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Abstract: Support Vector Regression (SVR), which converts the original low-dimensional problem to
a high-dimensional kernel space linear problem by introducing kernel functions, has been successfully
applied in system modeling. Regarding the classical SVR algorithm, the value of the features has been
taken into account, while its contribution to the model output is omitted. Therefore, the construction
of the kernel space may not be reasonable. In the paper, a Feature-Weighted SVR (FW-SVR) is
presented. The range of the feature is matched with its contribution by properly assigning the weight
of the input features in data pre-processing. FW-SVR optimizes the distribution of the sample points
in the kernel space to make the minimizing of the structural risk more reasonable. Four synthetic
datasets and seven real datasets are applied. A superior generalization ability is obtained by the
proposed method.
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1. Introduction

SVR is a powerful kernel-based method for regression problems [1–3]. It converts the original
low-dimensional problem to a high-dimensional kernel space linear problem by introducing kernel
functions. Regarding the system modeling with limited training samples, it balances the empirical
risk and the confidence interval based on the principle of structural risk minimization. It avoids the
over-fitting problem resulting from the overcomplex model and ensures the generalization performance
of the model when it is sufficiently close to the training sample data [4–8]

The generalization ability of the SVR model is determined by the kernel space feature [9].
The value of kernel elements can be regarded as the similarity measure between samples in kernel
space. The kernel function can simplify the calculation of the inner product in kernel space, and the
curse of dimensionality is avoided. The contribution of the feature to the output is omitted in classical
SVR. In some cases, such as when the dynamic range of an unimportant feature is large, the similarity
of samples in kernel space may be dominated by the feature, so that the kernel matrix cannot deliver
sufficient information about the training set to the model. Then, the optimization of structural risk
minimization is affected.

At present, the research about SVR modeling focuses on the construction of the model
and the optimization of the parameters [10–13], while the preprocessing of data is neglected.
Data normalization methods, such as min-max normalization and Z-normalization, are the most
widely-used preprocessing methods [14–16]. Min-max normalization converts raw data to [0, 1] or
[−1, 1] by linearization. The Z-normalization method normalize the raw dataset to a dataset with a
mean value of zero and a variance of one. The normalization method can overcome the numerical
difficulties caused by the large difference of the dynamic range among input features. However,
there is no evidence showing that normalization method will definitely improve the generalization
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performance. Whether to adopt the normalization is still based on the experience of engineers. In some
literature, the feature selection is used to remove unimportant features from the training dataset and
avoid the dominant influence of unimportant features on kernel space feature [17–19]. However,
this will obviously lead to a lack of training information.

The weighted method is also used to improve the generalization ability. Zhang fan et al. developed
a forecasting model using weighted SVR in which the weights were determined by the DE algorithm,
and this model yielded high accuracy for building energy consumption forecasting [20]. Limei Liu
combined weighted support vector regression machine with feature selection to predict electricity
load, and the algorithm gave good prediction results [21]. Han, Xadditionally added weights to the
slack variables in the constraints to predict house prices [22]. The above weighted SVR algorithms
took the importance of sample points into account, and they can be used to minimize the influence of
outliers or noises. However, the importance of the individual features is omitted. Recently, there have
been some research works on feature weighting for the Support Vector Machine (SVM) classification
problem [23–27]. Regretfully, it cannot be applied to the SVR because of the differences in the output.

The paper proposes an Feature-Weighted (FW)-SVR modeling method based on the kernel space
feature. Firstly, we concluded that the classical methods are not reasonable by analyzing the similarity
of sample points in the kernel space; because the value of the features has been taken into account,
while the contribution to the model output is omitted. Then, we present the FW-SVR algorithm
that makes the value of the features match their contribution by analyzing the limitation of the
normalization algorithm and feature selection SVR algorithm.

The contribution of this work is two-fold. Firstly, the feature importance should be matched
with the influence of the kernel space by analyzing the similarity of sample points in the kernel space.
Secondly, a data pre-processing method of feature weighting based on the above conclusion is given.
By adjusting the range of feature values by properly assigning the weight, the feature importance
is matched with the influence of the kernel space, and the generalization ability of the model is
improved. Then, the first conclusion is verified. The proposed method can be used to guide the data
pre-processing of SVR modeling.

The paper is organized as follows: In Section 2 “Basic Review of SVR”, SVR theory is briefly
described. In Section 3 “Feature-Weighted Support Vector Regression”, the necessity of the feature
weighting is analyzed in theory, and then, the realization process of FW-SVR is introduced in detail.
Simulation examples are given in Section 4 “Simulation Examples”. In Section 5 “Conclusions”,
we come to a conclusion.

2. Basic Review of SVR

The training set is given as T = {(xi, yi), i = 1, · · · , l}, where each xi ∈ Rn is the i-th input sample
containing n features and yi ∈ R is the output sample. The model function determined by the SVR
method can be regarded as a hyperplane in the kernel space. It is expressed as follows:

f (x) =< w, φ (x) > +b (1)

where φ (x) maps the raw data of input features to a high-dimensional kernel space, w ∈ Rn is a weight
vector of the hyperplane and b is a bias term.

An insensitive loss function ε > 0 is introduced to avoid over-fitting, and additional
nonnegative slack variables ξi, ξ∗i are adopted to weaken the constraints of some certain sample points.
SVR modeling is formulated as a convex quadratic programming problem expressed as follows:

min
w,ξ,ξ∗

1
2
‖w‖2 + C

l

∑
i=1

(ξi + ξ∗i ) (2)
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subject to: 
yi − f (xi) ≤ ε+ξi
f (xi)− yi ≤ ε+ξ∗i
ξi, ξ∗i ≥ 0

(3)

where C > 0 is a penalty parameter. The above convex quadratic programming problem can be solved
by constructing a Lagrange function:

The above convex quadratic programming problem can be reformulated by constructing the
Lagrange function:

L = 1
2‖w‖

2 + C
l

∑
i=1

(
ξi + ξ∗i

)
−

l
∑

i=1

(
ξiηi + ξ∗i η∗i

)
−

l
∑

i=1
αi [ξi + ε + yi− < w · φ (xi) > −b]

−
l

∑
i=1

α∗i [ξi + ε− yi+ < w · φ (xi) > +b]
(4)

where αi, α∗i ≥ 0 and ηi, η∗i ≥ 0 are Lagrange multipliers.
The kernel function K (·, ·), which satisfies the Mercer condition, is introduced to replace the inner

product of the high dimensional kernel space in Equation (4). The commonly-used kernel functions
are Gaussian kernel, linear kernel, sigmoid kernel, polynomial kernel, and so on [28–30]. These kernel
functions are listed in Table 1.

Table 1. Admissible kernel functions.

Name Definition Parameters

Gaussian kernel K (xi, x) = exp
(
−γ‖xi − x‖2

)
γ

Linear kernel K (xi, x) = (xi · x) -
Sigmoid kernel K (xi, x) = tanh (γ (xi · x) + R) γ, R

Polynomial kernel K (xi, x) = (γ (xi · x) + R)d γ, R, d

The optimized problem can be expressed as follows:

min
α,α∗

1
2

l

∑
i=1,j=1

(αi − α∗i )
(

αj − α∗j

)
K
(
xi, xj

)
+ε

l

∑
i=1

(αi + α∗i )−
l

∑
i=1

(αi − α∗i ) yi (5)

subject to: 
l

∑
i=1

(
αi − α∗i

)
= 0

0 ≤ αi, α∗i ≤ C
(6)

The optimal solution can be obtained as follows:

ᾱ = (ᾱ1, ᾱ∗1 , ..., ᾱl , ᾱ∗l )
T (7)

The model function Equation (1) can be further developed as follows:

f (x) =
l

∑
i=1

(ᾱ∗i − ᾱi)K (xi, x) + b̄ (8)

3. Feature-Weighted Support Vector Regression

3.1. The Necessity of Feature Weighting

The similarity between sample points xi and xj in kernel space can be measured by calculating
the distance dij between φ (xi) and φ

(
xj
)
.
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dij =
∥∥φ (xi)− φ

(
xj
)∥∥2

=
〈
φ (xi)− φ

(
xj
)

, φ (xi)− φ
(
xj
)〉

= 〈φ (xi) , φ (xi)〉 − 2
〈
φ (xi) , φ

(
xj
)〉

+
〈
φ
(
xj
)

, φ
(
xj
)〉

= K (xi, xi)− 2K
(
xi, xj

)
+ K

(
xj, xj

) (9)

When the Gauss kernel is adopted, dij can be expressed as:

dij=2− 2K
(

xi, xj
)
=2− 2 exp

(
−γ
∥∥xi − xj

∥∥2
)

(10)

We can deduce that the greater similarity of the sample points, the smaller the distance between
the mapping in the kernel space from Equation (10). When xi=xj, the most similarity is shown, and the
distance dij is zero.

A simple example is given to illustrate that the construction of the kernel space is not reasonable
when the value of the feature is the only consideration and its contribution to the model output is
neglected. There is a set of sample points {x1, x2, x3}. Let n = 2, x1, x2, x3 ∈ Rn, where x1=

(
ρ1+ρ′1, ρ2

)
,

x2= (ρ1, ρ2 + ρ′2), x3= (ρ1, ρ2), ρ1, ρ2 ∈ R, ρ′1, ρ′2 ∈ R+; the first item of the sample point is Feature 1,
and the second is Feature 2. Regarding φ (x1) and φ (x2), we can measure which one is more similar to
φ (x3) by comparing the value of d13 and d23. d13=2− 2 exp

(
−γ‖x1 − x3‖2

)
=2− 2 exp

(
−γρ′1

2
)

d23=2− 2 exp
(
−γ‖x2 − x3‖2

)
=2− 2 exp

(
−γρ′2

2
) (11)

The difference of the similarities of the two sample groups is decided by ρ′1 and ρ′2 accordingly.
However, the contribution of the two features to the model output is quite different for the actual
system in some situations. Assume that Feature 1 has a great contribution to the output and a small
change of it can lead to a great change in the output. On the contrary, assume that the contribution
of Feature 2 to the output is very small, and a large change can lead to a slight change in the output.
When ρ′1 = ρ′2, it is obvious that the impact of the sample point x2 on the output is more similar to that
of x3. When ρ′1 < ρ′2, the influence of the sample point x2 on the output may be more similar to that of
x3. The similarity to the contrary is deduced without considering the contribution of the features to
the output. Therefore, the similarity of the sample points generated by the classical algorithm may be
influenced greatly by the unimportant features with a large value range, resulting in the inconsistency
of the similarities in the kernel space and in the actual situation.

We can deduce that the kernel element is used to simplify the computation of the inner product
in the kernel space in solving the convex quadratic programming problems from Formulas (4)–(5).
If the similarity cannot reflect the actual rule of the dataset and is dominated by unimportant features,
the solution to the optimization problem by applying the structural risk minimization principle
is unreasonable.

In the paper, the feature-weighting method is used to match the effect of the feature on the kernel
space feature with its contribution to the model output. Regarding the k-th feature, if a weight value
wk ∈ [0, 1] is given, the kernel element will be changed as:

Kw(xi, xj) = exp

(
−γ

(
n

∑
k=1

(
wk

(
xik − xjk

))2
))

(12)

Likewise, the weighted elements of the linear kernel can be rewritten as follows:

Kw
(
xi, xj

)
=

n

∑
k=1

w2
k xikxjk (13)
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The weighted sigmoid kernel can be expressed as follows:

Kw
(

xi, xj
)
= tanh

(
γ

n

∑
k=1

w2
k xikxjk + R

)
(14)

If the contribution of each feature to the output can be confirmed before model training and an
appropriate weight value is assigned, the role played by the feature in the kernel space matches its
contribution. When all the weights of the feature are one, the FW-SVR is degraded to the classical SVR.
When the weight of a feature tends to be zero, it shows that the input feature has little influence on
the output and means a dimension reduction. Moreover, the distance between the sample points is
shortened, and the distribution of the samples is more compact.

3.2. The Implementation of the FW-SVR

The optimal combination of weights is the premise of realizing FW-SVR. In order to verify the
conclusion of Section 3.1, we use the grid search method to get the optimal weight combination.
Grid search is an exhaustive search method. Each feature has a set of weight values to select.
All combinations are listed to generate the “grid”. Every combination is tested by SVR, and the
optimal one is obtained.

The SVR training that introduces the weight value is shown as follows.
According to Equation (12), the convex quadratic programming problem of Formulas (5)–(6) can

be rewritten as follows:

min
α,α∗

1
2

l

∑
i=1,j=1

(αi − α∗i )
(

αj − α∗j

)
Kw
(
xi, xj

)
+ε

l

∑
i=1

(αi + α∗i )−
l

∑
i=1

(αi − α∗i ) yi (15)

subject to: 
l

∑
i=1

(
αi − α∗i

)
= 0

0 ≤ αi, α∗i ≤ C
(16)

The optimal solution can be obtained as ᾱ =
(
ᾱ1, ᾱ∗1 , ..., ᾱl , ᾱ∗l

)T.
The model function of FW-SVR can be expressed as follows:

f (x) =
l

∑
i=1

(ᾱ∗i − ᾱi)Kw (xi, x) + b̄ (17)

4. Simulation Examples

In this Section, four synthetic datasets and seven real datasets are employed to verify the feasibility
of the FW-SVR. All the simulations are implemented on a Windows 10 PC with Intel Core i5-3740
CPU (3.2 GHz) and 4.0 GB RAM by MATLAB R2013a. The SVR training and the test algorithm are
implemented in LIBSVM 3.22 [31]. The parameters for each approach on each dataset are optimized by
using grid search with five-fold cross-validation on a sample of the training set [32,33].

The Root Mean Square Error (RMSE) is employed to evaluate the feasibility of the
FW-SVR method.

RMSE =

√√√√1
l

l

∑
i=1

[yi − f (xi)]
2 (18)

where yi is the actual output sample and f (xi) is its corresponding predicted value. The smaller the
value of RMSE, the better its generalization ability.



Algorithms 2018, 11, 62 6 of 12

Synthetic Datasets

The definitions of these functions are listed in Table 2.

Table 2. Functions used to generate synthetic datasets.

Name Function Definition Domain of Definition

F1 yi=
sin(xi1)

xi1
+ xi2

1000+σ xi1 ∈ [−10, 10], xi2 ∈ [−30, 30]
F2 yi= 10cos (3xi1) +

1
10 sin (xi2) +σ xi1, xi2 ∈ [−2π, 2π]

F3 yi=xi1
2sin (xi2) +

3
1+e−xi3

+σ xi1 ∈ [−3, 3], xi2 ∈ [−2π, 2π], xi3 ∈ [−200, 200]
F4 yi=

xi1
100+

xi2
10000+σ xi1 ∈ [−10, 10], xi2 ∈ [−30, 30]

Where, σ is the added Gaussian noise with a mean of zero and a standard deviation of 0.01.
The synthetic dataset “F1” is chosen as an example. Feature 1 (xi1) and Feature 2 (xi2) in the training

data are taken from the sinusoidal signals of 0.01 Hz and 0.05 Hz, respectively. Their corresponding
test data are extracted from linear functions and the sinusoidal signal 0.125 Hz, respectively, as shown
in Figure 1.

0 20 40 60 80 100

-30

-15

0

15

30

Time(s)
(a)

 Feature 1
 Feature 2

0 20 40 60 80 100

-30

-15

0

15

30

Time(s)
(b)

 Feature 1
 Feature 2

Figure 1. The input feature data of the training dataset and the test dataset: (a) training dataset; (b) test dataset.

The expression of F1 shows that the range of the first item affected by Feature 1 is [−0.2172, 1] and
that of the second item affected by Feature 2 is restricted to [−0.03, 0.03]. It is deduced that Feature 1,
which has a great contribution to the output, is an important feature, while Feature 2 is to the contrary.
However, the contribution of Feature 2 to the output of the model is neglected when the kernel matrix
is calculated. In order to observe the influence of Feature 1 and Feature 2 on the kernel matrix, a kernel
width γ = 0.01 is used to compare the three kernel matrices visualized in 2D heat-maps as follows.

According to Equation (12), the kernel matrix can fully reflect the similarity between the sample
points in kernel space. The similarity of the sample points in Figure 2c is clearly shown in Figure 2a,
while the influence of Feature 1 with a high contribution to the output is obviously weakened.
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40
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R
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0.4
0.6
0.8
1

Figure 2. Three 2D heat-maps of kernel matrices: (a) kernel matrix generated by two features; (b) kernel
matrix generated by Feature 1; (c) kernel matrix generated by Feature 2.
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A grid search method is applied to obtain the corresponding RMSE for each possible combination
of w1, w2 to verify the necessity of feature weighting [34]. The value of w1 and w2 is searched from the
set
{

10−4, 10−3.5, 10−3, · · · , 100
}

. The model performance is shown as Figure 3 accordingly.

Figure 3. Model generalization ability of different weights’ combination.

According to Figure 3, a better generalization ability occurs when the value of w1/w2 is around
100, and the best is acquired when w1 = 10−2 and w2 = 10−4. As a whole, a better generalization
ability can be obtained when w1 > w2 vs. when w1 < w2. The FW-SVR is degraded to the classical
SVR when w1 = w2 = 1, and the generalization ability of the model is poor.

We compare the feature weighting method with the feature selection and the normalization.
In feature weighting, w1 = 10−2 and w2 = 10−4. In feature selection, Feature 2 is deleted.
In the normalization method, the min-max normalization and the Z-normalization are employed.

Min-max normalization converts raw data to [0, 1] by linearization. The k-th feature of the i-th
sample xik is normalized to x′ik:

x′ik=
xik − xkmin

xkmax − xkmin
(19)

where xkmax, xkmin is the maximum and minimum value of the k-th feature, respectively.
The Z-normalization method normalizes the raw data to a dataset with a mean value of zero and

a variance of one.
x′ik=

xik − µk
σk

(20)

where µk, σk is the mean and standard deviation of the k-th feature, respectively.
Firstly, the kernel matrix generated by feature weighting and by other methods is compared.

In order to facilitate the comparison, when the parameter γ is selected, the result consistency
of Feature 1 is calculated as the standard of nuclear element calculation, because weighting and
normalization will change the value of the feature. The kernel matrix generated by the above method
is shown in Figure 4.

As can be seen from Figure 4, the feature weighting reduces the influence of Feature 2 on the kernel
matrix. Figure 4a is similar to Figure 2b. However, the feature weighting preserves the information of
Feature 2 compared to the feature selection. It can be deduced from Figure 4b,c that the normalization
method can weaken the influence of Feature 2. However, its influence is still great. As the range of
Feature 1 and Feature 2 is essentially the same in normalization, the contributions of Feature 1 and
Feature 2 are much the same. When the range of unimportant features is greatly wider than that of
important features, the normalization method can largely reduce the influence of unimportant features.
On the contrary, the normalization method will increase their influence.
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Figure 4. Three 2D heat-maps of kernel matrices: (a) feature weighting; (b) min-max normalization;
(c) Z-normalization.

Then, the feature weighting is compared with the raw dataset, the feature selection and the
normalization to observe the differences in the generalization ability. The search range of parameters
C and γ is

[
2−8, 29] and

[
2−8, 210], respectively, and ε is set to 0.0064. The optimal hyper-parameter is

obtained by five-fold cross-validation. The prediction outputs for the test set are shown in Figure 5.

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5

 min-max normalization
 Z-normalization

 samples
true function
 raw dataset

Time(s)
(a)

0 20 40 60 80 100
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0.0

0.4

0.8

1.2
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 feature weighting

Time(s)
(b)

 samples
 ture function

Figure 5. The prediction outputs for test set: (a) raw data and normalized data; (b) feature weighted
and feature selected dataset.

As can be seen from Figure 5, the prediction curve with raw data is quite different from the real
output and the two prediction curves with normalized data, as well. The feature selection achieves
better results. However, under-fitting occurs because of the deletion of Feature 2. The best prediction
result is derived from the feature weighting method.

We model the synthetic datasets in Table 2 to compare the above methods. For the feature selection,
all possible feature combinations are tested in order to get the optimal one. It is used to be compared
with the feature weighting. The program is repeated 10 times. The optimal combination of weights is
shown in Table 3, and the results are shown in Table 4, in which bold values indicate the method with
the best performance.

Table 3. The optimal combination of weights for the synthetic datasets.

Function Name The Optimal Combination of Weights {w1, w2, · · · , wn}

F1
{

10−2, 10−4
}

F2
{

100, 10−3
}

F3
{

100, 100, 10−2
}

F4
{

10−3, 10−4
}
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Table 4. Performance comparison of SVR modeling for the synthetic datasets.

Function Name Kernel Type Feature Weighting Raw Data Feature Selection Min-Max Normalization Z-Normalization

F1 Gaussian 0.0095 ±0.0030 0.1067 ±0.0065 0.0299 ±0.0008 0.1006 ±0.0195 0.1483 ±0.0090
linear 0.3799 ±0.0034 0.3765 ±0.0052 0.3810 ±0.0034 0.3786 ±0.0011 0.3788 ±0.0010

sigmoid 0.4164 ±0.0481 0.3826 ±0.0012 0.4597 ±0.0499 0.3820 ±0.0045 0.4062 ±0.0072

F2 Gaussian 0.0864 ±0.0024 5.9620 ±0.0005 0.0897 ±0.0013 5.9021 ±0.0004 8.0087 ±0.0008
linear 7.3255 ±0.0010 7.3365 ±0.0011 7.5173 ±0.0025 7.3257 ±0.0008 7.3392 ±0.0011

sigmoid 7.3919 ±0.0021 8.0011 ±0.0029 7.3673 ±0.0020 7.5199 ±0.0151 8.0690 ±0.0786

F3 Gaussian 1.3450 ±0.0095 3.1562 ±0.0100 2.3098 ±0.0050 2.9849 ±0.0066 2.7477 ±0.0070
linear 2.7559 ±0.0009 2.7533 ±0.0030 3.1054 ±0.0020 3.1169 ±0.0026 3.0984 ±0.0022

sigmoid 2.8319 ±0.0525 2.6547 ±0.0138 3.2840 ±0.0011 3.1158 ±0.0188 3.0931 ±0.0020

F4 Gaussian 0.0037 ±0.0009 0.0076 ±0.0007 0.0293 ±0.0015 0.0219 ±0.0031 0.2133 ±0.0035
linear 0.0120 ±0.0034 0.0744 ±0.0485 0.0214 ±0.0002 0.0021 ±0.0008 0.2437 ±0.0010

sigmoid 0.0024 ±0.0005 1.2928 ±0.0122 0.0232 ±0.0005 0.0116 ±0.0011 0.2340 ±0.0026

Finally, we randomly chose seven UCIbenchmark datasets [35]. The grid search method is used
to select the optimal combination of weights from the set

{
10−4, 10−3, 10−2, 10−1, 100

}
. The optimal

combination of weights is shown in Table 5, and the results are compared as in Table 6, in which bold
values indicate the method with the best performance.

Table 5. The optimal combination of weights for the UCIdatasets.

Datasets (Training Size, Test Size) The Optimal Combination of Weights {w1, w2, · · · , wn}

CCPP(300 × 4, 9268 × 4)
{

10−1, 10−1, 10−2, 10−1}
Airfoil (376 × 5, 1127 × 5)

{
10−4, 10−2, 100, 10−3, 100}

Servo (84 × 4, 83 × 4)
{

100, 10−1, 10−1, 100}
Yacht (154 × 6, 154 × 6)

{
10−2, 10−1, 10−4, 10−2, 10−2, 100}

Auto-MPG (196 × 7, 196 × 7)
{

10−4, 10−4, 10−2, 10−4, 10−1, 10−1, 10−2}
Machine CPU (109×7, 100×7)

{
10−3, 10−4, 10−4, 10−2, 10−1, 10−4, 10−2}

Concrete (300 × 8, 730 × 8)
{

10−3, 10−3, 10−4, 10−2, 10−1, 10−4, 10−4, 10−1}
Table 6. Performance comparison of SVR modeling for the UCI datasets.

Function Name Kernel Type Feature Weighting Raw Data Feature Selection Min-Max Normalization Z-Normalization

CCPP Gaussian 4.3739 5.9063 4.7865 4.4532 4.4225
linear 4.6558 5.7354 5.0788 4.6372 4.6559

sigmoid 17.3939 17.3939 17.3939 4.6706 4.6641

Airfoil Gaussian 2.6293 6.2425 6.2426 3.0588 3.0773
linear 5.0954 9.3584 6.2426 4.9028 4.9029

sigmoid 5.2459 6.8646 6.7541 4.7974 4.9155

Servo Gaussian 1.0071 1.1454 1.2059 1.2255 1.2411
linear 1.2451 1.2457 1.3233 1.2455 1.2457

sigmoid 1.5365 1.3881 1.3658 1.2510 1.2147

Yacht Gaussian 0.8789 20.9455 2.0736 15.0084 15.6554
linear 11.5317 12.0055 12.0191 11.5062 11.5056

sigmoid 11.6018 17.1246 16.9336 11.6398 12.3480

Auto-MPG Gaussian 2.5555 7.0208 3.1720 2.9386 3.0382
linear 3.3510 3.3589 3.7220 3.4881 3.4849

sigmoid 6.1315 7.8074 7.8074 3.5747 3.6064

Machine CPU Gaussian 20.9777 158.0651 57.1354 48.7881 65.9913
linear 56.2433 71.8240 86.0324 61.8386 59.7331

sigmoid 97.8911 172.4349 172.4349 78.8043 84.4713

Concrete Gaussian 8.2697 18.0116 15.5832 11.3164 11.7239
linear 13.0202 17.1842 16.1212 10.3878 11.3107

sigmoid 13.0202 17.1842 17.1666 10.3878 11.3107

The Wilcoxon signed rank tests [36] at the 0.05 significance level are implemented to test the
differences between the feature weighting and other data pre-processing techniques to substantiate
the indications in Tables 4 and 6. The test results are presented in Table 7. The prediction results on F1
and F2 using linear and sigmoid kernels were both unacceptable and were not included in this test.
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According to Tables 4 and 6, FW-SVR achieves a competitive generalization performance with
both synthetic datasets and real datasets. The FW-SVR that uses the Gaussian kernel performs
reasonably well on all 11 datasets. Note that the results on F1 and F2 are both unacceptable because of
under-fitting for the linear kernel and the sigmoid kernel. The two datasets are not included in the
following comparison. As for the linear kernel, three optimal results and three suboptimal results are
obtained by FW-SVR. In addition, there are three results that are close to the optimal ones. As for the
sigmoid kernel, FW-SVR achieves a competitive generalization performance on synthetic datasets.
For example, the mean RMSE o 0.0024 on F4 is better than the value of 0.0120 of the Gaussian kernel.
However, FW-SVR is not the optimal choice for the UCI datasets, as shown in Table 6. In general,
the overall results obtained by the Wilcoxon tests presented in Table 7 show that the FW-SVR achieves
the best generalization performance in comparison with the other five data pre-processing methods
when the most suitable kernel type is selected. Comparing the five methods, we deduce that the
contribution of the feature to the output is taken into account by FW-SVR, which reduces the influence
of unimportant features on the kernel space feature.

Table 7. Wilcoxon signed rank test for the prediction results.

Kernel Type Raw Data Feature Selection Min-Max Normalization Z-Normalization

Gaussian 9.7656 × 10−4 9.7656 × 10−4 9.7656 × 10−4 9.7656 × 10−4

Linear 0.0117 0.0039 1.0000 0.4961
Sigmoid 0.0391 0.0234 0.0547 0.0977

Cell: p value.

5. Conclusions

In the paper, we propose an FW-SVR that matches the effect of the feature on the kernel space
feature with its contribution to the model output. Analyzing the similarity of sample points in kernel
space, we concluded that the FW-SVR makes the distribution of the sample points in kernel space
more reasonable and is important to increase the generalization ability. Numerical experiments show
the effectiveness of the proposed algorithm. Our future work will focus on automatic identification of
the contribution to assign an optimal weight combination.

Author Contributions: D.C. conceived the main idea of the proposed method. M.H. performed the experiments.
M.H. and L.L. analyzed the data. M.H. wrote the paper.

Acknowledgments: This work was funded by the National Natural Science Foundation of China (41604022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999.
[CrossRef] [PubMed]

2. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
3. Wang, D.; Lin, H. A new class of dual support vector machine NPID controller used for predictive control.

IEEJ Trans. Electr. Electron. Eng. 2015, 10, 453–457. [CrossRef]
4. Paliwal, M.; Kumar, U.A. Neural networks and statistical techniques: A review of applications.

Expert Syst. Appl. 2009, 36, 2–17. [CrossRef]
5. Sapankevych, N.I.; Sankar, R. Time series prediction using support vector machines: a survey. IEEE Comput.

Intell. Mag. 2009, 4, 24–38. [CrossRef]
6. Tanveer, M.; Mangal, M.; Ahmad, I.; Shao, Y.H. One norm linear programming support vector regression.

Neurocomputing 2016, 173, 1508–1518. [CrossRef]
7. Nekoei, M.; Mohammadhosseini, M.; Pourbasheer, E. QSAR study of VEGFR-2 inhibitors by using genetic

algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM):
A comparative approach. Med. Chem. Res. 2015, 24, 3037–3046. [CrossRef]

http://dx.doi.org/10.1109/72.788640
http://www.ncbi.nlm.nih.gov/pubmed/18252602
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1002/tee.22105
http://dx.doi.org/10.1016/j.eswa.2007.10.005
http://dx.doi.org/10.1109/MCI.2009.932254
http://dx.doi.org/10.1016/j.neucom.2015.09.024
http://dx.doi.org/10.1007/s00044-015-1354-4


Algorithms 2018, 11, 62 11 of 12

8. Fujita, K.; Deng, M.; Wakimoto, S. A Miniature Pneumatic Bending Rubber Actuator Controlled by Using
the PSO-SVR-Based Motion Estimation Method with the Generalized Gaussian Kernel. Actuators. 2017, 6, 6.
[CrossRef]

9. Xie, M.; Wang, D.; Xie, L. One SVR modeling method based on kernel space feature. IEEJ Trans. Electr.
Electron. Eng. 2018, 13, 168–174. [CrossRef]

10. Zhang, X.; Qiu, D.; Chen, F. Support vector machine with parameter optimization by a novel hybrid method
and its application to fault diagnosis. Neurocomputing 2015, 149, 641–651. [CrossRef]

11. Tian, M.; Wang, W. An efficient Gaussian kernel optimization based on centered kernel polarization criterion.
Inf. Sci. 2015, 322, 133–149. [CrossRef]

12. Fu, Y.; Wang, S. A No Reference Image Quality Assessment Metric Based on Visual Perception. Algorithms
2016, 9, 87. [CrossRef]

13. Meighani, H.M.; Ghotbi, C.; Behbahani, T.J.; Sharifi, K. Evaluation of PC-SAFT model and Support
Vector Regression (SVR) approach in prediction of asphaltene precipitation using the titration data.
Fluid Phase Equilib. 2018, 456, 171–183. [CrossRef]

14. Dunn, J.C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated
Clusters. Cybern. Syst. 1973, 3, 32–57. [CrossRef]

15. Lu, C.J. Hybridizing nonlinear independent component analysis and support vector regression with particle
swarm optimization for stock index forecasting. Neural Comput. Appl. 2013, 23, 2417–2427. [CrossRef]

16. Yalavarthi, R.; Shashi, M. Atmospheric Temperature Prediction using Support Vector Machines. Int. J.
Comput. Theory Eng. 2009, 1, 55–58.

17. Miao, F.; Fu, N.; Zhang, Y.T.; Ding, X.R.; Hong, X.; He, Q.; Li, Y. A Novel Continuous Blood Pressure
Estimation Approach Based on Data Mining Techniques. IEEE J. Biomed. Health Inform. 2017, 21, 1730–1740.
[CrossRef] [PubMed]

18. Papari, B.; Edrington, C.S.; Kavousi-Fard, F. An Effective Fuzzy Feature Selection and Prediction Method
for Modeling Tidal Current: A Case of Persian Gulf. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4956–4961.
[CrossRef]

19. Taghizadeh-Mehrjardi, R.; Neupane, R.; Sood, K.; Kumar, S. Artificial bee colony feature selection algorithm
combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter
in South Dakota, USA. Carbon Manag. 2017, 8, 277–291. [CrossRef]

20. Zhang, F.; Deb, C.; Lee, S.E.; Yang, J.; Shah, K.W. Time series forecasting for building energy consumption
using weighted Support Vector Regression with differential evolution optimization technique. Energy Build.
2016, 126, 94–103. [CrossRef]

21. Liu, L. Short-term load forecasting based on correlation coefficient and weighted support vector regression
machine. In Proceedings of the 2015 4th International Conference on Information Technology and
Management Innovation (ICITMI 2015), Shenzhen, China, 12–13 September 2015.

22. Han, X.; Clemmensen, L. On Weighted Support Vector Regression. Qual. Reliab. Eng. Int. 2014, 30, 891–903.
[CrossRef]

23. Preetha, R.; Bhanumathi, R.; Suresh, G.R. Immune Feature Weighted Least-Squares Support Vector Machine
for Brain Tumor Detection Using MR Images. IETE J. Res. 2016, 62, 873–884. [CrossRef]

24. Qi, B.; Zhao, C.; Yin, G. Feature weighting algorithms for classification of hyperspectral images using a
support vector machine. Appl. Opt. 2014, 53, 2839–2846. [CrossRef] [PubMed]

25. Shi, J.; Zhang, S.; Qiu, L. Credit scoring by feature-weighted support vector machines. J. Zhejiang Univ. Sci.
C Comput. Electron. 2013, 14, 197–204. [CrossRef]

26. Deng, W.; Zhou, J. Approach for feature weighted support vector machine and its application in flood
disaster evaluation. Disaster Adv. 2013, 6, 51–58.

27. Guo, L.; Zhao, L.; Wu, Y.; Li, Y.; Xu, G.; Yan, Q. Tumor Detection in MR Images Using One-Class Immune
Feature Weighted SVMs. IEEE Trans. Magn. 2011, 47, 3849–3852. [CrossRef]

28. Babaud, J.; Witkin, A.P.; Baudin, M.; Duda, R.O. Uniqueness of the Gaussian Kernel for Scale-Space Filtering.
IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 26–33. [CrossRef]

29. Keerthi, S.S.; Lin, C.J. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel.
Neural Comput. 2003, 15, 1667–1689. [CrossRef] [PubMed]

30. Howley, T.; Madden, M.G. The Genetic Kernel Support Vector Machine: Description and Evaluation.
Artif. Intell. Rev. 2005, 24, 379–395. [CrossRef]

http://dx.doi.org/10.3390/act6010006
http://dx.doi.org/10.1002/tee.22510
http://dx.doi.org/10.1016/j.neucom.2014.08.010
http://dx.doi.org/10.1016/j.ins.2015.06.010
http://dx.doi.org/10.3390/a9040087
http://dx.doi.org/10.1016/j.fluid.2017.10.022
http://dx.doi.org/10.1080/01969727308546046
http://dx.doi.org/10.1007/s00521-012-1198-5
http://dx.doi.org/10.1109/JBHI.2017.2691715
http://www.ncbi.nlm.nih.gov/pubmed/28463207
http://dx.doi.org/10.1109/TGRS.2017.2696541
http://dx.doi.org/10.1080/17583004.2017.1330593
http://dx.doi.org/10.1016/j.enbuild.2016.05.028
http://dx.doi.org/10.1002/qre.1654
http://dx.doi.org/10.1080/03772063.2016.1221743
http://dx.doi.org/10.1364/AO.53.002839
http://www.ncbi.nlm.nih.gov/pubmed/24921869
http://dx.doi.org/10.1631/jzus.C1200205
http://dx.doi.org/10.1109/TMAG.2011.2158520
http://dx.doi.org/10.1109/TPAMI.1986.4767749
http://dx.doi.org/10.1162/089976603321891855
http://www.ncbi.nlm.nih.gov/pubmed/12816571
http://dx.doi.org/10.1007/s10462-005-9009-3


Algorithms 2018, 11, 62 12 of 12

31. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST)
2011, 2, 1–27. [CrossRef]

32. Zhang, P. Model Selection Via Multifold Cross Validation. Ann. Stat. 1993, 21, 299–313. [CrossRef]
33. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. In Encyclopedia of Database Systems; Liu, L.,

Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009; pp. 532–538.
34. Ataei, M.; Osanloo, M. Using a Combination of Genetic Algorithm and the Grid Search Method to Determine

Optimum Cutoff Grades of Multiple Metal Deposits. Int. J. Surf. Min. Reclam. Environ. 2004, 18, 60–78.
[CrossRef]

35. Bache, K.; Lichman, M. UCI Machine Learning Repository; School of Information and Computer Science,
University of California: Irvine, CA, USA, 2013.

36. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1214/aos/1176349027
http://dx.doi.org/10.1076/ijsm.18.1.60.23543
http://dx.doi.org/10.2307/3001968
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Review of SVR
	Feature-Weighted Support Vector Regression
	The Necessity of Feature Weighting
	The Implementation of the FW-SVR

	Simulation Examples
	Conclusions
	References

