809 228 288
gradient 1761 669 1092 677 83 237

Table 3. Algorithms test results: increased number of operations (500 operations).

Algorithm
Resulting “Makespan”

Objective Function
Times of Orders Finished Full Number of

Operations Permutations
(Including Non-Feasible)

Number of
Iterated Permutations

Number of
Iterated Non-Feasible

Permutations

Calculation Time,
SecondsOrder 1 Order 2

B&B 4909 1886 3023 Unknown ≈1200 (Manually stopped) Unknown (≈10% of total) Manually stopped after ≈7 h

Gradient 4944 1888 3056 Unknown ≈550 Unknown (≈30% of total) ≈3 h

Random
(gradient extension)

Trying implementing randomized algorithm led to high computation load of PC with no reasonable estimation of calculation time.
Time to start first gradient iteration from feasible point took enumeration of more than 1000 variants.

Algorithms 2018, 11, 50 11 of 13

4. Discussion

Analyzing the computational experiment result, we come to a classical research outcome that
to solve the global optimization problem effectively we need to find a more computationally cheap
algorithm that gives a solution closer to global optimum. Let us try several standard approaches to
improve the solution with non-exponential algorithm extensions.

4.1. Random Search as an Effort to Find Global Optimum

As mentioned above, the gradient algorithm, being more effective from the computational
complexity point of view, affords to find only local suboptimal solutions [12]. A typical extension to
overcome this restriction would be random search procedure. The main idea of this modification is to
iterate gradient search multiple times going out from different starting points [13]. In case the starting
points are generated randomly we can assume that the more repeating gradient searches we do the
higher the probability of finding a global optimum we achieve. There was some research conducted
in this area whose outcome recommends how many starting points to generate in order to cover the
problem’s acceptance region with high value of probability [14]. According to [14] the acceptable
number of starting points is calculated as

N · dim(Φ),

where N = 5 . . . 20, and dim(Φ) is the dimensionality of optimization problem being solved, i.e.,
for our case this is the number of all competing operations of all orders on all resources. The result of
applying random search approach is represented in Table 2.

The main barrier for implementing the random search procedure for the combinatorial scheduling
problem is generating enough feasible optimization starting points. As we can see from the results
in Table 2, number of failures to generate feasible starting point is much higher than the quantity
of successful trials. Leaning upon the results of enumeration algorithm in Table 1 we can assume
that the tolerance regions for optimization problem (1)–(3) are very narrow. Even from the trial
example in Table 1 we see that the number of feasible iterations (25) collect less than 10 percent of all
possible permutations (318) which leaves us very low probability of getting a feasible initial point for
further gradient optimization. Thus, we can make a conclusion that ‘pure’ implementation of random
search procedure will not give a huge effect but should be accompanied with some analytic process of
choosing feasible initial points of optimization. Such a procedure may be based on non-mathematical
knowledge such as industry or management expertise. From our understanding, this question should
be investigated separately.

5. Conclusions

Research of a continuous-time scheduling problem is conducted. We formalized the scheduling
problem as a combinatorial set [8] of linear programming sub problems and evaluated typical
computational procedures with it. In addition to the classical and estimated resulting conflict between
the “complexity” and “locality” of optimization algorithms we came to the conclusion that the classical
approach of randomization is unhelpful in terms of improving the locally found suboptimal solution.
The reason here is that the scheduling problem in setting (1)–(3) has a very narrow feasibility area
which makes it difficult to randomly detect a sufficient number of starting points for further local
optimization. The efficiency of random search might be increased by introducing a martial rule or
procedure of finding typical feasible starting points. The other effective global optimization procedures
are mentioned in a very short form and are left for further authors’ research. They are:

Algorithms 2018, 11, 50 12 of 13

• Genetic algorithms. From the first glance evolutionary algorithms [15] should have a good
application case for the scheduling problem (1)–(3). The combinatorial vector of permutations
ck ∈ {0, 1}, k = 1, . . . , K, seems to be naturally and easily represented as a binary crossover [15]
while the narrow tolerance region of the optimization problem will contribute to the fast
convergence of the breeding procedure. Authors of this paper leave this question for further
research and discussion.

• Dynamic programming. A huge implementation area in global optimization (and particularly in
RCPSP) is left for dynamic programming algorithms [16]. Having severe limitations in amount
and time we do not cover this approach but will come back to it in future papers.

The computation speed of the high dimension problem using an average PC is not satisfactory.
This fact forces authors to investigate parallel computing technologies. Future research assumes
adoption of created algorithms to a parallel paradigm, for instance, implementing map-reduce
technology [17].

Acknowledgments: This work was supported by the Russian Science Foundation (grant 17-19-01665).

Author Contributions: A.A.L. conceived conceptual and scientific problem setting; I.N. adopted the problem
setting for manufacturing case and designed the optimization algorithms; N.P. implemented the algorithms,
performed the experiments and analyzed the data.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Artigues, C.; Demassey, S.; Néron, E.; Sourd, F. Resource-Constrained Project Scheduling Models, Algorithms,
Extensions and Applications; Wiley-Interscience: Hoboken, NJ, USA, 2008.

2. Meyer, H.; Fuchs, F.; Thiel, K. Manufacturing Execution Systems. Optimal Design, Planning, and Deployment;
McGraw-Hill: New York, NY, USA, 2009.

3. Jozefowska, J.; Weglarz, J. Perspectives in Modern Project Scheduling; Springer: New York, NY, USA, 2006.
4. Manne, A.S. On the Job-Shop Scheduling Problem. Oper. Res. 1960, 8, 219–223, doi:10.1287/opre.8.2.219.
5. Jones, A.; Rabelo, L.C. Survey of Job Shop Scheduling Techniques. In Wiley Encyclopedia of Electrical and

Electronics Engineering; National Institute of Standards and Technology: Gaithersburg, ML, USA, 1999.
Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.1262&rep=rep1&type=pdf
(accessed on 10 April 2017).

6. Taravatsadat, N.; Napsiah, I. Application of Artificial Intelligent in Production Scheduling: A critical
evaluation and comparison of key approaches. In Proceedings of the 2011 International Conference
on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia, 22–24 January 2011;
pp. 28–33.

7. Hao, P.C.; Lin, K.T.; Hsieh, T.J.; Hong, H.C.; Lin, B.M.T. Approaches to simplification of job shop
models. In Proceedings of the 20th Working Seminar of Production Economics, Innsbruck, Austria,
19–23 February 2018.

8. Trevisan, L. Combinatorial Optimization: Exact and Approximate Algorithms; Stanford University: Stanford, CA,
USA, 2011.

9. Wilf, H.S. Algorithms and Complexity; University of Pennsylvania: Philadelphia, PA, USA, 1994.
10. Jacobson, J. Branch and Bound Algorithms—Principles and Examples; University of Copenhagen: Copenhagen,

Denmark, 1999.
11. Erickson, J. Models of Computation; University of Illinois: Champaign, IL, USA, 2014.
12. Ruder, S. An Overview of Gradient Descent Optimization Algorithms; NUI Galway: Dublin, Ireland, 2016.
13. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; Massachusetts

Institute of Technology: London, UK, 2009.
14. Kalitkyn, N.N. Numerical Methods; Chislennye Metody; Nauka: Moscow, Russia, 1978. (In Russian)
15. Haupt, R.L.; Haupt, S.E. Practical Genetic Algorithms, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2004.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.1262&rep=rep1&type=pdf

Algorithms 2018, 11, 50 13 of 13

16. Mitchell, I. Dynamic Programming Algorithms for Planning and Robotics in Continuous Domains and the
Hamilton-Jacobi Equation; University of British Columbia: Vancouver, BC, Canada, 2008.

17. Miner, D.; Shook, A. MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop and
Other Systems; O’Reilly Media: Sebastopol, CA, USA, 2013.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Notions and Base Data for Scheduling
	Continuous-Time Problem Setting
	Combinatorial Optimization Techniques
	Enumeration and Branch-and-Bound Approach
	Gradient-Alike Algorithm

	Results of the Computational Experiment
	Discussion
	Random Search as an Effort to Find Global Optimum

	Conclusions
	References

