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Abstract: Inspired by the migration behavior of monarch butterflies in nature, Wang et al. proposed
a novel, promising, intelligent swarm-based algorithm, monarch butterfly optimization (MBO),
for tackling global optimization problems. In the basic MBO algorithm, the butterflies in land 1
(subpopulation 1) and land 2 (subpopulation 2) are calculated according to the parameter p, which is
unchanged during the entire optimization process. In our present work, a self-adaptive strategy
is introduced to dynamically adjust the butterflies in land 1 and 2. Accordingly, the population
size in subpopulation 1 and 2 are dynamically changed as the algorithm evolves in a linear way.
After introducing the concept of a self-adaptive strategy, an improved MBO algorithm, called
monarch butterfly optimization with self-adaptive population (SPMBO), is put forward. In SPMBO,
only generated individuals who are better than before can be accepted as new individuals for the
next generations in the migration operation. Finally, the proposed SPMBO algorithm is benchmarked
by thirteen standard test functions with dimensions of 30 and 60. The experimental results indicate
that the search ability of the proposed SPMBO approach significantly outperforms the basic MBO
algorithm on most test functions. This also implies the self-adaptive strategy is an effective way to
improve the performance of the basic MBO algorithm.

Keywords: monarch butterfly optimization; migration operator; butterfly adjusting operator;
greedy strategy; benchmark problems

1. Introduction

To optimize is to maximize or minimize given functions in a certain domain. In real life, human
beings are driven to maximize profit or minimize cost. In mathematics and computer science, these
real-world problems can be mathematically modeled, and then further tackled by various optimization
techniques. In general, these optimization techniques can loosely be divided into two categories:
traditional optimization methods and modern intelligent optimization algorithms. For each run, the
traditional optimization methods will generate the same results under the same initial conditions;
while modern intelligent optimization algorithms will generate fully different results even if the
same conditions are provided. Since current problems are becoming more and more complicated,
traditional optimization methods do not effeciently solve them. Therefore, more and more researchers
have turned to modern intelligent optimization algorithms [1], which mainly include evolutionary
computation [2], swarm intelligence, extreme learning machines [3], or artificial neural networks [4].
Among the different kinds of intelligent algorithms, swarm intelligence (SI) algorithms [5–8] are one of
the most representative paradigms.
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In 1995, particle swarm optimization (PSO) [9–15] was proposed based on the inspiration of bird
flocking. In a sense, the development of PSO is one of the milestones in the history of swarm intelligence
algorithms. Since then, many researchers have performed numerous in-depth studies on PSO,
and it has been successfully used to solve various complicated engineering problems [16]. Such
problems include gesture segmentation [17], scheduling [18], shape design [19], vehicle routing [20],
test-sheet composition [21], malicious code detection [22], economic load dispatch [23,24], IIR system
identification [25], prediction of pupylation sites [26], target assessment [27,28], unit commitment [29],
path planning [30–32], directing orbits of chaotic systems [33], image processing [34], task assignment
problem [35], floorplanning [36,37], clustering [38], wind generator optimization [39], reliability
problems [40], knapsack problem [41–43], and fault diagnosis [44]. Recently, immediately following
PSO, many excellent SI algorithms have been put forward, including the ant colony optimization
(ACO) [45–47], harmony search (HS) [48,49], artificial bee colony (ABC) [50–54], cuckoo search
(CS) [55–61], fireworks algorithm (FWA) [62], bat algorithm (BA) [63–67], fruit fly optimization
algorithm (FOA) [68], earthworm optimization algorithm (EWA) [69], elephant herding optimization
(EHO) [70–72], moth search (MS) algorithm [73,74], biogeography-based optimization (BBO) [75–77],
firefly algorithm (FA) [78–80], krill herd (KH) [81–87], and monarch butterfly optimization (MBO) [88].
These various algorithms are inspired by the swarm behavior of ants, honey bees, cuckoos, bats, grey
wolves, krill, and butterflies.

Recently, after a careful study of the migration behavior of monarch butterflies, Wang et al. [88]
designed a novel promising swarm intelligence-based optimization technique, called the monarch
butterfly optimization (MBO). In MBO, all the monarch butterflies are located at land 1 and land 2,
which are updated through implementation of the migration operator and butterfly adjusting operator
at each generation. Based on thorough in-depth comparative studies of thirty-eight benchmark
problems selected from previous literature, it was found that MBO significantly outperforms five other
state-of-the-art metaheuristic algorithms.

However, in the basic MBO algorithm, after implementing the migration operator, the generated
monarch butterfly will be accepted as a new butterfly individual in the next generation regardless of
whether it is better or worse. Also, the number of monarch butterflies in land 1 and land 2 are fixed
and unchanged during the entire optimization process, which are calculated at the begin of the search
according to the parameter p. In this paper, two main modifications are proposed to improve the
performance of the basic MBO algorithm, which are self-adaptive and greedy strategies. A self-adaptive
strategy is introduced to adjust the butterfly number in land 1 and land 2 in a linear fashion during the
optimization process. Additionally, only an improved butterfly individual generated by the migration
operator is accepted and considered as a new butterfly individual in the next generation. This greedy
strategy can make the butterfly population move toward a better status at all times. In this way,
this also guarantees that the generated population is at least not worse than before. After inserting
the two modifications into the basic MBO algorithm, a new variant of MBO, called the self-adaptive
population MBO (SPMBO), is proposed. Furthermore, the performance of SPMBO is fully investigated
by experiments on thirteen standard test functions with dimensions of 30 and 60. The experimental
results indicate that the proposed SPMBO approach has much better search ability than the basic
MBO algorithm in most cases. This also implies the self-adaptive strategy is an effective way to
improve the performance of the basic MBO algorithm when addressing high-dimensional global
optimization problems.

The rest of this paper is structured as follows. Section 2 provides an overview of related work
on the MBO algorithm, followed by a description of the basic MBO method in Section 3. Section 4
discusses how the self-adaptive and greedy strategies were incorporated to improve the performance
of the basic MBO. Subsequently, SPMBO was fully investigated on 30-D and 60-D benchmarks and the
corresponding outcomes are described in Section 5. The paper ends with Section 6, after presenting
some concluding remarks as well as scope for further work.
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2. Related Work

Since the monarch butterfly optimization algorithm [88] was proposed, many scholars have
worked on MBO algorithm. In this section, some of the most representative work regarding MBO and
other metaheuristic algorithms are summarized and reviewed.

Kaedi [89] proposed a population-based metaheuristic algorithm, namely the fractal-based
algorithm, for tackling continuous optimization problems. In this algorithm, the density of high
quality and promising points in an area is considered as a heuristic which estimates the degree
of promise for finding the optimal solution in that area. The promising areas of state space are
then iteratively detected and partitioned into self-similar and fractal-shaped subspaces, each being
searched more precisely and more extensively. Comparison with some other, metaheuristic algorithms,
demonstrated that this algorithm could find high quality solutions within an appropriate time.

Shams et al. [90] proposed a novel optimization algorithm, the ideal gas optimization (IGO) with
the inspiration of the first law of thermodynamics and kinetic theory. In IGO, the searcher agents are a
collection of molecules with pressure and temperature. IGO uses the interaction between gas systems
and molecules to search the problem space for the solution. The IGO algorithm was benchmarked by
an array of benchmarks. Comparison of the results with PSO and the genetic algorithm (GA) showed
an advantage of the IGO approach.

Precup et al. [91] suggested a synergy of fuzzy logic and nature-inspired algorithms in the
context of the nature-inspired optimal tuning of the input membership functions of a class of
Takagi–Sugeno–Kang (TSK) fuzzy models dedicated to anti-lock braking systems (ABSs). The TSK
fuzzy model structure and initial TSK fuzzy models were obtained by the modal equivalence principle
in terms of placing local state-space models in the domain of TSK fuzzy models. The optimization
problems were defined to minimize objective functions expressed as the average of the square modeling
errors over the time horizon. Two representative nature-inspired algorithms, simulated annealing
(SA) and PSO, were implemented to solve the optimization problems and to obtain optimal TSK
fuzzy models.

Baruah et al. [92] proposed a new online evolving clustering approach for streaming data.
Unlike other approaches, which consider either the data density or distance from existing cluster
centers, this approach uses cluster weight and distance before generating new clusters. To capture
the dynamics of the data stream, the cluster weight is defined in both data and time space in such a
way that it decays exponentially with time. A distinction is made between core and noncore clusters
to effectively identify the real outliers. Experimental results with developed models showed that the
proposed approach obtains results at par or better than existing approaches and significantly reduces
the computational overhead, which makes it suitable for real-time applications.

Yi et al. [93] proposed a novel quantum-inspired MBO methodology, called QMBO,
by incorporating quantum computation into the basic MBO algorithm. In QMBO, a certain number
of the worst butterflies are updated by quantum operators. The path planning navigation problem
for unmanned combat air vehicles (UCAVs) was modeled, and its optimal path was obtained by the
proposed QMBO algorithm. Furthermore, B-Spline curves were utilized to refine the obtained path,
making it more suitable for UCAVs. The UCAV path obtained by QMBO was studied and analyzed in
comparison with the basic MBO. Experimental results showed that QMBO can find a much shorter
path than MBO.

Ghetas et al. [94] incorporated the harmony search (HS) algorithm into the basic MBO algorithm,
and proposed a variant of MBO, called MBHS, to deal with the standard benchmark problems.
In MBHS, the HS algorithm is considered as a mutation operator to improve the butterfly adjusting
operator, with the aim of accelerating the convergence rate of MBO.

Feng et al. [95] presented a novel binary MBO (BMBO) method used to address the 0-1 knapsack
problem (0-1 KP). In BMBO, each butterfly individual is represented as a two-tuple string.
Several individual allocation techniques are used to improve BMBO’s performance. In order to keep
the number of infeasible solutions to a minimum, a novel repair operator was applied. The comparative
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study of BMBO with other optimization techniques showed the superiority of the former in solving
0-1 KP.

Wang et al. [96,97] put forward another variant of the MBO method, the GCMBO. In GCMBO,
two modification strategies, including a self-adaptive crossover (SAC) operator and a greedy strategy,
were utilized to improve its search ability.

Feng et al. [98] combined chaos theory with the basic MBO algorithm, and proposed a novel
chaotic MBO (CMBO) algorithm. The proposed CMBO algorithm enhanced the search effectiveness
significantly. In CMBO, in order to tune the two main operators, the best chaotic map is selected from
12 maps. Meanwhile, some of the worst individuals are improved by using a Gaussian mutation
operator to avoid premature convergence.

Ghanem and Jantan [99] combined ABC with elements from MBO to proposed a new hybrid
metaheuristic algorithm named hybrid ABC/MBO (HAM). The combined method uses an updated
butterfly adjusting operator, considered to be a mutation operator, with the aim of sharing information
with the employee bees in ABC.

Wang et al. [100] proposed a discrete version of MBO (DMBO) that was applied successfully to
tackle the Chinese TSP (CTSP). They also studied and analyzed the parameter butterfly adjusting rate
(BAR). The chosen BAR was used to find the best solution for the CTSP.

Feng et al. [101] proposed a type of multi-strategy MBO (MMBO) technique for the discounted
0-1 knapsack problem (DKP). In MMBO, two modifications, including neighborhood mutation and
Gaussian perturbation, are utilized to retain the diversity of the population. An array of experimental
results showed that the neighborhood mutation and Gaussian perturbation were quite capable of
providing significant improvement in the exploration and exploitation of the MMBO approach,
respectively. Accordingly, two kinds of NMBO were proposed: NCMBO and GMMBO.

Feng et al. [102] combined MBO with seven kinds of DE mutation strategies, using the intrinsic
mechanism of the search process of MBO and the character of the differential mutation operator.
They presented a novel DEMBO based on MBO and an improved DE mutation strategy. In this work,
the migration operator was replaced by a differential mutation operator with the aim of improving its
global optimization ability. The overall performance of DEMBO was fully assessed using thirty typical
discounted 0-1 knapsack problem instances. The experimental results demonstrated that DEMBO could
enhance the search ability while not increasing the time complexity. Meanwhile, the approximation
ratio of all the 0-1 KP instances obtained by DEMBO were close to 1.0.

Wang et al. [103] proposed a new population initialization strategy in order to improve MBO’s
performance. First, the whole search space is equally divided into NP (population size) parts at
each dimension. Subsequently, two random distributions (the T and F distributions) are used to
mutate the equally divided population. Accordingly, five variants of MBOs are proposed with a new
initialization strategy.

Feng et al. [104] presented OMBO, a generalized opposition-based learning (OBL) [105,106] MBO
with Gaussian perturbation. The authors used the OBL strategy on the portion of the individuals in the
late stage of evolution, and used Gaussian perturbation on the individuals with poor fitness in each
evolution. OBL guaranteed a higher convergence speed of OMBO, and Gaussian perturbation avoided
the possibility of falling into a local optimum. For the sake of testing and verifying the effectiveness of
OMBO, three categories of 15 large-scale 0-1 KP cases from 800 to 2000 dimensions were used. The
experimental results indicated that OMBO could find high-quality solutions.

Chen et al. [107] proposed a new variant of MBO by introducing a greedy strategy to solve
dynamic vehicle routing problems (DVRPs). In contrast to the basic MBO algorithm, the proposed
algorithm accepted only butterfly individuals that had better fitness than before implementation of the
migration and butterfly adjusting operators. Also, a later perturbation procedure was introduced to
make a trade-off between global and local search.

Meng et al. [108] proposed an improved MBO (IMBO) for the sake of enhancing the optimization
ability of MBO. In IMBO, the authors divided the two subpopulations in a dynamic and random
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fashion at each generation, instead of using the fixed strategy applied in the original MBO approach.
Also, the butterfly individuals were updated in two different ways for the sake of maintaining the
diversity of the population.

Faris et al. [109] modified the position updating strategy used in the basic MBO algorithm by
utilizing both the previous solutions and the butterfly individuals with the best fitness at the time.
For the sake of fully exploring the search behavior of the improved MBO (IMBO), it was benchmarked
by 23 functions. Furthermore, the IMBO was applied to train neural networks. The IMBO-based
trainer was verified on 15 machine learning datasets from the UCI repository. Experimental results
showed that the IMBO algorithm could enhance the learning ability of neural networks significantly.

Ehteram et al. [110] used the MBO algorithm to address the utilization of a multi-reservoir
system for the sake of improving production of hydroelectric energy. They studied three periods of
dry (1963–1964), wet (1951–1952), and normal (1985–1986) conditions in a four reservoir system.
The experiments indicated that MBO can generate more energy compared to particle swarm
optimization (PSO) and the genetic algorithm (GA).

Though many scholars have made several in-depth studies of the MBO algorithm from different
aspects. The number of monarch butterflies in land 1 and 2 is unchanged. In this paper, a self-adaptive
strategy is introduced to update the subpopulation sizes during the optimization process. A detailed
description of the proposed algorithm will be given in the following sections.

3. MBO Algorithm

3.1. Migration Operator

The number of butterflies located at land 1 and land 2 can be calculated as ceil(p∗NP)
(NP1, subpopulation 1, SP1) and NP− NP1 (NP2, subpopulation 2, SP2), respectively. We use SP1 and
SP2 to denote subpopulation 1 and subpopulation 2, respectively. Here, ceil(x) rounds x to the nearest
integer not less than x. Therefore, when r ≤ p, then xt+1

i,k is generated by the following equation [88]:

xt+1
i,k = xt

r1,k , (1)

where xt+1
i,k is the kth element of xi, and xt

r1,k is the kth element of xr1 . Butterfly r1 is chosen from SP1 in
a random fashion. In Equation (1), r is given in the following form:

r = rand ∗ peri, (2)

where peri is the migration period [88]. In comparison, when r > p, then xt
r1,k is given by:

xt+1
i,k = xt

r2,k , (3)

where xt
r2,k is the kth element of xr2 , and butterfly r2 is chosen from SP2 in a random fashion.

3.2. Butterfly Adjusting Operator

For butterfly j, if rand is not more than p, the kth element is given as [88]:

xt+1
j,k = xt

best,k , (4)

where xt+1
j,k is the kth element of xj. Similarly, xt

best,k is the kth element of the best individual xbest.
On the other hand, when rand is bigger than p, it can be expressed as:

xt+1
j,k = xt

r3,k , (5)

where xt
r3,k is the kth element of xr3 . Here, r3 ∈ {1, 2, . . . , NP2}.
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In this case, when rand is bigger than BAR, it can be calculated in another form [88]:

xt+1
j,k = xt+1

j,k +α× (dxk − 0.5) , (6)

where dx is the walk step of butterfly j.

4. SPMBO Algorithm

Even though the MBO algorithm was proposed only three years ago, it has received more and
more attention from scholars and engineers [88]. They have put forward many techniques to improve
the search ability of the basic MBO algorithm. Also, MBO has been used to successfully solve all
kinds of real-world problems. However, as mentioned previously, MBO uses a fixed number of
butterflies in land 1 and land 2, and all the new butterfly individuals generated by the migration
operator are accepted. In this paper, a new variant of the MBO algorithm will be proposed by
introducing self-adaptive and greedy strategies. A detailed description of the SPMBO algorithm will
be given below.

4.1. Self-Adaptive Strategy

As mentioned in Section 3.1, the number of butterflies in land 1 and land 2 are ceil(p*NP)
(NP1, subpopulation 1) and NP-NP1 (NP2, subpopulation 2), respectively. They are fixed and
unchanged during the entire optimization process. Here, the parameter p is adjusted by a self-adaptive
strategy in a dynamic way, which is updated as follows:

p = a + bt , (7)

where t is current generation, and a and b are constants given by:

a =
pmintm − pmax

tm − 1
, (8)

b =
pmax − pmin

tm − 1
, (9)

where tm is the maximum generation, and pmin and pmax are lower and upper bounds of parameter p,
respectively. Clearly, pmin and pmax are in the range [0, 1].

For the basic MBO algorithm, when p = 0, all the butterflies are updated by the butterfly adjusting
operator, while when p = 1, all the butterflies are updated by the migration operator. Apart from
these two special cases, in order to extend the range of the parameter p, pmin and pmax are respectively
assigned to 0.1 and 0.9 in our following experiments. From Equation (7), we can see, the parameter p
is changed in a linear way from the lower bound pmin to upper bound pmax.

4.2. Greedy Strategy

In this subsection, we will make a further in-depth study on the migration operator. In the
basic MBO algorithm, all the newly-generated butterfly individuals are accepted as the new butterfly
individuals for the next generation. If the newly-generated butterfly individual is worse than before,
this updating will lead to population degradation, and slow the convergence speed. More seriously,
if this happens at the later stages of the search, the population will oscillate.

In this paper, a greedy strategy is introduced in the basic MBO algorithm. Only newly-generated
butterfly individuals with better fitness will be accepted and passed to the next generation. This
selection scheme guarantees the generated population is not worse than before, and the algorithm



Algorithms 2018, 11, 71 7 of 19

evolves in the proper way. After introducing the greedy strategy, for minimal problems, the new
butterfly individual is given as:

xt+1
i,new =

{
xt+1

i , f (xt+1
i ) < f (xt

i )

xt
i , else

, (10)

where xt+1
i,new is a newly-generated butterfly that will be passed to the next generation, and f (xt+1

i ) and
f (xt

i ) are the fitness of butterfly xt+1
i and xt

i , respectively.
After introducing this greedy strategy to the migration operator, the mainframe of the updated

migration operator can be constructred, as shown in Algorithm 1.

Algorithm 1 Updated Migration Operator.

1: for i = 1 to NP1 do // butterflies in SP1
2: for k = 1 to D do // D is the length of a butterfly individual
3: Randomly generate a number rand.
4: r = rand ∗ peri.
5: if r ≤ p then
6: Randomly select a butterfly in subpopulation 1 (say r1);
7: Generate xt+1

i,k by Equation (1);
8: else
9: Randomly select a butterfly in subpopulation 2 (say r2);

10: Generate xt+1
i,k by Equation (3);

11: end if
12: end for
13: Generate xt+1

i,new according to greedy strategy as shown in Equation (10).
14: end for

After incorporating the self-adaptive strategy and greedy strategy into the basic MBO algorithm,
the SPMBO approach is complete; a description of the approach is given in Algorithm 2.

Algorithm 2 SPMBO Algorithm.

1: Initialization. Set the generation counter t = 1, and set the maximum generation
tm, NP1, NP2, BAR, peri, and the lower (pmin) and upper (pmax) bounds of parameter p.

2: Population evaluation. Calculate the fitness according to the objective function.
3: while t < tm do
4: Sort the butterfly population.
5: Compute parameter p according to Equation (7).
6: Determine the number of butterflies in land 1 (NP1) and land 2 (NP2).
7: Divide butterfly individuals into two subpopulations.
8: for i = 1 to NP1 do // butterflies in SP1
9: Perform updated migration operator as Algorithm 1.

10: end for
11: for j = 1 to NP2 do // butterflies in SP2
12: Perform butterfly adjusting operator as the basic MBO algorithm.
13: end for
14: Calculate the fitness of newly-generated butterfly individuals.
15: t = t + 1.
16: end while
17: Print the final solution.

In order to verify the performance of the prosed SPMBO algorithm, thirteen benchmark problems
are solved by the proposed approach. The thirteen benchmark problems are minimal functions, so the
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MBO and SPMBO algorithms are striving to search for the smallest possible function values. A more
detailed description of these experiments can be found in Section 5.

5. Simulation Results

In this section, the proposed SPMBO algorithm will be fully verified from various aspects on thirteen
30-D and 60-D standard benchmark problems, as shown in Table 1. A more detailed description of the
benchmark problems can be found on the website: http://www.sfu.ca/~ssurjano/optimization.html.
In order to get a fair comparison, all implementations are carried out under the same conditions [49,111].

Table 1. Benchmark functions.

No. Name lb ub opt Separability Modality

F01 Alpine −10 10 0 Separable Multimodal
F02 Brown −1 4 0 Nonseparable Unimodal
F03 Dixon & Price −10 10 0 Nonseparable Multimodal
F04 Fletcher-Powell −π π 0 Nonseparable Multimodal
F05 Holzman 2 −10 10 0 Separable Multimodal
F06 Levy −10 10 0 Nonseparable Multimodal
F07 Penalty #1 −50 50 0 Nonseparable Multimodal
F08 Penalty #2 −50 50 0 Nonseparable Multimodal
F09 Perm −D D 0 Separable Multimodal
F10 Powell −4 5 0 Separable Unimodal
F11 Rastrigin −5.12 5.12 0 Nonseparable Multimodal
F12 Schwefel 2.21 −100 100 0 Nonseparable Unimodal
F13 Zakharov −5 10 0 Nonseparable Unimodal

5.1. MBO vs. SPMBO

In this subsection, we compare the proposed SPMBO algorithm with the basic MBO approach.
For MBO and SPMBO, the corresponding parameters are set as follows: max step Smax = 1.0,
butterfly adjusting rate BAR = 5/12, maximum generation tm = 50, migration period peri = 1.2,
the migration ratio p = 5/12, the upper bound pmax = 0.9, lower bound pmin = 0.1, and population
size NP = 50. Therefore, for the basic MBO, the number of butterflies in land 1 and land 2,
i.e., NP1 and NP2, are 21 and 29, respectively. According to Equations (7)–(9), we find a = 41/490,
b = 8/490, and the parameter p, is given by:

p =
41
490

+
8

490
t , (11)

where t is current generation, which is an integer between 1 and 50 in our present work.
According to our above analyses, the trend of parameter p, the number of butterflies in land 1

NP1, and the number of butterflies in land 2 NP2 for both the basic MBO algorithm and the proposed
SPMBO algorithm are illustrated in Figure 1.

In essence, all the intelligent algorithms are stochastic algorithms, therefore, in order to remove
the influence of randomness, thirty independent runs are performed. In the following experiments,
the optimal solution for each test problem is highlighted in bold font.

5.1.1. D = 30

In this subsection, the dimension of thirteen benchmarks are set to 30. For MBO and SPMBO,
they have the same function evaluations (FEs) at each generation. Therefore, the maximum generation
(tm) is considered as the stop condition, which is 50 as mentioned above. For the thirty implementations,
the best, mean, and worst function values and Standard deviation (Std) values obtained by MBO and
SPMBO are recorded in Table 2.

http://www.sfu.ca/~ssurjano/optimization.html
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Figure 1. Trends of the parameter p, the number of butterflies in land 1 NP1, and the number of
butterflies in land 2 NP2 for the tested monarch butterfly optimization (MBO) and self-adaptive
population MBO (SPMBO) algorithms. (a) p; (b) NP1; (c) NP2.



Algorithms 2018, 11, 71 10 of 19

From Table 2, it can be observed that, in terms of the mean and worst function values, SPMBO
has the absolute advantage over the MBO algorithm on the thirteen benchmarks. By studying the SD
values, we can see, the final functions values obtained by SPMBO are located in a smaller range than
the basic MBO algorithm. This indicates that SPMBO is an effective intelligent algorithm that performs
in a more stable way. Unfortunately, for best function values, SPMBO only narrowly defeated the basic
MBO algorithm (7 vs. 6).

The superiority of SPMBO on functions F01–F13 is also shown in Figure 2, which clearly reveals
that SPMBO performs better than MBO throughout the entire optimization process.

Table 2. Best, mean, and worst function values and SD values obtained by MBO and SPMBO algorithms
with dimension D = 30.

Best Mean Worst SD

MBO SPMBO MBO SPMBO MBO SPMBO MBO SPMBO

F01 0.10 0.05 12.93 7.12 58.87 34.25 17.19 8.24
F02 0.02 9.13 × 10−4 196.00 85.99 1.85× 103 512.20 493.80 148.50
F03 31.53 7.22 3.57× 108 1.97 × 108 1.16× 109 6.52 × 108 3.54× 108 2.19 × 108

F04 4.63× 105 3.23 × 105 8.46× 105 7.03 × 105 1.58× 106 1.01 × 106 2.85× 105 1.97 × 105

F05 22.94 3.98 × 10−3 2.53× 105 1.21 × 105 5.90× 105 5.78 × 105 1.93× 105 1.36 × 105

F06 2.64 × 10−3 9.71× 10−3 46.65 19.89 206.80 121.90 62.63 33.74
F07 1.49 × 10−5 2.18× 10−4 7.25× 107 5.58 × 107 4.43× 108 4.23 × 108 1.26× 108 9.18 × 107

F08 0.27 1.15 3.64× 108 8.89 × 107 1.12× 109 6.83 × 108 4.28× 108 1.66 × 108

F09 0.85 0.21 2.29× 1022 3.35 × 1016 6.77× 1023 1.09 × 1018 1.22× 1023 1.80 × 1017

F10 0.67 1.09 3.16× 103 3.02 × 103 1.24× 104 1.11 × 104 3.58× 103 3.11 × 103

F11 0.05 3.39 106.00 80.14 234.40 201.30 84.42 55.02
F12 0.47 0.48 45.50 23.55 121.10 86.12 45.26 28.11
F13 31.23 1.49 541.90 417.60 1.93× 103 1.06 × 103 375.30 318.70

Total 6 7 0 13 0 13 0 13

5.1.2. D = 60

In this subsection, the dimension of the thirteen benchmark problems are set to 60.
As before, the maximum generation (tm), i.e., function evaluations (FEs), is considered as the stop
condition, which is again set to 50. After thirty implementations, the best, mean, and worst function
values and SD values were obtained by MBO and SPMBO and are recorded in Table 3.

From Table 3, it can be observed that, for mean and worst function values, SPMBO has the
absolute advantage over the MBO algorithm on the thirteen benchmarks, although MBO does perform
better than SPMBO on two of the test functions. On ten benchmark problems, SPMBO has smaller SD
values than MBO. This indicates that SPMBO performs more stably than MBO in most cases. However,
for best function values, SPMBO is narrowly defeated by the basic MBO algorithm (6 vs. 7). Future
research of SPMBO should foucus on how to improve the best function values.

The superiority of SPMBO on functions F01–F13 can also be seen in Figure 3, which clearly reveals
that SPMBO performs better than MBO during the entire optimization process.

5.2. PSO vs. SPMBO

In order to further show the superiority of the proposed SPMBO algorithm, we compare the
SPMBO with other metaheuristic algorithms. Here, PSO is taken as an example. The parameters in
SPMBO are the same as in Section 5.1. For PSO, the parameters are chosen as: the inertial constant
=0.3, the cognitive constant =1, and the social constant for swarm interaction =1. As mentioned in
Section 5.1, thirty independent runs are performed with the aim of getting representative results.
The optimal solution for each test problem is highlighted in bold font.
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Figure 2. Convergence curves for the thirteen the functions with dimension D = 30. (a) F01–F04; (b) F05–F08;
(c) F09–F12; and (d) F13.
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Figure 3. Convergence curves of the thirteen test functions with D = 60. (a) F01–F04; (b) F05–F08; (c) F09–F12;
and (d) F13.
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Table 3. Best, mean, and worst function values and SD values obtained by the MBO and SPMBO
algorithms with D = 60.

Best Mean Worst SD

MBO SPMBO MBO SPMBO MBO SPMBO MBO SPMBO

F01 0.03 0.12 59.21 39.72 153.90 133.30 61.82 43.95
F02 0.05 0.38 5.50× 1014 1.14 × 109 1.68× 1016 1.78 × 1010 3.05× 1015 4.34 × 109

F03 1.34× 104 16.56 2.50× 109 1.96 × 109 6.33× 109 6.03 × 109 2.12× 109 2.03 × 109

F04 5.20× 106 3.18 × 106 7.19× 106 5.21 × 106 9.68× 106 7.14 × 106 1.33× 106 9.78 × 105

F05 24.82 117.20 1.26× 106 1.11 × 106 3.02× 106 2.76 × 106 1.07 × 106 1.17× 106

F06 0.02 0.21 196.60 149.60 625.20 635.90 228.00 160.10
F07 8.62 × 10−4 0.08 3.44× 108 2.84 × 108 1.54× 109 1.50 × 109 5.46× 108 4.93 × 108

F08 9.85 × 10−3 5.03 1.08× 109 5.55 × 108 3.23× 109 2.69 × 109 1.10× 109 8.06 × 108

F09 3.49 4.18 3.57× 1062 5.23 × 1041 1.01× 1064 7.89 × 1042 1.97× 1063 1.91 × 1042

F10 25.18 2.91 1.29× 104 1.22 × 104 5.67× 104 3.98 × 104 1.22 × 104 1.37× 104

F11 60.44 36.61 301.10 319.50 492.80 517.00 158.90 142.00
F12 4.32 1.51 176.20 131.20 271.60 260.80 86.66 95.25
F13 165.70 8.76 5.02× 105 5.82 × 103 9.16× 106 6.75 × 104 1.93× 106 1.44 × 104

Total 7 6 1 12 2 11 3 10

5.2.1. D = 30

In this subsection, the dimension of the thirteen benchmarks is set to 30. PSO and SPMBO have
the same function evaluations (FEs) at each generation. Therefore, the maximum generation (tm) is
considered as the stop condition, which is 50 as mentioned above. After thirty implementations, the
best, mean, and worst function values and SD values obtained by PSO and SPMBO were recorded and
are shown in Table 4.

From Table 4, it can be observed that, for best and mean function values, SPMBO has the absolute
advantage over the PSO algorithm. Through studying the worst values, we can see, the final function
values obtained by SPMBO are a little better than PSO. Unfortunately, for SD function values, SPMBO
is defeated by PSO .

Table 4. Best, mean, worst function values and SD values obtained by the PSO and SPMBO algorithms
with dimension D = 30.

Best Mean Worst SD

PSO SPMBO PSO SPMBO PSO SPMBO PSO SPMBO

F01 29.95 0.04 36.00 5.28 43.13 24.37 3.06 6.45
F02 96.30 0.10 357.50 96.33 1.37× 103 1.32 × 103 251.00 274.20
F03 2.22× 107 6.96 × 103 2.93× 108 2.83 × 108 1.28× 109 8.86 × 108 4.31× 108 3.06 × 108

F04 9.63× 105 4.07 × 105 1.71× 106 8.43 × 105 2.87× 106 1.49 × 106 3.49× 105 2.56 × 105

F05 2.39× 104 7.19 × 10−3 4.62 × 104 7.49× 104 2.09 × 105 3.52× 105 3.24 × 104 1.13× 105

F06 38.02 5.18 × 10−3 80.32 36.60 115.80 189.20 16.08 58.80
F07 4.03× 106 2.28 × 10−4 2.66 × 107 7.46× 107 6.70 × 107 5.75× 108 1.62 × 107 1.60× 108

F08 3.39× 107 0.02 9.37 × 107 1.92× 108 1.96 × 108 8.58× 108 3.99 × 107 2.75× 108

F09 5.53 × 10−3 6.68 3.14 2.29× 1022 27.13 6.77× 1023 6.10 1.22× 1023

F10 1.73× 103 3.27 3.16× 103 3.10 × 103 5.21 × 103 9.37× 103 976.60 2.94× 103

F11 180.00 1.20 204.80 89.07 240.00 221.30 18.34 60.96
F12 107.00 0.86 120.40 36.15 138.00 103.90 6.47 35.62
F13 231.80 20.83 569.30 459.80 2.39× 103 751.00 372.00 220.90

Total 1 12 4 9 6 7 10 3

5.2.2. D = 60

In this subsection, the dimension of the thirteen benchmark problems is set to 60.
As before, the maximum generation (tm), i.e., function evaluations (FEs), is considered as the stop
condition and is set to 50. After thirty implementations, the best, mean, and worst function values and
SD values were obtained for PSO and SPMBO and are recorded in Table 5.
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From Table 5, it can be observed that, for best and mean function values, SPMBO has the absolute
advantage over the PSO algorithm on all thirteen benchmarks. For worst values, SPMBO and PSO
have similar performance. Unfortunately, for SD values, SPMBO is defeated by PSO.

Table 5. Best, mean, worst function values and SD values obtained by the PSO and SPMBO algorithms
with dimension D = 60.

Best Mean Worst SD

PSO SPMBO PSO SPMBO PSO SPMBO PSO SPMBO

F01 74.61 0.45 85.45 53.63 92.23 135.90 4.27 43.22
F02 1.97× 103 0.81 4.91 × 105 6.48× 108 4.92 × 106 1.78× 1010 1.06 × 106 3.11× 109

F03 5.23× 108 2.46 × 104 4.00× 109 1.63 × 109 8.91× 109 6.08 × 109 3.04× 109 1.87 × 109

F04 8.48× 106 3.95 × 106 1.07× 107 6.09 × 106 1.33× 107 8.45 × 106 1.18× 106 1.00 × 106

F05 2.03× 105 18.17 1.49× 106 1.00 × 106 3.78× 106 3.07 × 106 1.26× 106 9.74 × 105

F06 185.80 0.07 237.00 131.20 303.80 522.10 31.63 163.90
F07 1.03× 108 9.80 × 10−4 1.95 × 108 2.58× 108 3.17 × 108 1.41× 109 5.91 × 107 4.68× 108

F08 2.01× 108 0.77 4.29 × 108 5.82× 108 7.92 × 108 2.94× 109 1.30 × 108 9.43× 108

F09 0.04 0.50 19.92 3.57× 1062 115.80 1.01× 1064 27.03 1.97× 1063

F10 6.80 × 103 3.44 1.31× 104 5.51 × 103 1.80 × 104 3.65× 104 3.10 × 103 8.30× 103

F11 352.00 37.45 467.70 290.60 522.90 513.00 40.55 159.70
F12 228.00 18.07 261.80 115.30 288.00 251.80 11.26 73.14
F13 914.10 12.95 1.82× 109 2.28 × 104 4.37× 1010 4.88 × 105 7.97× 109 9.05 × 104

Total 1 12 4 9 7 6 9 4

From the results in Tables 4 and 5, we can draw a brief conclusion, SPMBO performs better than
PSO on most cases, though the SD of the SPMBO algorithm must be further improved.

6. Conclusions

Inspired by the migration behavior of monarch butterflies, one of the most promising swarm
intelligence algorithms, monarch butterfly optimization (MBO), was proposed by Wang et al. in 2015.
In the basic MBO algorithm, the number of butterflies in land 1 (NP1) and land 2 (NP2) is fixed,
which is calculated according to the parameter p at the begin of the search. MBO includes two main
operators: a migration operator and a butterfly adjusting operator. For the migration operator, all the
generated butterfly individuals are accepted and passed to the next generation. In some cases, this is
an ineffective way to find the best function values. In this paper, we introduced two techniques to
overcome these drawbacks: self-adaptive and greedy strategies. The parameter p is linearly adjusted
in a dynamic way. Therefore, at the beginning of the search, the number of butterflies in land 1 (NP1)
and land 2 (NP2) is determined by the parameter p. Additionally, only newly-generated butterfly
individuals having better fitness will be accepted and passed to the next generation. This greedy
strategy will surely accelerate the convergence speed. The proposed SPMBO algorithm is tested by
thirteen 30-D and 60-D test functions. The experimental results indicate that the search ability of the
proposed SPMBO approach outperforms significantly the basic MBO algorithm on most test functions.

Despite showing various advantages of the SPMBO approach, the following points should be
highlighted in our future research. On one hand, the parameter p is changed during the entire
optimization process. In fact, if the algorithm performs in a good manner, there is no need to adjust the
parameter p. Therefore, developing a method to adjust the parameter p in a more intelligent way is
worthy of further studies. Second, for the updated migration operator, only better butterfly individuals
are accepted and passed to the next generation. The butterfly individuals having worse fitness may
include better elements, which may help the search algorithm. Thus, the migration operator should
accept a few butterfly individuals with worse fitness. Last, only thirteen benchmarks were used to
test our proposed SPMBO approach. In the future, more benchmark problems, especially real-world
applications, should be used for further verifying SPMBO, such as image processing, video coding,
and wireless sensor networks.
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