
algorithms

Article

A Novel Design of Sparse Prototype Filter for Nearly
Perfect Reconstruction Cosine-Modulated
Filter Banks

Wei Xu 1,2, Yi Li 1 ID , Jinghong Miao 1,*, Jiaxiang Zhao 3 and Xin Gao 1

1 School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
doctorxw@126.com (W.X.); piaopiaojiazu@outlook.com (Y.L.); gaoxin_621@163.com (X.G.)

2 Tianjin Key Laboratory of Optoelectronic Detection Technology and System, Tianjin 300387, China
3 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;

zhaojx@nankai.edu.cn
* Correspondence: miaojinghong@tjpu.edu.cn; Tel.: +86-022-83955524

Received: 15 April 2018; Accepted: 21 May 2018; Published: 22 May 2018

Abstract: Cosine-modulated filter banks play a major role in digital signal processing. Sparse FIR
filter banks have lower implementation complexity than full filter banks, while keeping a good
performance level. This paper presents a fast design paradigm for sparse nearly perfect-reconstruction
(NPR) cosine-modulated filter banks. First, an approximation function is introduced to reduce the
non-convex quadratically constrained optimization problem to a linearly constrained optimization
problem. Then, the desired sparse linear phase FIR prototype filter is derived through the orthogonal
matching pursuit (OMP) performed under the weighted l2 norm. The simulation results demonstrate
that the proposed scheme is an effective paradigm to design sparse NPR cosine-modulated
filter banks.
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1. Introduction

Maximally decimated, uniform, cosine-modulated filter banks play a major role in applications
where signals must be processed in sub-bands [1–5]. There are two main methods obtaining a
cosine-modulated filter bank. (1) Design analysis and synthesis filter banks respectively under the
certain conditions; (2) Design one or two prototype filters and get the analysis and synthesis filter banks
by cosine modulating. In this paper, we choose the later one because the design is straightforward,
e.g., this method focus on designing a single prototype filter.

There are several methods to design the prototype filter of cosine-modulated filter banks [6–8].
The weighted constrained least square (WCLS) algorithm proposed in reference [6] casts the design
problem as a linear minimization of prototype filter coefficients, which makes the value at ω = π/2M
is 0.707. However, the order of the prototype filter is very high. It is generally true that group delay
increases with the order of the filter. The quantum-behaved particle swarm optimization (QBPSO)
algorithm proposed in reference [7] appropriately relaxes the limitation of perfect-reconstruction
conditions. This method designs the prototype filter by making an unconstrained optimization to
adjust the pass band cutoff frequency of objective function, which minimizes the cost function to meet
the reconstruction conditions. Although the amplitude distortion is guaranteed, the aliasing distortion
cannot meet the perfect-reconstruction condition of filter banks, and the attenuation of prototype filter
is restricted. The design method based on gradient information (GI) in reference [8] uses the gradient
vector of objective function to design prototype filter. However, the order of prototype coefficient
is high, the aliasing distortion and the amplitude distortion of filter banks are not controlled well.
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The order of NPR cosine-modulated filter bank designed by these methods is high and not sparse,
which makes an increasing number of the multipliers and adders in practical application, and results
in a high hardware cost and power consumption.

In this paper, we present a fast design paradigm for sparse NPR cosine-modulated filter banks.
A sparse FIR filter bank contains a large number of zero coefficients, such that the multipliers and
adders corresponding to these zero coefficients are not required, which results in a lower hardware
cost and power consumption with allowed accuracy of distortion. The design procedure can be
divided into two stages. In the first stage, an approximation function f (ω) is introduced to reduce the
non-convex quadratically constrained optimization problem to a linearly constrained optimization
problem. The desired sparse linear phase FIR prototype filter can be derived through the orthogonal
matching pursuit [9] performed under the weighted l2 norm in the second stage. The simulation results
demonstrate that the proposed scheme is an effective paradigm to design sparse NPR cosine-modulated
filter banks.

The paper organization is as follows: In Section 2, we briefly summarize the design framework of
perfect-reconstruction cosine-modulated filter banks. The design of sparse linear phase FIR prototype
filter of NPR cosine-modulated filter banks is showed in Section 3. The representative experimental
results and comparison data are discussed in Section 4. The conclusion of proposed scheme is showed
in Section 5.

2. Perfect-Reconstruction Cosine-Modulated Filter Banks

A M-channel maximally decimated filter bank as illustrated in Figure 1 is composed of M finite
impulse response duration analysis filters with impulse responses hk(n), the down- and up- sampling
by factor M of sub-band signals, and synthesis FIR filters gk(n). The impulse response of filter bank is
obtained by cosine modulation with a low pass filter:

hk(n) = 2h(n) cos[
π

M
(k +

1
2
)(n− V

2
) + (−1)k π

M
], (1)

gk(n) = 2h(n) cos[
π

M
(k +

1
2
)(n− V

2
)− (−1)k π

M
] (2)

with 0 ≤ k ≤ M − 1 and 0 ≤ n ≤ N − 1. h(n) is the impulse response of the FIR prototype filter,
V denotes the system delay and N is the order of the prototype filter. The input-output relation of the
system in the z domain is given by

X̂(z) = A0(z)X(z) +
M−1

∑
l=1

Al(z)X(ze−j2πl/M) (3)

where

A0(z) =
1
M

M−1

∑
k=0

Hk(z)Gk(z) (4)

is the distortion transfer function which determining the distortion of non-aliased component X(z)
caused by the system, and

Al(z) =
1
M

M−1

∑
k=0

Hk(ze−j2πl/M)Gk(z) (5)

are the aliasing transfer functions which determine the attenuation of aliased components X(ze−j2πl/M)

for l = 1, . . . , M− 1. It follows that the filter bank holds the perfect-reconstruction property if and
only if
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A0(z) = z−V , (6)

Al(z) = 0, l = 1, . . . , M− 1. (7)

Figure 1. M-channel maximally decimated filter bank.

3. The Design of Sparse Linear Phase FIR Prototype Filter of NPR Cosine-Modulated Filter Banks

Without loss of generality, the linear phase FIR filter H(ejω) is assumed to be the Type I I which
suggests that the length N of H(ejω) is even and its tap weights satisfying h(n) = h(N − 1− n) for all
0 ≤ n ≤ N − 1. For the other types of the linear phase filters, an argument similar to the one developed
in this paper can be followed. The frequency response corresponding to an N-th order Type I I linear
phase FIR prototype filter can be represented as

H(ejω) = e−j N−1
2 ω H0(ω)

= e−j N−1
2 ω

2

N
2−1

∑
n=0

h(n) cos((
N−1

2
−n)ω)

 . (8)

where H0(ω) is the real-valued amplitude response of prototype filter. The perfect-reconstruction
conditions Equations (6) and (7) for linear phase cosine-modulated filter banks can be reduced to

|H0(ejω)|2 + |H0(ej(ω− π
M ))|2 = 1, ω ∈ [0,

π

M
], (9)

|H0(ejω)| = 0, ω ∈ (
π

M
, π]. (10)

Thus, the problem of sparse linear phase FIR prototype filter design for cosine-modulated filter banks
can be formulated as

min ‖h‖0 (11a)

s.t. |c(ω)h|2 + |c(ω− π

M
)h|2 = 1, ω ∈ [0,

π

M
], (11b)

|c(ω)h| = 0, ω ∈ (
π

M
, π] (11c)

where we have

c(ω)=[cos
N−1

2
ω, · · · ,cos(

N−1
2
−n)ω, · · · , cos

1
2

ω], (12)

h = 2[h(0), h(1), · · · , h(n), · · · , h(
N
2
−1)]T. (13)

Define a approximation function as f (ω), which is required to satisfy the following equations:

f (ω0) = 1, (14a)

f 2(ω) + f 2(ω− π

M
) = 1, ω ∈ (ω0,

π

M
−ω0), (14b)

f (
π

M
−ω0) = 0 (14c)
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where ω0 = απ/2M and 0 ≤ α ≤ 1. There are lots of methods to obtain the function f (ω). In this
paper, we establish a mathematical model like

f (ω) = cos (κω− φ) . (15)

Substituting Equation (14a), Equation (14c) and f (π/2M) =
√

2/2 into Equation (15), we can obtain

κ =
M

2(1− α)
, φ =

Mω0

2(1− α)
. (16)

Utilizing the approximation function f (ω), the problem of designing sparse NPR
cosine-modulated filter banks can be expressed as a constrained optimization problem for the
coefficients of prototype filter in the following form:

min ‖h‖0 (17a)

s.t. |c(ω)h− 1| ≤ δp, ω ∈ [0, ω0), (17b)

|c(ω)h− f (ω)| ≤ δt, ω ∈ [ω0,
π

M
−ω0], (17c)

|c(ω)h| ≤ δs, ω ∈ (
π

M
−ω0, π], (17d)

c(
π

2M
)h =

√
2

2
(17e)

where δp δt and δs represent the ripples of pass band, transition band and stop band respectively.
To compute a solution of problem Equation (17), we follow the standard discretized procedure and
replace the continuous parameter ω with discretized samples distributed in the frequency set [0, π].
The L× N

2 discretized sampling matrix B can be constructed as

B = [Bp; Bt; Bs], (18)

Bp =


c(ω(p)

1 )
...

c(ω(p)
Lp

)

 , [ω
(p)
1 , ω

(p)
2 , · · · , ω

(p)
Lp

] ∈ [0, ω0) ,

Bt =


c(ω(t)

1 )
...

c(ω(t)
Lt
)

 , [ω(t)
1 , ω

(t)
2 , · · · , ω

(t)
Lt
] ∈

[
ω0,

π

M
−ω0

]
,

Bs =


c(ω(s)

1 )
...

c(ω(s)
Ls
)

 , [ω
(s)
1 , ω

(s)
2 , · · · , ω

(s)
Ls
] ∈

( π

M
−ω0, π

]

with L = Lp + Lt + Ls. Define L× 1 vector d and e as

d = [1 · · · 1 f (ω(t)
1 ) · · · f (ω(t)

Lt
) 0 · · · 0]

T
,

e = [δp · · · δp δt · · · δt δs · · · δs]
T

.

The discretized and normalized formulation of problem Equation (17) can be expressed as:
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min ‖h‖0 (19a)

s.t. |Bh− d| ≤ e (19b)

c(
π

2M
)h =

√
2

2
(19c)

Choose the initial L× 1 weight vector w(1) = [1, ..., 1]T. At the k iteration with k ≥ 1, the procedure of
computing the sparse FIR prototype filter proceeds as follows.
Step 1: Normalize column vectors b0, b1, . . . , b N

2 −1 of B under the weight vector w(k) as

B(k) = [b(k)
0 , b(k)

1 , . . . , b(k)
n , . . . , b(k)

N
2 −1

], (20)

b(k)
n = bn/[

L

∑
i=0

w(k)(l) ∗ |bn(l)|2]
1
2 , 0 ≤ n ≤ N

2
− 1. (21)

Step 2: The OMP algorithm [9] is employed to solve the following problem

min
h(k)

‖B(k)h(k) − d‖2
2 (22a)

s.t. ‖h(k)‖0 ≤ k. (22b)

Let k× 1 vector s(k) denote the final solution of Equation (22), and the final L× 1 residual vector is
given as

r(k) = Φ(k)s(k) − d. (23)

where Φ(k) = [b(k)
n1 , b(k)

n2 , . . . , b(k)
nk ] is the matrix of chosen atoms and Λ(k) = {n1, n2, . . . , nk} is the

nonzero index set.
Step 3: Solve the following linear programming problem:

min
h(k),µ

µ (24a)

s.t. |B(k)h(k) − d| ≤ e + µ · 1L×1, (24b)

c(
π

2M
)h(k) =

√
2

2
(24c)

h(k)n = 0, n ∈ {0, 1, ...,
N
2
− 1} −Λ(k). (24d)

If µ ≤ 0, then the computed filter ĥ(k) is the sparse FIR prototype filter of cosine-modulated filter
banks which meeting our design specifications.
Step 4: Compute the new weight vector by formula from reference [10]

w(k+1)
l =

1 +


∣∣∣r(k)l

∣∣∣
max{ |ĥ

(k)|
100 }

2
− 1

4

, 1 ≤ l ≤ L (25)

where w(k+1)
l and r(k)l are the i-th entries of the new weight vector w(k+1) and the residual vector r(k)

respectively. Replace w(k) with w(k+1) and repeat the procedure from Steps 1 to 4.
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4. Examples

In this section, the performance of the proposed scheme is evaluated by several design examples
on a Intel Core i7-6700 3.40GHz PC with MATLAB, and compares to other NPR cosine-modulated
filter banks design algorithms.

Example 1. This example is concerned with the design of NPR cosine-modulated filter banks with M = 4.
The filter order of the FIR linear phase prototype filter is N = 140. The numbers of discretized samples for pass
band, transition band and stop band are Lp = 6, Lt = 20 and Ls = 800, respectively. Choose δp = δt = δs =

1× 10−3. The amplitude distortion function magnitude eam(ω) = 1−
∣∣A0(ejω)

∣∣, the total aliasing transfer

function magnitude ea(ω) =
√

∑M−1
l=1

∣∣Al
(
ejω
)∣∣2, and the amplitude response of the sparse prototype filter

derived from the proposed scheme are shown in Figure 2. The amplitude distortion eam = max
ω
|eam(ω)| and

total aliasing error ea = max
ω
|ea(ω)| of the corresponding cosine-modulated filter bank are eam = 1.70× 10−3

and ea = 5.06× 10−7, respectively. It takes 31 iterations for proposed method to converge, with the CPU time
equals to 0.2716 seconds in each iteration.
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Figure 2. M = 4 channel cosine-modulated filter banks in example 1. (a) The amplitude distortion
function magnitude eam(ω); (b) The total aliasing transfer function magnitude ea(ω); (c) Amplitude
response of sparse prototype filter.

We compare the performance of the proposed scheme with the WCLS [6] scheme and QBPSO [7]
scheme. At the similar reconstruction performances, the number of nonzero tap weights of the
prototype filter yielded from the proposed method is 18 less than that of the WCLS scheme and
the QBPSO scheme. In Table 1, we compare the filter order, the number of nonzero tap weights,
the amplitude distortion eam and the total aliasing error ea corresponding to the proposed scheme,
the WCLS scheme and the QBPSO scheme.
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Table 1. Comparisons for Several Parameters of the Designed Filters Derived from Different Methods.

M Design Method Filter Order Number of Nonzero Taps Amplitude Distortion Total Aliasing Error

WCLS 80 80 3.10× 10−3 1.06× 10−6

4 QBPSO 80 80 7.01× 10−4 8.49× 10−8

Proposed Method 140 62 1.70× 10−3 5.06× 10−7

WCLS 144 144 1.80× 10−3 3.90× 10−7

8 GI 132 132 2.14× 10−5 1.30× 10−5

Proposed Method 160 98 5.20× 10−4 9.85× 10−6

WCLS 224 224 1.30× 10−3 9.03× 10−7

16 QBPSO 256 256 4.73× 10−4 2.34× 10−6

Proposed Method 254 166 5.21× 10−4 4.24× 10−6

Example 2. This example is concerned with the design of NPR cosine-modulated filter banks with M = 8.
The filter order of the FIR linear phase prototype filter is N = 160. The numbers of discretized samples for pass
band, transition band and stop band are Lp = 6, Lt = 93 and Ls = 91, respectively. Choose δp = δt = δs =

1× 10−3. The amplitude distortion function magnitude eam(ω), the total aliasing transfer function magnitude
ea(ω), and the amplitude response of the sparse prototype filter derived from the proposed scheme are shown
in Figure 3. The amplitude distortion eam and total aliasing error ea of the corresponding cosine-modulated
filter bank are eam = 5.2× 10−4 and ea = 9.85× 10−6. It takes 49 iterations for proposal method to converge,
with the CPU time equals to 0.0591 seconds in each iteration.

We compare the performance of the proposed scheme with the WCLS [6] scheme and GI [8]
scheme. At the similar reconstruction performances, the number of nonzero tap weights of the
prototype filter yielded from the proposed method is 46 less than that of the WCLS scheme, the number
of nonzero tap weights of the prototype filter yielded from the proposed method is 34 less than
that of the GI scheme. In Table 1, we compare the filter order, the number of nonzero tap weights,
the amplitude distortion eam and the total aliasing error ea corresponding to the proposed scheme,
the WCLS scheme and the GI scheme.
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Figure 3. M = 8 channel cosine-modulated filter banks in example 2. (a) The amplitude distortion
function magnitude eam(ω); (b) The total aliasing transfer function magnitude ea(ω); (c) Amplitude
response of sparse prototype filter.
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Example 3. This example is concerned with the design of NPR cosine-modulated filter banks with M = 16.
The filter order of the FIR linear phase prototype filter is N = 254. The numbers of discretized samples for pass
band, transition band and stop band are Lp = 4, Lt = 7 and Ls = 94, respectively. Choose δp = δt = δs =

1× 10−3. The amplitude distortion function magnitude eam(ω), the total aliasing transfer function magnitude
ea(ω), and the amplitude response of the sparse prototype filter derived from the proposed scheme are shown
in Figure 4. The amplitude distortion eam and total aliasing error ea of the corresponding cosine-modulated
filter bank are eam = 5.21× 10−4 and ea = 4.24× 10−6. It takes 83 iterations for proposed method to converge,
with the CPU time equals to 0.1108 seconds in each iteration.

We compare the performance of the proposed scheme with the WCLS [6] scheme and QBPSO [7]
scheme. At the similar reconstruction performances, the number of nonzero tap weights of the
prototype filter yielded from the proposed method is 58 less than that of the WCLS scheme, the number
of nonzero tap weights of the prototype filter yielded from the proposed method is 90 less than that
of the QBPSO scheme. In Table 1, we compare the filter order, the number of nonzero tap weights,
the amplitude distortion eam and the total aliasing error ea corresponding to the proposed scheme,
the WCLS scheme and the QBPSO scheme.
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Figure 4. M = 16 channel cosine-modulated filter banks in Example 3. (a) The amplitude distortion
function magnitude eam(ω); (b) The total aliasing transfer function magnitude ea(ω); (c) Amplitude
response of sparse prototype filter.

5. Conclusions

In this paper, we present a fast design paradigm for sparse NPR cosine-modulated filter banks.
Different to traditional method of designing filter banks, the proposed algorithm aims to add a sparsity
into filter banks while others have not, and ensures the stop-band attenuation at least 60 dB while most
other methods cannot guarantee those with the same performance of amplitude distortion and aliasing
distortion. The desired sparse linear phase FIR prototype filter can be derived through the orthogonal
matching pursuit [9] performed under the weighted l2 norm. The simulation results demonstrate that
the proposed scheme is an effective paradigm to design sparse NPR cosine-modulated filter banks.
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