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Abstract: This paper proposes the Bayesian Extreme Learning Machine Kohonen Network (BELMKN)
framework to solve the clustering problem. The BELMKN framework uses three levels in processing
nonlinearly separable datasets to obtain efficient clustering in terms of accuracy. In the first level, the
Extreme Learning Machine (ELM)-based feature learning approach captures the nonlinearity in the
data distribution by mapping it onto a d-dimensional space. In the second level, ELM-based feature
extracted data is used as an input for Bayesian Information Criterion (BIC) to predict the number
of clusters termed as a cluster prediction. In the final level, feature-extracted data along with the
cluster prediction is passed to the Kohonen Network to obtain improved clustering accuracy. The
main advantage of the proposed method is to overcome the problem of having a priori identifiers or
class labels for the data; it is difficult to obtain labels in most of the cases for the real world datasets.
The BELMKN framework is applied to 3 synthetic datasets and 10 benchmark datasets from the
UCI machine learning repository and compared with the state-of-the-art clustering methods. The
experimental results show that the proposed BELMKN-based clustering outperforms other clustering
algorithms for the majority of the datasets. Hence, the BELMKN framework can be used to improve
the clustering accuracy of the nonlinearly separable datasets.

Keywords: clustering; bayesian information criteria; extreme learning machine; Kohonen network

1. Introduction

Clustering is an unsupervised way of exploring the data and its distribution by grouping data
points into a number of clusters [1,2]. The aim of clustering is to find the internal structure of the
data and is therefore exploratory in nature. Clustering is used in many engineering applications, for
example, in a search for data clustering in Google Scholar [3], which reveals thousands of entries
year-wise [4]; in social networking sites to identify the cohesive group of friends; and in online
shopping sites to group customers with similar behavior based on their past purchase records. It
is further used in satellite image processing to identify land use land cover [5,6] and to locate the
sensitive regions during an earthquake [7]. It is also used in biomedical applications [8] and software
effort estimation [9].

In the literature, most of the unsupervised learning methods in particular clustering can
be categorized into a crisp or probabilistic-based approach to cluster the data [10–12]. These
clustering algorithms are found to work extensively well on linearly separable datasets, but the
clustering accuracy drastically decreases with a multi-modal, multi-class overlap dataset with higher
dimensionality and a large number of samples, because they fail to explore the underlying structure

Algorithms 2018, 11, 56; doi:10.3390/a11050056 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-1737-7985
http://www.mdpi.com/1999-4893/11/5/56?type=check_update&version=1
http://www.mdpi.com/journal/algorithms
http://dx.doi.org/10.3390/a11050056


Algorithms 2018, 11, 56 2 of 14

of the data [13]. Among different clustering algorithms, k-means is a widely used crisp-based
approach for clustering the dataset [14]. The k-means algorithm requires apriori information of the
number of clusters. The clustering is performed iteratively by random initialization of cluster centers,
and groups the samples using some similarity measures (distance criteria) [14,15]. The Kohonen
Network (KN) [16] is a crisp-based neural network clustering algorithm. The KN uses a competitive
learning mechanism to extract knowledge in the form of weights (cluster centers), iteratively [17]. The
Expectation Maximization (EM) algorithm is a widely used, probabilistic-based approach, in which
likelihood estimation of the data points to the cluster is performed [18]. EM uses a Gaussian Mixture
Model (GMM) to cluster the datasets. The GMM algorithm is a useful model selection tool with which
to estimate the likelihood of data distribution by fitting the finite mixture model [19].

The common problems in most of the aforementioned algorithms are in estimating the number
of clusters prior to, and that converge to, local optima [20,21]. This results in low clustering
efficiency for nonlinearly separable datasets in which the samples of different classes overlap. To
overcome the problems involved with these conventional clustering approaches, there is a need for
an efficient clustering algorithm that takes care of feature learning [22] and cluster prediction [23].
The automatic prediction of the number of clusters can be statistically determined using the model
selection approach [24]. To perform efficient clustering, it is crucial to choose the right feature learning
technique. Therefore, the useful data representations are first extracted using the Extreme Learning
Machine (ELM)-based feature learning technique [25,26]. ELM is a non-iterative feature learning
technique that uses a single hidden layer [27]. ELM has many advantages over iterative feature
learning algorithms such as gradient-based methods. The problem with gradient-based methods
is that they are mostly iterative in nature, do not guarantee convergence to global minima, and are
computationally expensive. ELM computes the weights between the hidden and output layer in
one step with better generalization [25]. ELM was initially used for classification and regression [26];
recently, Huang et al., 2014 [28] proposed the Unsupervised ELM (US-ELM) to solve the clustering
problem. In their study, the number of clusters is assigned apriori and feature extracted data is
clustered using k-means algorithm [28].

In this paper, we propose the Bayesian Extreme Learning Machine Kohonen Network (BELMKN)
framework for clustering the datasets. The BELMKN framework consists of three levels, namely,
feature learning, cluster prediction, and partitional clustering. In the first level, ELM-based feature
learning utilizes transformations of data to extract useful features from the original data [28]. An
elegant selection of features can greatly decrease the workload and simplify the subsequent design
process. Generally, ideal features should be of use in distinguishing patterns belonging to different
clusters; this helps to overcome the dataset that is prone to noise for better extraction and interpretation.
In the next level, the model selection technique such as Bayesian Information Criterion (BIC) [29] can
be used to predict the number of clusters from the ELM feature-extracted information. In the final
level, the number of clusters predicted and the ELM feature-extracted data is given to the Kohonen
Network to perform the clustering task. The performance of the proposed BELMKN framework is
compared with the four clustering methods, namely, k-means [14], Self-Organizing Maps (SOM) [16],
EM algorithm [18], and US-ELM [28]. The performance of the clustering algorithms is compared by
applying 3 synthetic datasets and 10 standard benchmark datasets obtained from the UCI repository
(https://archive.ics.uci.edu/ml/index.php).

The rest of the paper is organized as follows. Section 2 presents the architecture diagram of the
proposed BELMKN framework with a high-level description of the pseudo code. Section 3 discusses
the illustrative examples (3 synthetic datasets) that are applied to the different clustering algorithms for
comparison. Section 4 presents the results and discussion of various clustering methods by applying
them to the ten benchmark datasets. Further, the effect of various parameters on clustering accuracy is
discussed, and the paper is concluded in Section 5.

https://archive.ics.uci.edu/ml/index.php
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2. Methodology

The proposed BELMKN algorithm consists of three phases, as presented in the architecture
shown in Figure 1. The three phases include feature learning, cluster prediction, and an unsupervised
Kohonen network for partitional clustering.

Figure 1. BELMKN architecture.

2.1. Feature Learning Using Extreme Learning Machine (ELM)

In most of the applications, it is not just the best clustering algorithm that matters but also the
choice of the right feature learning method [22]. In this study, the first phase of the BELMKN uses
ELM-based feature learning approach. ELM-based feature learning is useful in projecting the input
space onto a β dimension, which is efficient for predicting the number of clusters, as well as for
clustering the dataset efficiently [28]. ELM is chosen over other gradient-based methods for feature
learning due to its non-iterative nature, and it arrives at a closed form solution by converging to global
minima by minimizing the error at a faster rate.

Consider the input data Xi, in which i = 1, 2, . . . , d with dimension Rd. ELM consists of three
layers: the input layer, a hidden layer, and the output layer. The weights between the input and
the hidden layer are randomly initialized from a uniform distribution, given by WεRd×α, in which
d is the number of input neurons and α is the number of hidden neurons with a bias. The weight
(δ) between the hidden layer and the output layer needs to be computed. A feed-forward pass is
performed between the input and hidden layer. The hidden layer activations (H) are calculated using,

H = s(XW + b) (1)

in which HεRni×α, ni is the number of input neurons, s(.) is the sigmoidal activation function; in
general, given as s(v) = 1

1 + e−v , in which v = XW + b, and b is the input layer bias. The hidden to
output layer weights are calculated using the objective function [28],

min
δεα×β

‖δ‖2 + λTr(δT HT LδH) (2)

in which Tr(.) denotes the trace of the matrix, λ is the tradeoff parameter, and L is the graph Laplacian
given by,

L = D− S (3)
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in which S is the similarity matrix computed by the Gaussian function and D is the diagonal matrix
given by,

Dii =
n

∑
j=1

Sij (4)

The above equation is a closed-form solution, i.e., it attains minima at δ = 0. In general, the
weights between the hidden and output layers should avoid converging to zero. Hence, we impose
the constraints on Equation (2) as (Hδ)T Hδ = Iβ, in which Iβ is the identity matrix.

The optimal solution to Equation (2) is computed by choosing β smallest eigenvalues with
corresponding normalized eigenvectors using [28],

(Iα + λHT LH)v = γHT Hv (5)

The eigenvectors capture useful representations of the data, and after sorting the eigenvalue in
ascending order, the eigenvector corresponding to the first eigenvalue is discarded, as it is not useful
for data representation. Let γj, in which j = 1 ≤ 2 ≤ . . . ≤ β + 1 is the smallest β + 1 eigenvalues of
Equation (3) with vj is the corresponding eigenvectors.

The matrix δ = [
∼
v2,
∼
v3, . . . ,

∼
vβ+1], in which

∼
v j =

vj
‖Hvj‖

, j = 2, 3, . . . , β + 1 are the normalized

eigenvectors. After obtaining the δ matrix, the output matrix EεRα×β is calculated using [28],

E = Hδ (6)

2.2. Cluster Prediction Using Bayesian Information Criterion (BIC)

The second phase in BELMKN is to predict the number of clusters using Bayesian Information
Criterion (BIC) [29]. BIC is a model selection technique that is used to predict the number of clusters
in the dataset. In real-world problems, most of the datasets are usually unlabeled, and, traditionally,
most of the clustering algorithms require apriori information of the number of clusters. BIC is useful
for solving aforementioned problem by statistically predicting the number of the clusters from the
data distribution.

BIC associates with Gaussian distribution in which each cluster has mean and covariance matrix
as parameters. In our study, we estimate these parameters using the Expectation Maximization (EM)
algorithm. The Bayesian Information Criterion (BIC) is given by [6,29],

BIC = ln(N)k− 2 ln(
∼
L) (7)

in which N is the total number of samples, k is the number of free parameters to be estimated, and
∼
L is

the maximized value of the likelihood function. The BIC values are computed for nc, in which c = 1,
2, . . . , N, the model with the lowest BIC value, is chosen, which gives the optimal number of clusters
for the dataset.

2.3. Partitional Clustering Using the Kohonen Network

The third phase in BELMKN involves partitional clustering of the data using Kohonen Network
(KN). The input to this network is the output obtained from ELM-based feature learning (E) with
BIC-based cluster prediction (nc). The Kohonen Network consists of two layers, namely, the input
and the output layers. The number of output layer neurons (no) is the number of clusters (nc) that is
determined by BIC. The weight matrix between the input and the output layers, WkεRβ×nc , in which β

is the number of input neurons. Further, the weights are calculated using the discriminant function
value that is used as the basis for competition using Euclidean distance as a distance metric given by,
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d(j) =

√√√√ ni

∑
i=1

(yi − wij) (8)

in which j is the dimension ranging 1 to no.
The winning neuron is the one that closely matches with the input, i.e., the neuron for which the

discriminant function value is minimum [17]. We calculate the value of neighborhood function using,

hci(t) = α(t) exp

(
−dij

2

2σ(t)

)
(9)

in which t is the iteration number, α(t) is the learning rate at iteration t given by α(t) = α0 exp
(
−t
T1

)
,

and σ(t) is the spread of the data points in consideration given by σ(t) = σ0 exp
(
−t
T2

)
in which T1 and

T2 are time constants [29].
Finally, we update the weights of the winning neuron and the neighboring neurons using [17],

∆wij = hci(t)(yi − wij) (10)

The performance of partitional clustering is calculated using the clustering accuracy. The
clustering accuracy (CA) is given by [30],

CA =

nc
∑

i=1
al

N
(11)

in which al is the number of correctly clustered samples with respect to the class labels, and N is the
total number of samples in the dataset.

Pseudo code: A high-level description of BELMKN

Input:

Input the normalized dataset (Xi) and randomly initialize weights (W) between input and hidden layers

Output:

Output the feature learning (E) obtained from ELM network, the number of clusters computed using BIC (nc),
the clustering centers (Cno), and clustering accuracy obtained from the KN

Beginning:

1. Obtain the hidden layer activations using Equation (1)
2. Construct the graph Laplacian (L) using Equations (3) and (4) from the normalized input data
3. Calculate the eigenvectors vj from the eigenvalues γj using Equation (5)

4. Choose the eigenvectors δ = [
∼
v2,
∼
v3, . . . ,

∼
vβ+1] in which

∼
v j =

vj

‖Hvj‖ , j = 2, 3, . . . , β + 1, corresponding to

the (2 to β + 1) eigenvalues.
5. Obtain δ in which columns are normalized eigenvectors
6. Compute feature learning (E) using Equation (6)
7. Calculate BIC to obtain the number of clusters (nc) using Equation (7)
8. The input to the KN will be feature learning (E) and the number of clusters (nc)
9. Repeat steps 10 and 11 until there is no change in topology
10. Compute the winning neuron index using Equation (8)
11. Update the weights of winning neuron and its neighbors using Equations (9) and (10)
12. Assign the cluster numbers for each sample with the weights of the KN using minimum distance criteria
13. Evaluate the clustering accuracy using Equation (11)

End
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3. Illustrative Example

In this section, we illustrate the proposed BELMKN framework by applying it to three synthetic
datasets, as shown in Figure 2. The obtained results of BELMKN are compared with the state-of-the-art
clustering methods, namely, k-means [14], SOM [16], EM [18], and USELM [28].

The first synthetic dataset consists of 400 samples and 4 classes in which each class consists of
100 samples and the data distribution is linearly separable. The second dataset consists of 600 samples
and 2 classes in which each class consists of 300 samples. The spatial distribution of the second
dataset appears as a flame pattern. The third dataset shows the spatial distribution of the face pattern.
This dataset consists of 2200 samples and 5 classes with each class consisting of 500, 500, 200, and
500 samples. Here, two classes that form the eyes and nose are linearly separable, whereas the other
two parts are nonlinearly separable. The second and third synthetic datasets are more complex to
cluster effectively and efficiently.

For each of the synthetic datasets, the BELMKN and other four state-of-the-art clustering methods
are applied. The BELMKN uses ELM to perform feature learning with the parameter values set
empirically. The feature extracted information from the ELM network is given to BIC as input for
cluster prediction. The optimal number of clusters predicted by BIC decides the number of output
neurons of the Kohonen Network. The number of hidden neurons is set as 10, 40, and 20, respectively,
for the three synthetic datasets. Figure 2 shows that the clustering of the first synthetic dataset using all
the clustering methods used in this study resulted in 100% accuracy. This is because all the classes in
this dataset are linearly separable. The second dataset (flame pattern) is nonlinearly separable between
two classes. We can observe from Figure 3a–e that US-ELM performs better than k-means, SOM, and
EM, whereas compared to US-ELM the proposed BELMKN performed better. For the face pattern
dataset, the EM algorithm performs better when compared to SOM and k-means as EM algorithm
assigns cluster centers probabilistically, whereas k-means and SOM involve crisp-based clustering;
the outcome of these clustering methods are shown in Figure 4a–c. Using ELM network, we perform
feature learning initially by transforming the data samples in which the assignment of cluster centers
become easier for k-means and SOM. It is evident that US-ELM (ELM with k-means) is able to capture
nonlinearity well due to ELM-based feature learning but fails to cluster efficiently due to the drawbacks
of k-means. In particular, the US-ELM fails to capture the mouth part of face pattern in the dataset, as
shown in Figure 4d. This problem is overcome using the proposed BELMKN framework, as shown in
Figure 4e.

Figure 2. Four-class, linearly separable distribution.
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Figure 3. Clustering of flame pattern distribution using (a) k-means; (b) SOM; (c) EM; (d) US-ELM;
and (e) BELMKN.

Figure 4. Clustering of face pattern distribution using (a) k-means; (b) SOM; (c) EM; (d) US-ELM; and
(e) BELMKN.
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Overall the proposed BELMKN performs better than all the four methods for the three synthetic
datasets. This is due to ELM capturing the nonlinearity in the dataset followed by BIC to predict the
number of clusters accurately and finally; the Kohonen network uses competitive learning to cluster
the dataset efficiently. Among the conventional methods (k-means, SOM, EM), BELMKN and USELM
performed better, which shows the importance of using ELM-based feature learning. Hence, we can
use BELMKN for clustering linear, as well as nonlinear, synthetic datasets efficiently.

4. Results and Discussion

In this section, we present the results obtained using BELMKN framework on 10 benchmark
datasets from the UCI Database Repository [31,32]. Initially, we describe the characteristics of
the dataset, and then we present the results for the number of clusters predicted by BIC with
ELM-based feature learning; this is compared to BIC applied on the original dataset. Finally, we
compare the clustering performance of BELMKN with other well-known clustering algorithms, namely,
k-means [14], SOM [16], EM [33], and USELM [28]. The algorithms were tested on a computer with
the Core-i3 processor, 4 GB RAM, Python 2.7, and Windows 10 OS.

4.1. Dataset Description

In the literature, 10 benchmark datasets are widely used to compare the performance of the
proposed algorithm. The number of samples, their input dimension, and the number of clusters
are shown in Table 1. The BELMKN framework uses three phases on each dataset to extract the
clustering accuracy, i.e., ELM for feature learning, and this feature-extracted information is used for
cluster prediction using BIC. The feature-extracted information with the predicted number of clusters
is given as the input to Kohonen network to compute overall clustering accuracy. The description of
the datasets used is as follows:

Dataset 1: The Cancer dataset consists of 2 classes that categorize the tumor as either malignant or
benign. It contains 569 samples and 30 attributes.

Dataset 2: The Dermatology dataset is based on the differential diagnosis of erythemato-squamous
diseases in dermatology. It consists of 366 samples, 34 attributes, and 6 classes.

Dataset 3: The E. coli dataset is based on the cellular localization sites of proteins. It contains
327 samples, 7 attributes, and 5 classes.

Dataset 4: The Glass dataset is based on the oxide content of each glass type. It contains 214 samples,
9 attributes, and 6 classes.

Dataset 5: The Heart dataset is based on the diagnosis of heart disease. It contains 270 samples,
13 attributes, and 2 classes.

Dataset 6: The Horse dataset is to classify whether the horse will die, survive, or be euthanized. The
dataset contains 364 samples, 27 attributes, and 3 classes.

Dataset 7: The Iris dataset is based on the width and length of the sepals and petals of 3 varieties
(classes) of flowers, namely, setosa, virginica andversicolor, with 150 samples and
4 attributes.

Dataset 8: The Thyroid dataset is based on whether the thyroid is over-function, normal-function, or
under-function (3 classes). The dataset contains 215 samples and 5 attributes.

Dataset 9: The Vehicle dataset is used to classify a vehicle into 4 classes given the silhouette. The
dataset contains 846 samples and 18 attributes.

Dataset 10: The Wine dataset is obtained from the chemical analysis of wine obtained from 3 different
cultivators (3 classes). The dataset contains 178 samples and 13 attributes.
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Table 1. Properties of the dataset.

Sl. No. Dataset Number of Samples Input Dimension Number of Clusters

1 Cancer 569 30 2
2 Dermatology 366 34 6
3 E. coli 327 7 5
4 Glass 214 9 6
5 Heart 270 13 2
6 Horse 364 27 3
7 Iris 150 4 3
8 Thyroid 215 5 3
9 Vehicle 846 18 4

10 Wine 178 13 3

4.2. Analysis of Cluster Prediction

The Bayesian Information Criterion (BIC) is used to predict the number of clusters for the given
dataset. The actual data and the feature extracted data (i.e., by applying ELM) for different datasets
are given as input to BIC to predict the number of clusters, as shown in Table 2. In this table, we can
observe that there is a difference in the number of clusters predicted by BIC when it is applied directly
to the original dataset. The Cancer dataset, using BIC, both with and without ELM-based feature
learning, was not able to predict the number of clusters given by the dataset. The ELM-based learning
with BIC is not able to predict Heart dataset. This is because ELM is overfitting Cancer and Heart
datasets, and, as a result, BIC is not able to capture the number of clusters, whereas in all other cases
the prediction is accurate. In case of E. coli, Glass and Horse dataset when BIC applied directly to the
original dataset the number of clusters is predicted to be 4, 3, and 2 respectively, instead of 5, 6, and 3.
This is because ELM-based feature learning is able to capture the underlying nonlinear distribution of
these datasets. Overall, by applying ELM we have carried out a nonlinear feature extraction of the
original data, thereby discarding the redundant data that helps BIC to obtain the best partition for the
entire data. Hence, prediction accuracy is 80% in the case of ELM-based feature learning with BIC,
whereas it is 60% when BIC is applied directly to the dataset. As a result, by using ELM-BIC we are
able to obtain the exact number of clusters as given by the dataset.

Table 2. Cluster predicted using BIC for actual data and ELM-based feature learning data.

Dataset Cancer Dermatology E. coli Glass Heart Horse Iris Thyroid Vehicle Wine

Actual Clusters 2 6 5 6 2 3 3 3 4 3

BIC cluster predicted
on original dataset 3 6 4 3 2 2 3 3 4 3

BIC cluster predicted
using ELM 3 6 5 6 3 3 3 3 4 3

4.3. Effect of Parameter Settings

In BELMKN, it is observed that the performance of clustering and convergence rate of the ELM
network depends on the number of hidden neurons. ELM requires a sufficient number of hidden
neurons to capture the nonlinearity, as it contains only one hidden layer. The number of hidden
neurons varied in multiples of 10 from 10 to 150 for each dataset. The variation of the clustering
accuracy with the number of hidden neurons for the Iris dataset is shown in Figure 5. It is observed that
with 10 hidden neurons, clustering accuracy is less, as class 2 and class 3 samples overlap. This leads
to underfitting. Although it is very difficult to determine the exact number of hidden neurons for a
given dataset, we can get an approximate estimate by empirically trying different values. It is observed
that for Iris Dataset, with 120 hidden neurons, the maximum accuracy is achieved. With further
increase in the hidden neurons, the clustering accuracy is observed to decrease due to overfitting.
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In comparison with the US-ELM [28], in which 97% clustering accuracy was obtained for 1000 hidden
neurons, the proposed BELMKN framework uses only 120 hidden neurons to obtain 97% clustering
accuracy. Hence, we can observe that BELMKN provides a significant improvement by reducing the
number of hidden neurons, which saves computational time.

Figure 5. Clustering accuracy versus number of hidden neurons.

The other ELM parameter values used are tradeoff parameter λ = {10−4, 10−3, . . . , 1, 101,
102, . . . , 104}, sigma σ = {0, 100, 101, 102, . . .}. The parameters λ and σ are varied as in the above
sequences empirically for each of the 10 datasets. It is observed that with negative orders of magnitude
of the hyperparameter λ, a smoother fit is obtained. On increasing the value of λ, overfitting is
observed. On increasing the value of σ, which signifies the number of nearest neighbours, overfitting
is also observed.

For the Iris dataset, by assigning σ = 50, the effect of λ on the clustering accuracy is presented
in Figure 6. With λ = 10−4, the clustering accuracy is maximum, which is 97%. With λ = 10−3, the
accuracy is observed to decrease to 85%. On further increase in the value of λ, the accuracy decreases
from 85% to 75%. Hence, it is essential to select the optimal values of the parameters to achieve higher
accuracy. Similarly, the parameter setting is done for the remaining datasets.

Figure 6. Clustering accuracy versus tradeoff parameter λ.
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4.4. Analysis of Clustering Accuracy Using BELMKN

The proposed BELMKN framework is applied to the 10 datasets from UCI repository. The
parameters to the ELM network are set empirically as discussed above, and the outputs of the ELM
network with BIC cluster prediction are given to the Kohonen network. Hence, the proposed method
is a fully automated clustering approach. This automated approach is observed to perform better than
the USELM [28] and the traditional clustering approaches such as k-means, SOM, and EM for most of
the datasets.

The performance of k-means is observed to be the least for all the datasets. This is because in
k-means, the initial centroids are randomly assigned, and cluster centers are iteratively computed.
Followed by k-means is SOM, also a linear clustering technique due to the absence of hidden layer.
Though k-means and SOM are efficient at grouping linearly separable datasets; SOM overcomes the
disadvantage of the k-means approach by using the neighborhood concept, i.e., in SOM the weights
of the winning neuron and those neurons within its vicinity (neighborhood threshold) are updated.
In Table 3, when we apply k-means and SOM algorithms to Iris dataset, we observe that the class 1
(50 samples), which is linearly separable, is grouped correctly, whereas the grouping of the remaining
100 samples (50 samples of class 2 and 50 samples of class 3) results in more misclassification, as they
are nonlinearly separable. Hence, we can observe that k-means and SOM algorithms do not capture
the nonlinearity in the dataset. When these algorithms are applied to Glass dataset, it is observed that
the overall clustering accuracy is greater but the individual class efficiency is lower, as class 1 and class
2 are dominant in terms of accuracy, with majority of the samples present in these classes (i.e., 70 and
76 samples, respectively), leaving fewer samples to the remaining classes (i.e., class 3, class 4, and class
5 contain 13, 9, and 17 samples, respectively).

Table 3. Clustering accuracy percentage and ranking of various techniques on each dataset.

Sl No. Dataset k-Means SOM EM USELM BELMKN

1 Cancer 85.4% (5) 86% (4) 91.21% (2) 90% (3) 92.6% (1)
2 Dermatology 26.2% (5) 32% (4) 67.75% (3) 82% (2) 90.1% (1)
3 E. coli 59.9% (4) 61% (3) 77.98% (2) 82% (1) 82% (1)
4 Glass 54.2% (1) 54% (2) 47.66% (4) 42% (5) 48% (3)
5 Heart 59.2% (4) 60% (3) 53.33% (5) 70% (2) 75.5% (1)
6 Horse 48% (3) 48% (3) 43.4% (4) 65% (1) 63.18% (2)
7 Iris 80% (5) 82% (4) 90% (3) 96% (2) 97% (1)
8 Thyroid 86% (5) 87% (4) 94.27% (3) 89% (3) 90.5% (2)
9 Vehicle 44% (2) 44% (2) 45.035% (1) 42% (3) 41% (4)

10 Wine 70% (5) 75% (4) 90.44% (3) 94% (2) 96.6% (1)

The overall accuracy for the k-means in Vehicle dataset seems better; this is due to some of the
classes data points tend to dominate, and in some case it is sparse; suppose centers are picked in
dominated classes; this results slightly better accuracy. Also, the sparse data points are not fully
clustered with better accuracy into the respective classes. Overall, it is observed that the accuracy
reduces when the sparse data points are overlapped on the dominated data points. From Table 3,
we can also observe that the EM algorithm performs better than k-means and SOM. EM clustering is
performed probabilistically, unlike k-means and SOM, which use the crisp assignment of the samples
to the clusters. When compared to k-means, SOM, and EM algorithms, USELM performs better.
In USELM, ELM performs non-linear feature learning, and the extracted features are given to k-means
for clustering [28]. In USELM, there is no automatic prediction of the number of clusters [3]; it
also suffers from the drawbacks of k-means. In the proposed BELMKN framework, non-linearity
is captured well, similarly to USELM network, but the problem of cluster prediction is overcome
and the clustering accuracy is improved by using Kohonen Network as the partitional clustering
algorithm. Overall, it is observed that the proposed BELMKN framework performs the best among all
the clustering techniques used in this study.
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In Table 4, the average clustering accuracy for all the clustering techniques with 10 datasets is
shown. In this table, we observe that BELMKN has the highest average clustering accuracy, followed
by US-ELM. Among traditional clustering methods, EM is better than k-means, and SOM is better
than the k-means algorithm. In Table 5, the sum of the ranks for all the datasets taken from Table 3 for
each of the clustering techniques is presented. By ranking the sum of ranks, the proposed BELMKN is
better than all other clustering methods. This is followed by USELM, whereas EM is better than SOM
and k-means, and SOM is better than k-means.

Table 4. Average clustering accuracy and general ranking of the techniques of all datasets.

Clustering Algorithm k-Means SOM EM USELM BELMKN

Average 61.29 62.9 70.1 75.2 77.65
Rank 5 4 3 2 1

Table 5. The sum of ranking of the techniques and general ranking based on total ranking.

Clustering Algorithm k-Means SOM EM USELM BELMKN

Total 39 33 30 24 17
Rank 5 4 3 2 1

5. Conclusions

This paper presents the Bayesian Extreme Learning Machine Kohonen Network (BELMKN)
framework, which consists of three levels, to improve the clustering accuracy of the nonlinearly
distributed dataset. ELM is used for feature learning, followed by BIC a model selection technique
to extract the optimal number of clusters and the Kohonen Network for clustering the dataset. It is
also observed that the performance of the BELMKN network depends on the number of parameters
such as the tradeoff parameter (λ), the number of nearest neighbours (σ), and the number of hidden
neurons (α), which have to be set empirically for each dataset. These parameters need to be fine-tuned
to avoid overfitting or underfitting.

The clustering task is successfully accomplished by applying 10 benchmark datasets from the
UCI machine learning repository using the process of partitional clustering using the BELMKN. The
clustering performance is compared with k-means, Self-Organizing Maps, the EM Algorithm, and
USELM. From the results obtained, we can conclude that BELMKN is reliable and involves efficient
clustering in terms of accuracy, which can also be used on complex datasets.

Although the results are very promising, there is still room for improvement. For example, it is
challenging to generate optimal cluster centers with a big dataset with a varying number of dimensions
(i.e., some class data points may have fewer samples in comparison with others); this may provide
opportunities for further research. In addition, the clustering of the big dataset by implementing the
BELMKN as a hierarchical clustering may provide better clustering efficiency. It will be useful to
investigate these topics further.
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