
algorithms

Article

A Modified Artificial Bee Colony Algorithm Based on
the Self-Learning Mechanism

Bao Pang 1, Yong Song 2,*, Chengjin Zhang 2 ID , Hongling Wang 1 and Runtao Yang 2

1 School of Control Science and Engineering, Shandong University, Jinan 250061, China;
pang_bao11@163.com (B.P.); wanghongling720409@163.com (H.W.)

2 School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, Weihai
264209, China; cjzhang@sdu.edu.cn (C.Z.); runtao-sd@163.com (R.Y.)

* Correspondence: songyong@sdu.edu.cn; Tel.: +86-0631-5682389

Received: 26 April 2018; Accepted: 22 May 2018; Published: 24 May 2018
����������
�������

Abstract: Artificial bee colony (ABC) algorithm, a novel category of bionic intelligent optimization
algorithm, was achieved for solving complex nonlinear optimization problems. Previous studies
have shown that ABC algorithm is competitive to other biological-inspired optimization algorithms,
but there still exist several insufficiencies due to the inefficient solution search equation (SSE), which
does well in exploration but poorly in exploitation. To improve accuracy of the solutions, this paper
proposes a modified ABC algorithm based on the self-learning mechanism (SLABC) with five SSEs as
the candidate operator pool; among them, one is good at exploration and two of them are good at
exploitation; another SSE intends to balance exploration and exploitation; moreover, the last SSE with
Lévy flight step-size which can generate smaller step-size with high frequency and bigger step-size
occasionally not only can balance exploration and exploitation but also possesses the ability to escape
from the local optimum. This paper proposes a simple self-learning mechanism, wherein the SSE is
selected according to the previous success ratio in generating promising solutions at each iteration.
Experiments on a set of 9 benchmark functions are carried out with the purpose of evaluating the
performance of the proposed method. The experimental results illustrated that the SLABC algorithm
achieves significant improvement compared with other competitive algorithms.

Keywords: artificial bee colony algorithm; swarm intelligence; self-learning; solution search equation

1. Introduction

In recent years, swarm intelligence algorithms have received a wide spread attention. The artificial
bee colony (ABC) algorithm is a relatively new approach that was proposed by Karaboga [1,2],
motivated by the collective foraging behavior of honey bees. In the process of foraging, the bees need
to find the place of food source with the highest nectar amount. In ABC system, artificial bees search in
the given search space and the food sources represent possible solutions for the optimisation problems.
The bees update the candidate solutions by means of solution search equation (SSE) and if the new
solution is better than the previous one in their memory, they memorize the new position and forget the
previous one. Due to its simplicity and ease of implementation, the ABC algorithm has captured much
attention and has been applied successfully to a variety of fields, such as classification and function
approximation [3], feature selection [4], inverse modelling of a solar collector [5], electric power system
optimization [6], multi-objective optimisation [7], complex network optimization [8], transportation
energy demand [9], large-scale service composition for cloud manufacturing [10], job-shop scheduling
problem with no-wait constraint [11], respiratory disease detection from medical images [12].

Although the ABC algorithm has been widely used in different fields, some researchers have
also pointed out that the ABC algorithm suffers from low solution accuracy and poor convergence

Algorithms 2018, 11, 78; doi:10.3390/a11060078 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-0066-2114
http://dx.doi.org/10.3390/a11060078
http://www.mdpi.com/journal/algorithms
http://www.mdpi.com/1999-4893/11/6/78?type=check_update&version=2

Algorithms 2018, 11, 78 2 of 21

performance. To solve the optimization problem, the intelligent optimization algorithm should
combine global search methods, used to locate the potential optimal regions, with local search
methods, used to fine-tune the candidate solutions, to balance exploration and exploitation process.
However, exploration strategies and exploitation strategies contradict each other and to achieve good
performance, they should be well balanced. While the SSE of ABC, which is used to generate new
candidate solutions based on the information of the present solutions, does well in exploration but
poorly in exploitation, which results in the poor convergence rate. Thus, many related and improved
ABC algorithms have been proposed [13–16].

Inspired by a operator of global best (gbest) solution in particle swarm optimization (PSO)
algorithm [17], Zhu and Kwong proposed a modified ABC algorithm called gbest-guided ABC (GABC)
algorithm to improve the exploitation [18]; the gbest term in the modified SSE can drive the new
candidate solution towards the global best solution. Although the GABC algorithm accelerated the
convergence rate, the exploration performance decreased. Therefore, how to balance exploration and
exploitation has become the main goal in the ABC research. Inspired by differential evolution [19],
Gao and Liu introduced a new initialization approach and proposed an improved SSE which is
based on that the bee searches only around the best solution of the previous iteration to improve the
exploitation; by hybridizing the original SSE and the improved SSE with the fixed selective probability,
the new search mechanism obtains better performance [20]. After that, based on the two SSEs, Gao
and Liu proposed the modified ABC (MABC) algorithm which excludes the onlooker and scout
bee stage. In MABC, a selective probability was introduced to balance exploration of the original
SSE and exploitation of the improved SSE [21]; if the new candidate solution obtained using the
improved SSE is worse than the original one, the bee uses the original SSE to generate a new candidate
solution with a certain probability. To well balance exploration and exploitation, Akay and Karaboga
constructed an adaptive scaling factor (SF) which regulates the range of parameter in SSE by using
Rechenberg’s 1/5 mutation rule; a smaller SF makes the candidate solution fine-tuned with a small
steps while causing slow convergence rate and the bigger SF speeds up the search, but it reduces the
exploitation performance [22]. In the original SSE in ABC algorithm, since the guidance of the last
two term may be in opposite directions, it may cause an oscillation phenomenon. To overcome the
oscillation phenomenon, Gao et al. presented a new SSE with two different candidate solutions selected
from the solution space; moreover, an orthogonal learning strategy was developed to discover more
effective information from the search experiences and to get more promising and efficient candidate
solutions [23]. When the candidate solutions converge to the similar points, the SSE can cause a
stagnation behavior during the search process, that means the value of the new candidate solution is
the same with the value of the current solution. To overcome stagnation behavior of the algorithm,
Babaoglu proposed a novel algorithm called distABC algorithm based on the distributed solution
update rule, which uses the mean and standard deviation of the selected two solution to obtain a new
candidate solution [24].

The above methods have achieved some progress, but there still exist some problems. The GABC
algorithm improved the exploitation, but the exploration decreased. Even though MABC algorithm
used two SSEs to balance exploration and exploitation, the selection mechanism and the fixed selective
probability cannot adapt to the changing environment. Moreover, when the global best solution
trapped in local optimum, GABC and MABC algorithm cannot escape from the local optimum
effectively. The distABC algorithm overcame stagnation behavior, but distABC does poorly in
exploitation. For population-based optimization methods, it is desirable to encourage the individuals
to wander through the entire search space at the initial phase of the optimization; on the other hand, it
is very important to fine-tune the candidate solutions in the succeeding phases of the optimization [25].
However, one SSE of original ABC algorithm cannot balance two aspects. Therefore, this paper
proposes an achievable ABC algorithm which uses five SSEs as the candidate operator pool. The same
with the SSE in ABC algorithm, the first SSE uses a solution selected randomly from the population to
maintain population diversity and it emphasizes the exploration. Inspired by the PSO algorithm, the

Algorithms 2018, 11, 78 3 of 21

second SSE takes advantage of the information of the global best solution to guide the new candidate
solution towards the global best solution. Therefore, the second SSE can improve the exploitation.
To achieve good performance, the third SSE combines the above two SSEs which means that a
randomly selected solution and the global best solution are all used in the SSE to balance exploration
and exploitation. It seems that the global optimal solution is most likely around the best solution of the
previous iteration. Therefore, the fourth SSE is the same with the one proposed in MABC algorithm
which is based on that the bee searches only around the best solution of the previous iteration to
improve the exploitation. When the candidate solutions trapped in local optimum, the above SSEs
cannot escape from the local optimum effectively. To solve such problem, this paper proposes a
novel SSE with Lévy flight step-size which can generate smaller step-size with high frequency and
bigger step-size occasionally. The fifth SSE cannot only balance exploration and exploitation but also
escape from the local optimum effectively. The five SSEs have both advantages and disadvantages
and in order to make full use of the advantages of each SSE, this paper proposes a simple self-learning
mechanism, wherein the SSE is selected according to the previous success ratio in generating promising
solutions at each iteration. The SSE with a high success ratio means that the SSE can generate a better
candidate solution with a large probability. Therefore, the self-learning mechanism cannot only select
the appropriate SSE to generate new candidate solution but also adapt to the changing environment.

The following sections are organized as follows. Section 2 outlines the reviews of the classical ABC
algorithm. Section 3 introduces the proposed self-learning mechanism (SLABC) algorithm. In Section 4,
experiments are carried out to verify the effectiveness of SLABC algorithm based on nine benchmark
functions in terms of t-test. Section 5 presents and discusses the experimental results. Finally, the
conclusion is drawn in Section 6.

2. Classical ABC Algorithm

In the ABC algorithm, the colony of artificial bees contains three groups of bees: employed bees,
onlooker bees and scouts bees [2]. Half of the colony consists of the employed bees, and another half
consists of the onlooker bees. The scouts bees are transmuted from the inactive employed bees and
then abandon their food source to search a new food source. Employed bees explore the food source in
the search space and pass the food information to onlooker bees. Onlooker bees select the good food
sources from those found by employed bees and further search the foods around the selected food
source. The positions of the food sources are initialized in the search space and food sources present
possible solutions for the optimization problem. There are SN solutions, where SN denotes the size of
employed bees or onlooker bees. Suppose xi = {xi,1, xi,2, ..., xi,D} is the position of the ith solution and
D is the number of dimension to be optimized. The flow of ABC algorithm is shown as follows.

2.1. Employed Bee Stage

At this stage, each employed bee search around the given solution xi and let vi = xi. In the update
process, the new candidate solution vi = {vi,1, vi,2, ..., vi,D} is produced by using SSE as follows:

vi,j = xi,j + φi,j(xi,j − xk,j) (1)

where k ∈ {1, 2, ..., SN} and j ∈ {1, 2, ..., D} are randomly chosen indexes; k has to be different from i;
φi,j is a random number in the range [−1, 1]. Then, a greedy selection mechanism is applied between
xi and vi to select a better solution. After all the employed bees complete their searches, they share the
solution information to the onlooker bees.

Algorithms 2018, 11, 78 4 of 21

2.2. Onlooker Bee Stage

According to the fitness value of each solution, onlooker bees calculate the probability value Pi
associated with that solution,

Pi =
f iti

∑SN
i=1 f iti

(2)

where f iti is the fitness value of solution i and SN is the number of solutions. Based on Pi and roulette
wheel selection method, an onlooker bee selects one solution to update. After selecting the solution xi,
the onlooker bee update it by using Equation (1) and the greedy selection mechanism is also used to
select a better solution. At this stage, only the selected solution can be updated and the better solutions
may be updated many times.

2.3. Scouts Bee Stage

If a solution cannot be improved further at least limit times, this solution is assumed to be
abandoned and a new solution will be produced randomly in the search space to replace the abandoned
one. This operation can be defined as follows:

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j) (3)

3. SLABC Algorithm

To improve the performance, the SLABC algorithm uses five SSEs as the candidate operator pool.
One of the SSEs with Lévy flight step-size cannot only balance exploration and exploitation but also
avoid trapping in the local optimum. This section first introduces the Lévy flight in detail.

3.1. Lévy Flight Step-Size

A Lévy flight is a random walk and the step-size satisfies a probability distribution which can be
expressed as follows [26]:

P(s) = s−λ (4)

where s is the step-size with 1<λ ≤ 3. Lévy flight can generate smaller step-size with high frequency
and generate larger step-size occasionally. In the search process, the bee with a large step-size can
reach anywhere of the entire search space to locate the potential optimal solution; when the bees are
trapped in the local optimum, the large step-size can make the bees escape from the local optimum.
The bees with a small step-size tend to fine-tune the current solution to obtain the optimal solution.
The foraging behaviors of many creatures in nature satisfy Lévy flight, such as albatrosses’ foraging
flight trajectory [27,28] and drosophilas’ intermittent foraging flight trajectory [29]. Viswanathan et al.
suggest that Lévy flight is an optimal search strategy when the target sites are sparse and distributed
randomly [26].

This paper uses the method proposed by [30] to calculate Lévy flight step-size:

s =
u

|v|1/β
(5)

where β ∈ [0.3, 1.99], u and v are two normal stochastic variables with standard deviation σu and σv.

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v) (6)

σu =

{
Γ(1 + β) sin(πβ/2)

Γ[(1 + β)/2]2(β−1)/2β

}1/β

, σv = 1 (7)

Algorithms 2018, 11, 78 5 of 21

where the notation Γ(z) is gamma function. If the real part of the complex number z is positive
(Re(z) > 0), then the integral

Γ(z) =
∫ ∞

0
xz−1e−xdx (8)

converges absolutely.
As shown in Figure 1, Lévy flight with a mix of large step-size and small step-size can balance

exploration and exploitation. Therefore, SLABC introduces Lévy flight step-size to the modified SSEs
to improve the performance.

−150 −100 −50 0 50
−60

−40

−20

0

20

40

60

80

Figure 1. An example of 1000 steps of a Lévy flight in two dimensions. The origin of the motion is at
[0,0], the step-size is generated according to Equation (5) with β = 1.5 and the angular direction is
uniformly distributed.

3.2. The Modified Solution Search Equations

To solve the optimization problem, the intelligent optimization algorithm should combine
global search methods with local search methods to balance exploration and exploitation.
However, exploration strategies and exploitation strategies contradict each other and one SSE in ABC
algorithm cannot balance two aspects. Therefore, this paper proposes an achievable ABC algorithm
which uses five SSEs as the candidate operator pool.

Following the classical ABC algorithm, SLABC employs the original SSE as the first search
equations to improve exploration of SLABC algorithm.

vi,j = xi,j + c1(xi,j − xr1,j) (9)

where r1 ∈ {1, 2, ..., SN} and j ∈ {1, 2, ..., D} are randomly chosen indexes; r1 is different with i; c1 is a
random number in the range [−1.0, 1.0].

Algorithms 2018, 11, 78 6 of 21

To improve exploitation, the second SSE introduces the global best solution to guide the new
candidate solutions towards the global best solution.

vi,j = xi,j + c2(xgbest − xi,j) (10)

where xgbest is the global best solution. Generally speaking, there may be a better solution around the
global best solution; therefore, we set random number c2 in the range [0.75, 1.25].

The Equation (9) is good at exploration and Equation (10) is good at exploitation, therefore to well
balance exploration and exploitation, the third SSE combine the two equations as follows.

vi,j = xi,j + c3(xi,j − xr2,j) + c4(xgbest − xi,j) (11)

where r2 ∈ {1, 2, ..., SN} are randomly chosen indexes and r2 is different with i; c3 ∈ [−0.5, 0.5] and
c4 ∈ [0.5, 1.5] are random numbers.

It seems that the global optimal solution is most likely around the best solution of the previous
iteration. Therefore, the fourth SSE is the same with the one proposed in MABC algorithm which
is based on that the bee searches only around the best solution of the previous iteration to improve
the exploitation.

vi,j = xgbest + c5(xr3,j − xr4,j) (12)

where r3 and r4 are mutually different random integer indices selected from {1, 2, ..., SN}; c5 is a
random number in the range [−0.5, 0.5].

Because the above four SSEs are based on the current solutions, when the present solutions
converge to the similar point or are trapped in local optimum, the above SSEs cannot escape from
the local minimum effectively. Therefore, this paper introduces Lévy flight step-size to the last SSE to
solve this problem.

vi,j = xi,j + s (13)

where s is the Lévy flight step-size which can be calculated in Equation (5).
Different from the GABC, MABC algorithm, the range of the weight c3, c4, c5 in Equations (11)

and (12) with the gbest term are all reduced and the interval length are set to 1. Therefore, the new
generated candidate solution can be in a smaller range and the accuracy of the solution will be
improved. Moreover, to make the candidate solution nearer to the global best solution, the range of
the weight c2 in Equation (10) is further reduced and interval length are set to 0.5.

After all the employed (onlooker) bees produce the new candidate solutions using the improved
SSEs, then, a greedy selection mechanism is used to select a better solution between xi and vi.

3.3. Self-Learning Mechanism

The five SSEs are regarded as the candidate operator pool and different operator is more effective
at different stage. At each iteration, each employed (onlooker) bee will select a SSE from the candidate
operator pool to update the corresponding solution. This paper proposes a simple self-learning
mechanism to realize such optimal choice, wherein the SSE is selected according to the previous
success ratio in generating promising solutions at each iteration.

In the self-learning mechanism, each SSE is assigned to a probability: success ratio. It is defined as

Sratk =
Sk
Tk

, k = 1, 2, ..., 5 (14)

where Sk denotes the counter that records the number of successful updating times of the k-th SSE,
where the new candidate solution is better than the old one; Tk is the total number of updating times of
the k-th SSE is selected; Sratk is the success ratio of the k-th SSE. At each iteration, each SSE k is selected
according to the success ratio Sratk through roulette wheel selection. The new candidate solutions

Algorithms 2018, 11, 78 7 of 21

are then produced by the selected SSE. In the initialization stage, each success ratio Sratek is given an
equal selection probability.

It is well known that at the early stage of the optimization, the bees are inclined to locate the
potential optimal regions by wandering through the entire search space. Conversely, most of the bees
are apt to fine-tune the present solutions to obtain the global optimal solution at the latter stage of
the optimization. Therefore, in order to avoid the interference between the early stage and the latter
stage, this paper divides the whole optimization process into two stages. At each stage, Sk, Tk and the
success ratio Sratek all will be initialized.

3.4. Description of the SLABC Algorithm

The pseudo code of the SLABC algorithm can be described as follows (Algorithm 1):

Algorithm 1

Initialize the population of the bees as N and SN = N/2; set the number of trials as limit.
Randomly generate SN points xi(i = 1, 2, ..., SN) in the search space to form an initial solution.
Find the global best solution gbest and the its position xgbest from the SN points.
Set the maximum number of function evaluations, Max.FE; Sk = 1, Tk = 1 and Sratek = 0.2.
While FE < Max.FE
If FE = 1 + Max.FE/2

Initialize Sk, Tk and Sratek.
End If
Employed bee stage:
for i = 1 to SN

Set the candidate solution vi = xi and randomly choose j from {1, 2, ..., D}.
Randomly choose a SSE k from the candidate strategy pool through roulette wheel selection
and count Tk = Tk + 1.
Update the candidate solution vi using the selected SSE.
If f (vi) < f (xi)

xi = vi, Sk = Sk + 1, trial(i) = 1.
Else

trial(i) = trial(i) + 1.
End If

End For
Update the gbest and xgbest and calculate the probability value Pi using Equation (2).
Onlooker bee stage:
for i = 1 to SN

Select one solution to update based on Pi and roulette wheel selection.
The update process is same as that in the employed bee stage.

End For
Update the gbest and xgbest and calculate the probability value Pi using Equation (2).
Scout stage:

If trial(i) > limit
Initialize xi with a new randomly generated point in the search space.

End If
FE = FE + 1
End While

4. Experiments and Results

4.1. Experimental Setup

To investigate the performance of the SLABC algorithm, 9 benchmark functions shown in Table 1
were used, including four unimodal functions (f1 − f4) and five multimodal functions (f5 − f9).
In Table 1, D denotes the dimensions of the solution space and 30, 60, and 100 dimensions are used
in the present paper. The unimodal functions can be used to analyse the convergence rate of the

Algorithms 2018, 11, 78 8 of 21

algorithms. The multimodal functions are commonly used to show whether the algorithms can escape
from the local optimum effectively.

The effectiveness of the proposed SLABC algorithm was evaluated by comparing its results with
other related algorithms, such as ABC [2], GABC [20], MABC [21], and distABC [24]. To make a fair
comparison among ABCs, all the algorithms were tested using the same parameters: the population
size N = 100, limit = 100, the maximum number of iterations, Max.FE = 2000. Additionally, other
specific parameters of each comparison algorithm are same as in ABC [2], GABC [20], MABC [21],
and distABC [24]. In order to ensure the experiment results stability, we repeated each algorithm for
20 times and average the results.

Table 1. Numerical benchmark functions.

Type Test Function Formulation Search Range Minimum Value

Unimodal

Sphere f1(
−→x) =

D
∑

i=1
x2

i xi ∈ [−100, 100] f1(
−→
0) = 0

Quartic f2(
−→x) =

D
∑

i=1
ix4

i + random[0,1) xi ∈ [−1.28, 1.28] f2(
−→
0) = 0

Schwefel’s Problem 2.22 f3(
−→x) =

D
∑

i=1
|xi|+

D
∏
i=1
|xi| xi ∈ [−10, 10] f3(

−→
0) = 0

Rosenbrock f4(
−→x) =

D−1
∑

i=1
[100(xi+1−xi)

2+(1−xi)
2] xi ∈ [−30, 30] f4(

−→
1) = 0

Multimodal

Rastrigin f5(
−→x) =

D
∑

i=1
[x2

i−10cos(2πxi) + 10] xi ∈ [−5.12, 5.12] f5(
−→
0) = 0

Griewank f6(
−→x) = 1

4000

D
∑

i=1
x2

i −
D
∏
i=1

cos (xi√
i
) + 1 xi ∈ [−600, 600] f6(

−→
0) = 0

Ackley f7(
−→x) = −20 exp(−0.2

√
D
∑

i=1
x2

i /D) + 20− exp (
D
∑

i=1
cos (2πxi)/D) + e xi ∈ [−30, 30] f7(

−→
0) = 0

Schwefel’s Problem 2.26 f8(
−→x) =418.9829D−

D
∑

i=1
(xisin(

√
|xi|)) xi ∈ [−500, 500] f8(

−−−−−→
420.9687) = 0

Penalized f9(
−→x) = 0.1

{
sin2(3πx1) +

D−1
∑

i=1
(xi − 1)2[1 + sin2(3πxi+1)] + (xD − 1)2

}
xi ∈ [−50, 50] f9(

−→
1) = 0

+
D
∑

i=1
u(xi, 5, 100, 4)

4.2. Experimental Results

This paper uses five indexes to analysis the experimental results: the best solution (Best), median
solution (Median), worst solution (Worst), average solution (Mean), and standard deviation (Std).
Tables 2–4 show the experimental results obtained by each algorithm in the 20 independent runs.
The results suggest that SLABC offers the higher solution accuracy on almost all the functions except
function f4 with D = 30, 60, 100. It can be seen from the formulation of Rosenbrock function (f4) that
the first term 100(xi+1 − xi)

2 mainly influence the function value, which means that only the values
among different dimensions in the candidate solutions are almost the same, the function value is
smaller. Using the mean and standard deviation of the selected two solution, the distABC algorithm
obtained the new candidate solutions, in which the values among different dimensions are of uniform
size. Therefore, based on the distributed solution update rule, distABC algorithm gets the best results
on Rosenbrock function (f4).

Moreover, in the case of functions f5, f6, f8 with D = 30, the solution accuracy of SLABC are equal
with the best of other algorithms. The Rastrigin function (f5), Griewank function (f6) and Schwefel’s
Problem 2.26 function (f8) are multimodal functions and are easy to obtain the optimal solutions
with D = 30. As the dimension gets higher, the difficulty of obtaining the optimal solution increases
gradually. However, the solution accuracy of SLABC are better than the functions f5, f6, f8 with D = 60
and D = 100, which proves that SLABC algorithm outperforms the other algorithms.

Algorithms 2018, 11, 78 9 of 21

Table 2. Comparison between SLABC and other algorithms for 20 times independent runs tested on 9
basic benchmark functions with 30 dimensions.

Functions Metrics ABC MABC GABC distABC SLABC

Best 3.68 × 10−26 2.53 × 10−38 9.03 × 10−46 4.21 × 10−42 3.49 × 10−65

Median 1.55 × 10−25 2.96 × 10−20 3.83 × 10−45 3.06 × 10−40 3.32 × 10−64

f1 Worst 2.91 × 10−24 2.23 × 10−1 1.89 × 10−44 1.82 × 10−37 1.25 × 10−62

Mean 4.25 × 10−25 1.12 × 10−2 6.50 × 10−45 9.71 × 10−39 1.33 × 10−63

Std 6.73 × 10−24 4.99 × 10−2 5.98 × 10−45 4.06 × 10−38 2.83 × 10−63

Best 2.18 × 10−64 7.26 × 10−81 8.34 × 10−99 3.47 × 10−88 6.50 × 10−133

Median 6.66 × 10−63 9.75 × 10−53 3.13 × 10−97 1.70 × 10−85 3.47 × 10−130

f2 Worst 4.85 × 10−61 1.21 × 10−9 9.61 × 10−96 7.77 × 10−80 6.18 × 10−128

Mean 3.86 × 10−62 6.06 × 10−11 1.35 × 10−96 4.24 × 10−81 5.81 × 10−129

Std 1.06 × 10−61 2.71 × 10−10 2.42 × 10−96 1.73 × 10−80 1.51 × 10−128

Best 4.66 × 10−15 1.32 × 10−20 1.75 × 10−24 1.13 × 10−21 2.89 × 10−35

Median 8.28 × 10−15 2.70 × 10−20 4.49 × 10−24 4.02 × 10−21 7.69 × 1035

f3 Worst 1.46 × 10−14 5.83 × 10−6 8.59 × 10−24 7.47 × 10−18 2.50 × 10−34

Mean 8.86 × 10−15 2.92 × 10−7 4.52 × 10−24 4.75 × 10−19 8.31 × 10−35

Std 3.05 × 10−15 1.30 × 10−6 1.44 × 10−24 1.70 × 10−18 5.02 × 10−35

Best 4.79 × 10−3 6.89 × 10−2 1.19 × 10−3 8.89 × 10−3 1.50 × 10−4

Median 9.91 × 10−2 2.54× 100 9.07 × 10−2 6.26 × 10−2 1.09 × 10−1

f4 Worst 1.01 × 100 1.59 × 102 2.40 × 100 2.98 × 10−1 7.54 × 101

Mean 1.34 × 10−1 2.16 × 100 3.32 × 10−1 8.84 × 10−2 9.87 × 100

Std 2.10 × 10−1 4.19 × 101 5.44 × 10−1 8.88 × 10−2 2.24 × 101

Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Median 0.00 × 100 6.21 × 10−13 0.00 × 100 0.00 × 100 0.00 × 100

f5 Worst 3.55 × 10−15 1.15 × 10−1 0.00 × 100 0.00 × 100 0.00 × 100

Mean 5.33 × 10−16 9.82 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100

Std 1.01 × 10−15 2.87 × 10−2 0.00 × 100 0.00 × 100 0.00 × 100

Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Median 3.00 × 10−15 1.94 × 10−15 0.00 × 100 0.00 × 100 0.00 × 100

f6 Worst 3.08 × 10−8 5.47 × 10−1 1.55 × 10−15 0.00 × 100 0.00 × 100

Mean 1.54 × 10−9 5.47 × 10−2 1.67 × 10−16 0.00 × 100 0.00 × 100

Std 6.88 × 10−9 1.58 × 10−1 4.00 × 10−16 0.00 × 100 0.00 × 100

Best 1.21 × 10−13 2.13 × 10−14 3.20 × 10−14 3.20 × 10−14 2.49 × 10−14

Median 2.13 × 10−13 2.96 × 10−12 3.73 × 10−14 3.91 × 10−14 2.84 × 10−14

f7 Worst 3.66 × 10−13 3.29 × 10−1 4.26 × 10−14 3.91 × 10−14 3.20 × 10−14

Mean 2.15 × 10−13 1.70 × 10−2 3.66 × 10−14 3.59 × 10−14 2.81 × 10−14

Std 6.17 × 10−14 7.34 × 10−2 3.66 × 10−15 3.63 × 10−15 1.96 × 10−15

Best 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4

Median 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4

f8 Worst 2.62 × 10−3 1.38 × 100 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4

Mean 4.94 × 10−4 9.12 × 10−2 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4

Std 5.00 × 10−4 3.17 × 10−1 2.83 × 10−10 1.44 × 10−11 7.46 × 10−13

Best 1.29 × 10−26 1.35 × 10−32 1.35 × 10−32 4.47 × 10−21 1.35 × 10−32

Median 1.20 × 10−25 5.23 × 10−15 1.35 × 10−32 2.83 × 10−20 1.35 × 10−32

f9 Worst 9.62 × 10−25 2.46 × 10−2 1.35 × 10−32 9.43 × 10−20 1.35 × 10−32

Mean 2.20 × 10−25 2.67 × 10−3 1.35 × 10−32 3.38 × 10−20 1.35 × 10−32

Std 2.51 × 10−25 6.79 × 10−3 2.81 × 10−48 2.68 × 10−20 2.81 × 10−48

Algorithms 2018, 11, 78 10 of 21

Table 3. Comparison between SLABC and other algorithms for 20 times independent runs tested on 9
basic benchmark functions with 60 dimensions.

Functions Metrics ABC MABC GABC distABC SLABC

Best 2.39 × 10−10 4.34 × 10−15 1.37 × 10−19 2.21 × 10−18 1.99 × 10−29

Median 1.85 × 10−9 3.52 × 10−5 7.20 × 10−19 9.82 × 10−18 8.70 × 10−29

f1 Worst 1.50 × 10−8 2.36 × 101 3.13 × 10−18 4.51 × 10−17 4.59 × 10−28

Mean 3.40 × 10−9 2.32 × 100 9.29 × 10−19 1.46 × 10−17 1.25 × 10−28

Std 4.09 × 10−8 6.64 × 100 7.59 × 10−19 1.26 × 10−17 1.06 × 10−28

Best 1.52 × 10−28 6.94 × 10−36 1.38 × 10−46 1.42 × 10−41 1.79 × 10−61

Median 3.72 × 10−27 1.46 × 10−23 3.09 × 10−45 1.59 × 10−40 5.17 × 10−60

f2 Worst 7.55 × 10−26 1.22 × 10−6 2.74 × 10−44 2.23 × 10−39 2.17 × 10−58

Mean 1.20 × 10−26 7.83 × 10−8 6.22 × 10−45 2.85 × 10−40 2.75 × 10−59

Std 1.95 × 10−26 2.79 × 10−7 7.46 × 10−45 4.87 × 10−40 5.94 × 10−59

Best 3.91 × 10−6 1.21 × 10−8 6.66 × 10−11 1.06 × 10−9 3.23 × 10−16

Median 6.91 × 10−6 8.46 × 10−7 8.17 × 10−11 2.02 × 10−9 6.49 × 10−16

f3 Worst 1.27 × 10−5 1.31 × 100 1.65 × 10−10 4.96 × 10−9 1.24 × 10−15

Mean 7.55 × 10−6 1.79 × 10−1 9.41 × 10−11 2.18 × 10−9 6.75 × 10−16

Std 2.44 × 10−6 3.58 × 10−1 2.77 × 10−11 9.43 × 10−10 2.71 × 10−16

Best 1.84 × 10−1 7.88 × 100 1.97 × 10−2 1.15 × 10−1 4.53 × 10−2

Median 2.25 × 100 1.46 × 102 3.26 × 10−1 8.01 × 10−1 2.48 × 100

f4 Worst 8.50 × 100 7.63 × 102 8.43 × 101 2.17 × 100 8.20 × 101

Mean 2.74 × 100 2.32 × 102 1.03 × 101 8.82 × 10−1 1.07 × 10−1

Std 2.41 × 100 2.24 × 102 2.45 × 101 5.49 × 10−1 2.43 × 10−1

Best 2.59 × 10−9 2.52 × 10−13 3.55 × 10−15 1.21 × 10−11 0.00 × 100

Median 9.13 × 10−2 1.87 × 10−9 4.35 × 10−14 6.74 × 10−5 0.00 × 100

f5 Worst 1.99 × 100 1.46 × 101 1.03 × 10−12 9.95 × 10−1 0.00 × 100

Mean 4.89 × 10−1 9.33 × 10−1 1.79 × 10−13 1.09 × 10−1 0.00 × 100

Std 5.92 × 10−1 3.33 × 100 2.92 × 10−13 3.04 × 10−1 0.00 × 100

Best 2.04 × 10−10 8.48 × 10−14 0.00 × 100 0.00 × 10−0 0.00 × 100

Median 1.51 × 10−9 9.96 × 10−5 2.78 × 10−16 1.67 × 10−16 0.00 × 100

f6 Worst 1.50 × 10−8 1.31 × 100 4.86 × 10−10 6.00 × 10−15 6.66 × 10−16

Mean 3.98 × 10−9 3.71 × 10−1 2.64 × 10−11 7.94 × 10−16 5.55 × 10−17

Std 4.92 × 10−9 5.00 × 10−1 1.08 × 10−10 1.48 × 10−15 1.75 × 10−16

Best 6.89 × 10−6 1.14 × 10−7 3.31 × 10−10 7.60 × 10−9 3.73 × 10−3

Median 1.50 × 10−5 6.23 × 10−4 5.25 × 10−10 1.04 × 10−8 5.17 × 10−13

f7 Worst 6.14 × 10−5 1.26 × 100 6.87 × 10−10 1.44e × 10−8 6.43 × 10−13

Mean 1.72 × 10−5 1.31 × 10−1 5.11 × 10−10 1.07 × 10−8 5.08 × 10−13

Std 1.16 × 10−5 3.21 × 10−1 9.52 × 10−11 2.16 × 10−9 7.29 × 10−14

Best 3.57 × 102 7.64 × 10−4 7.64 × 10−4 2.41 × 102 7.64 × 10−4

Median 6.26 × 102 7.64 × 104 2.84 × 103 5.61 × 102 7.64 × 10−4

f8 Worst 9.50 × 102 9.39 × 101 3.61 × 102 7.22 × 102 7.64 × 10−4

Mean 6.75 × 102 5.13 × 100 4.86 × 101 5.20 × 102 7.64 × 10−4

Std 2.01 × 102 2.10 × 101 9.68 × 101 1.31 × 102 1.43 × 10−9

Best 9.97 × 10−10 5.76 × 10−16 9.00 × 10−20 9.85 × 10−12 2.44e × 10−30

Median 4.95 × 10−9 1.70 × 10−4 3.15 × 10−19 4.72 × 10−11 2.89 × 10−29

f9 Worst 1.30 × 10−8 4.76 × 100 1.76 × 10−18 9.28 × 10−11 1.12 × 10−28

Mean 5.43 × 10−9 3.70 × 10−1 4.55 × 10−19 4.45 × 10−11 3.45 × 10−29

Std 3.24 × 10−9 1.08 × 100 4.09e × 10−19 1.83 × 10−11 2.84 × 10−29

Algorithms 2018, 11, 78 11 of 21

Table 4. Comparison between SLABC and other algorithms for 20 times independent runs tested on 9
basic benchmark functions with 100 dimensions.

Functions Metrics ABC MABC GABC distABC SLABC

Best 1.11 × 10−6 3.72 × 10−6 3.28 × 10−10 2.29 × 10−10 5.23 × 10−16

Median 7.55 × 10−6 3.45 × 10−1 2.25 × 10−9 2.10 × 10−9 1.79 × 10−15

f1 Worst 4.46 × 10−5 1.12 × 102 4.01 × 10−9 2.71 × 10−7 7.16 × 10−15

Mean 1.25 × 10−5 1.82 × 101 2.11 × 10−9 1.82 × 10−8 2.46 × 10−15

Std 1.27 × 10−5 3.55 × 101 1.02 × 10−9 6.00 × 10−8 1.87 × 10−15

Best 7.38 × 10−17 3.76 × 10−18 1.21 × 10−25 1.67 × 10−23 4.98 × 10−35

Median 9.25 × 10−16 9.42 × 10−12 4.18 × 10−25 1.16 × 10−21 3.08 × 10−34

f2 Worst 1.84 × 10−14 1.48 × 10−3 2.23 × 10−24 5.76 × 10−21 2.10 × 10−32

Mean 3.04 × 10−15 1.38 × 10−4 5.64 × 10−25 1.73 × 10−21 2.68 × 10−33

Std 4.56 × 10−15 3.61 × 10−4 4.75 × 10−25 1.71 × 10−21 5.43 × 10−33

Best 1.79 × 10−3 7.51 × 10−4 6.21 × 10−6 7.15 × 10−5 3.87 × 10−9

Median 2.71 × 10−3 2.28 × 10−2 1.39 × 10−5 1.35 × 10−4 9.02 × 10−9

f3 Worst 5.86 × 10−3 8.83 × 100 3.36 × 10−5 1.70 × 10−4 2.08 × 10−8

Mean 3.11 × 10−3 8.79 × 10−1 1.57 × 10−5 1.30 × 10−4 9.2 × 10−9

Std 1.26 × 10−3 2.25 × 100 6.59 × 10−6 2.92 × 10−5 3.57 × 10−9

Best 9.12 × 100 1.46 × 102 2.95 × 10−1 3.48 × 100 2.66 × 10−2

Median 2.68 × 101 1.17 × 103 8.00 × 101 1.71 × 101 3.60 × 100

f4 Worst 8.31 × 101 1.14 × 104 1.88 × 102 4.78 × 101 1.45 × 102

Mean 3.09 × 101 2.28 × 103 6.83 × 101 1.87 × 101 2.23 × 101

Std 1.83 × 101 2.88 × 103 5.76 × 101 1.11 × 101 3.98 × 101

Best 1.14 × 101 1.47 × 10−4 1.08 × 100 8.46 × 100 1.11 × 10−10

Median 1.70 × 101 7.63 × 10−1 2.24 × 100 1.08 × 101 1.68 × 10−9

f5 Worst 2.24 × 101 6.76 × 101 4.04 × 100 1.30 × 101 2.98 × 10−8

Mean 1.67 × 101 1.33 × 101 2.55 × 100 1.08 × 101 4.55 × 10−9

Std 3.17 × 100 2.12 × 101 8.29 × 10−1 1.23 × 100 7.09 × 10−9

Best 2.46 × 10−6 2.00 × 10−6 4.27 × 10−10 3.10 × 10−8 1.77 × 10−13

Median 2.45 × 10−5 4.55 × 10−2 2.05 × 10−9 1.49 × 10−7 1.49 × 10−12

f6 Worst 9.39 × 10−4 2.44 × 100 6.47 × 10−7 2.27 × 10−6 1.18 × 10−11

Mean 1.08 × 10−4 6.46 × 10−1 3.82 × 10−8 2.95 × 10−7 2.68 × 10−12

Std 2.23 × 10−4 9.22 × 10−1 1.44 × 10−7 4.96 × 10−7 3.22 × 10−12

Best 1.64 × 10−2 3.24 × 10−3 3.62 × 10−5 3.57 × 10−4 6.31 × 10−7

Median 2.87 × 10−2 1.58 × 100 5.56 × 10−5 5.75 × 10−4 1.09 × 10−6

f7 Worst 4.93 × 10−2 4.17 × 10−0 8.04 × 10−5 1.26 × 10−3 1.56 × 10−6

Mean 3.07 × 10−2 1.57 × 100 5.65 × 10−5 6.24 × 10−4 1.12 × 10−6

Std 1.03 × 10−2 1.42 × 100 1.02 × 10−5 2.12 × 10−4 2.36 × 10−7

Best 2.48 × 103 2.55 × 10−3 8.72 × 102 2.40 × 103 1.27 × 10−3

Median 3.25 × 103 4.87 × 100 1.44 × 103 2.96 × 103 1.27 × 10−3

f8 Worst 3.63 × 103 4.30 × 103 1.77 × 103 3.36 × 103 1.18 × 102

Mean 3.13 × 103 5.45 × 102 1.36 × 103 2.93 × 103 1.21 × 101

Std 3.64 × 102 9.98 × 102 2.70 × 102 2.36 × 102 3.64 × 101

Best 3.64 × 10−6 9.56 × 10−7 4.88 × 10−10 9.79 × 10−9 8.47 × 10−17

Median 3.25 × 10−5 8.28 × 10−1 2.26 × 10−9 5.90 × 10−8 3.34 × 10−16

f9 Worst 4.98 × 10−4 4.75 × 100 6.97 × 10−9 1.29 × 10−6 3.16 × 10−15

Mean 5.95 × 10−5 1.15 × 100 2.64 × 10−9 1.38 × 10−7 4.83 × 10−16

Std 1.06 × 10−4 1.32 × 100 1.57 × 10−9 2.85 × 10−7 6.58 × 10−16

Figures 2–4 show how the mean of the best solution for each algorithm changes with the number
of iterations times. The lines that do not extend to the end of the experiments indicate that they have
converged to 0 in the next calibration. As can be seen in the Figures 2–4, the convergence rate of SLABC
is faster than other algorithms except function f4 with D = 30, 60, 100 and function f6 with D = 30.

Algorithms 2018, 11, 78 12 of 21

The distABC algorithm is better than SLABC algorithm on the convergence rate and the accuracy of the
solution. Though functions f5, f6, f8 with D = 30 get the same solution, SLABC algorithm converges
faster than other algorithm on f5, f8 with D = 30 and SLABC algorithm converges slower than distABC
algorithm on f6 with D = 30. According to the above analysis, it is obvious that the performance of
SLABC is more superior to other algorithms except distABC algorithm on Rosenbrock function (f4).

(f1)

0 500 1000 1500 2000
10

−70

10
−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f2)

0 500 1000 1500 2000
10

−140

10
−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

10
20

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f3)

0 500 1000 1500 2000
10

−40

10
−30

10
−20

10
−10

10
0

10
10

10
20

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f4)

0 500 1000 1500 2000
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f5)

0 500 1000 1500 2000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f6)

0 500 1000 1500 2000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f7)

0 500 1000 1500 2000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f8)

0 500 1000 1500 2000
10

−4

10
−2

10
0

10
2

10
4

10
6

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f9)

0 500 1000 1500 2000
10

−40

10
−30

10
−20

10
−10

10
0

10
10

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

Figure 2. Comparison of the convergence results of the average best solution with 30 dimensions. (f1)
Sphere Function; (f2) Quartic Function; (f3) Schwefel’s Problem 2.22; (f4) Rosenbrock Function; (f5)
Rastrigin Function; (f6) Griewank Function; (f7) Ackley Function; (f8) Schwefel’s Problem 2.26; (f9)
Penalized Function.

Algorithms 2018, 11, 78 13 of 21

(f1)

0 500 1000 1500 2000
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f2)

0 500 1000 1500 2000
10

−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f3)

0 500 1000 1500 2000
10

−20

10
−10

10
0

10
10

10
20

10
30

10
40

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f4)

0 500 1000 1500 2000
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f5)

0 500 1000 1500 2000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f6)

0 500 1000 1500 2000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f7)

0 500 1000 1500 2000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f8)

0 500 1000 1500 2000
10

−4

10
−2

10
0

10
2

10
4

10
6

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f9)

0 500 1000 1500 2000
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

Figure 3. Comparison of the convergence results of the average best solution with 60 dimensions. (f1)
Sphere Function; (f2) Quartic Function; (f3) Schwefel’s Problem 2.22; (f4) Rosenbrock Function; (f5)
Rastrigin Function; (f6) Griewank Function; (f7) Ackley Function; (f8) Schwefel’s Problem 2.26; (f9)
Penalized Function.

(f1)

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

10
5

10
10

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f2)

0 500 1000 1500 2000
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f3)

0 500 1000 1500 2000
10

−10

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

Figure 4. Cont.

Algorithms 2018, 11, 78 14 of 21

(f4)

0 500 1000 1500 2000
10

0

10
2

10
4

10
6

10
8

10
10

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f5)

0 500 1000 1500 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f6)

0 500 1000 1500 2000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f7)

0 500 1000 1500 2000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f8)

0 500 1000 1500 2000
10

1

10
2

10
3

10
4

10
5

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

(f9)

0 500 1000 1500 2000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

Number of Iterations

M
ea

n
of

 B
es

t F
un

ct
io

n
V

al
ue

s
(L

og
 S

ca
le

)

ABC
MABC
GABC
distABC
SLABC

Figure 4. Comparison of the convergence results of the average best solution with 100 dimensions. (f1)
Sphere Function; (f2) Quartic Function; (f3) Schwefel’s Problem 2.22; (f4) Rosenbrock Function; (f5)
Rastrigin Function; (f6) Griewank Function; (f7) Ackley Function; (f8) Schwefel’s Problem 2.26; (f9)
Penalized Function.

Figures 5–7 show the success ratio of each SSE. The horizontal ordinate 1–5 correspond to the
success ratio of each SSE (k = 1, 2, 3, 4, 5) at the midpoint of the experiments (Max.FE/2) and 6–10
correspond to the success ratio of each SSE (k = 1, 2, 3, 4, 5) at the end of the experiments (Max.FE).
As shown in these figures, the self-learning mechanism selected different SSE in solving different
functions and different functions have different optimal combination of SSEs. In the figures, the
coordinate 2 is corresponding to the second SSE at the early stage and the coordinate 7 is corresponding
to the second SSE at the latter stage. In most of the functions, the second SSE (coordinate 2 and
coordinate 7) has the highest success rate and the fifth SSE has the lowest success rate. The second
SSE with the global best solution can improve exploitation. At the early stage of the optimization, the
bees are inclined to locate the promising regions by wandering through the entire search space. At the
latter stage, the bees are busy to fine-tune the present solutions to obtain the global optimal solution.
Therefore, these solutions may trap in the local minimum at the latter stage of the optimization process.
The fifth SSE is mainly to make the bees escape from the local minimum. Because functions f 1– f 4 are
unimodal functions, the fifth SSE with lévy flight step-size has a lower success ratio at the latter stage.
However, functions f 5– f 9 are multimodal functions which have many local minimum in the search
space. The higher success ratio indicates that the SSE with lévy flight step-size can escape from the
local optimum effectively to improve search efficiency.

Algorithms 2018, 11, 78 15 of 21

(f1)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

37%

56%

49%

45%

11%

39%

52%

48%
46%

0.30%

the number of times that the operator is selected.
the number of successful times

(f2)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

38%

53%

48%
46%

4%

39%

51%

47%
46%

0.30%

the number of times that the operator is selected.
the number of successful times

(f3)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

37%

56%

40%

47%

6%

39%

54%

49%
47%

0.31%

the number of times that the operator is selected.
the number of successful times

(f4)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

operator

N
um

be
r

of
 ti

m
es

26%
26% 24%

22%

10%

21%

16% 16% 15%

2.4%

the number of times that the operator is selected.
the number of successful times

(f5)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

operator

N
um

be
r

of
 ti

m
es

26%

48%

36% 35%

8%
14%

40%

26%
23%

3.9%

the number of times that the operator is selected.
the number of successful times

(f6)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

operator

N
um

be
r

of
 ti

m
es

27%

40%

34%
31%

15% 15%

44%

29%

23%

11%

the number of times that the operator is selected.
the number of successful times

(f7)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

operator

N
um

be
r

of
 ti

m
es

34%

49%

44% 43%

10%
15%

44%

29%
25%

7.5%

the number of times that the operator is selected.
the number of successful times

(f8)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

operator

N
um

be
r

of
 ti

m
es

23%

46%

31% 31%

20%
13%

36%

23%
21%

8.4%

the number of times that the operator is selected.
the number of successful times

(f9)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

operator

N
um

be
r

of
 ti

m
es

35%

54%

47%
44%

9%
16%

55%

32%
26%

8.0%

the number of times that the operator is selected.
the number of successful times

Figure 5. The success ratio Sratk of each SSE (operator). The horizontal ordinate denotes success ratio
of each solution search equation at the midpoint of the experiments (Max.FE/2) and the end of the
experiments (Max.FE) with 30 dimensions. (f1) Sphere Function; (f2) Quartic Function; (f3) Schwefel’s
Problem 2.22; (f4) Rosenbrock Function; (f5) Rastrigin Function; (f6) Griewank Function; (f7) Ackley
Function; (f8) Schwefel’s Problem 2.26; (f9) Penalized Function.

(f1)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

34%

59%

48%

43%

17%

39%

50%

46%
44%

0.30%

the number of times that the operator is selected.
the number of successful times

(f2)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

37%

53%

47%
45%

6%

38%

48%

45% 44%

0.30%

the number of times that the operator is selected.
the number of successful times

(f3)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

36%

57%

49%

45%

9%

38%

51%

47%
45%

0.30%

the number of times that the operator is selected.
the number of successful times

Figure 6. Cont.

Algorithms 2018, 11, 78 16 of 21

(f4)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

27%

33%
31%

28%

16%

27%
24%

22%
20%

0.93%

the number of times that the operator is selected.
the number of successful times

(f5)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

32%

45%

37%
39%

10%

22%

49%

33%
31%

7.3%

the number of times that the operator is selected.
the number of successful times

(f6)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

37%

55%

46%
44%

23% 21%

45%

31%
28%

19%

the number of times that the operator is selected.
the number of successful times

(f7)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

36%

49%

44% 43%

15%

31%

44%

40% 40%

0.29%

the number of times that the operator is selected.
the number of successful times

(f8)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

operator

N
um

be
r

of
 ti

m
es

30%

46%

36%
37%

28%

16%

44%

27%
24%

14%

the number of times that the operator is selected.
the number of successful times

(f9)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

32%

56%

45%

40%

15%

37%

49%

45%
44%

0.30%

the number of times that the operator is selected.
the number of successful times

Figure 6. The success ratio Sratk of each SSE. The horizontal ordinate denotes success ratio of each
solution search equation (operator) at the midpoint of the experiments (Max.FE/2) and the end of the
experiments (Max.FE) with 60 dimensions. (f1) Sphere Function; (f2) Quartic Function; (f3) Schwefel’s
Problem 2.22; (f4) Rosenbrock Function; (f5) Rastrigin Function; (f6) Griewank Function; (f7) Ackley
Function; (f8) Schwefel’s Problem 2.26; (f9) Penalized Function.

(f1)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

operator

N
um

be
r

of
 ti

m
es

31%

62%

47%
41%

25%

37%

53%

47%

43%

0.43%

the number of times that the operator is selected.
the number of successful times

(f2)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

35%

56%

48%
45%

8%

38%

47%

44%
43%

0.30%

the number of times that the operator is selected.
the number of successful times

(f3)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

36%

62%

50%

44%

12%

38%

50%

46%
44%

0.30%

the number of times that the operator is selected.
the number of successful times

(f4)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

28%

35% 35% 33%

23%

26%

29%
26%

22%

2.56%

the number of times that the operator is selected.
the number of successful times

(f5)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

28%

39%

30%
34%

13%

36%

49%

44%
43%

0.47%

the number of times that the operator is selected.
the number of successful times

(f6)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

37%

55%

49%
46%

33%
35%

47%

43%
40%

1.4%

the number of times that the operator is selected.
the number of successful times

Figure 7. Cont.

Algorithms 2018, 11, 78 17 of 21

(f7)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

33%

47%

40% 41%

21%

38%

49%

45%
44%

0.49%

the number of times that the operator is selected.
the number of successful times

(f8)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4

operator

N
um

be
r

of
 ti

m
es

29%

40%

30%
34%

40%

29%

45%

38% 36%

7.7%

the number of times that the operator is selected.
the number of successful times

(f9)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

operator

N
um

be
r

of
 ti

m
es

27%

59%

43%
37%

21%

37%

52%

46%

42%

0.53%

the number of times that the operator is selected.
the number of successful times

Figure 7. The success ratio Sratk of each SSE. The horizontal ordinate denotes success ratio of each
solution search equation (operator) at the midpoint of the experiments (Max.FE/2) and the end of
the experiments (Max.FE) with 100 dimensions. (f1) Sphere Function; (f2) Quartic Function; (f3)
Schwefel’s Problem 2.22; (f4) Rosenbrock Function; (f5) Rastrigin Function; (f6) Griewank Function;
(f7) Ackley Function; (f8) Schwefel’s Problem 2.26; (f9) Penalized Function.

4.3. Comparison Regarding the t-Test

This section mainly analyzes the experimental data and study whether the experimental results
are statistically significantly different between SLABC and other algorithm. The F-test was used to
analyze the homogeneity of variances and two-tailed t-test was used to determine if two sets of data
are significantly different from each other. The sample size and number of degrees of freedom were set
as 20 and 38, respectively. The confidence level was set to 95%. In the F-test, F0.05(19, 19) = 2.17 and if
the F-value is larger than 2.17, the corresponding experimental results are heterogeneity of variance.
If the p-value received in the t-test is less than 5%, it illustrates that the corresponding experimental
results are significantly different. Table 5 lists the results of t-tests between SLABC and the best results
of the other algorithms regarding the indexes “Mean” for different benchmark functions (listed are the
F-value, p-value, and the significance of the results). “YES” indicates that the experimental results are
significantly different between SLABC and the best one in other algorithms. “NO” suggests that no
significant difference between the results of SLABC and of other algorithms.

From Tables 2–5, although other algorithms (distABC) have higher solution accuracy on function
f 4 with D = 30, 60, 100, there exist no significant difference between SLABC and distABC. The same as
function f 6 with D = 100 and function f 8 with D = 60, there exist no significant difference between
SLABC and other algorithm. Moreover, SLABC and other algorithm obtain the same optimal solution
on functions f 5, f 6, f 8 with D = 30.

Based on the results of statistical tests in Table 5, almost most of the results have obvious
differences and it is clear that the results of SLABC algorithm are significantly better than the results of
other algorithms.

Table 5. Results of t-tests between SLABC and the best results of the other algorithms regarding the
indexes “Mean” for different benchmark functions.

Functions Dim. F-Value p-Value Significance Two-Tailed P

D = 30 39.930 1.10 × 10−4 YES 0.05
f1 D = 60 29.663 2.80 × 10−5 YES 0.05

D = 100 60.363 1.74 × 10−8 YES 0.05

D = 30 14.894 0.022 YES 0.05
f2 D = 60 20.124 1.42 × 10−3 YES 0.05

D = 100 15.007 4.00 × 10−5 YES 0.05

Algorithms 2018, 11, 78 18 of 21

Table 5. Cont.

Functions Dim. F-Value p-Value Significance Two-Tailed P

D = 30 22.624 1.85 × 10−11 YES 0.05
f3 D = 60 30.264 4.25 × 10−12 YES 0.05

D = 100 16.090 1.85 × 10−9 YES 0.05

D = 30 11.457 0.065 NO 0.05
f4 D = 60 11.308 0.086 NO 0.05

D = 100 11.565 0.700 NO 0.05

D = 30 - - SAME 0.05
f5 D = 60 23.119 0.013 YES 0.05

D = 100 70.236 2.52 × 10−11 YES 0.05

D = 30 - - SAME 0.05
f6 D = 60 10.391 0.039 YES 0.05

D = 100 5.069 0.251 NO 0.05

D = 30 44.281 2.27 × 10−9 YES 0.05
f7 D = 60 34.994 1.13 × 10−15 YES 0.05

D = 100 26.974 8.50 × 10−16 YES 0.05

D = 30 - - SAME 0.05
f8 D = 60 4.813 0.288 NO 0.05

D = 100 14.296 0.028 YES 0.05

D = 30 - - SAME 0.05
f9 D = 60 23.131 8.40 × 10−5 YES 0.05

D = 100 27.521 4.32 × 10−7 YES 0.05

5. Discussion

In the previous sections, comparative results of ABC, GABC, MABC and distABC were presented.
In this section, we offer a thorough analysis on the proposed SLABC algorithm and all the algorithms
were tested using the same parameters with Section 4.

When constructing the SSE, the value range of the coefficients were adjusted to improve the
performance of the SLABC algorithm. This section constructed two SLABC algorithm variants
(SLABC1, SLABC2) and experiments on a set of 6 benchmark functions were carried out to clearly
show how these coefficients influence the performance in various optimization problems. In SLABC1,
the value range of the coefficient c1, c2, c3, c4, c5 are reduced to half of the corresponding value range
in SLABC. In SLABC2, the value range of the coefficient c1, c2, c3, c4, c5 are increased to double of the
corresponding value range in SLABC. The new generated candidate solutions can appear in a large
range using the SLABC2 algorithm and can appear in a small range using the SLABC1 algorithm.
From Table 6, the SLABC2 is worse than SLABC and SLABC1, which shows that the increased value
range reduced the performance of the SLABC algorithm. Moreover, SLABC is better than SLABC1
except function f4, which means that too small value range can reduce solution accuracy. Through the
analysis of experimental data, the changes of the value range can influence the performance of SLABC
algorithm and only the appropriate value range can generate the better solutions.

Five SSEs are used to solve the optimization problem and each SSE has different effect.
For example, the fifth SSE with Lévy flight step-size can help the artificial bees escape from the
local optimum effectively. However, when solving the optimization problem of unimodal function, the
fifth SSE is ineffective. This section constructed another SLABC algorithm variants (SLABC3 without
the fifth SSEs) to illustrate the effect of such combination. As can be seen from Table 6, SLABC3
obtained the better solution than SLABC on the unimodal functions f1, f2, f3. Therefore, we can choose
combination of different SSEs to solve different optimization problems in the future applications.

Algorithms 2018, 11, 78 19 of 21

Table 6. Comparison between SLABC and other algorithms for 20 times independent runs tested on 6
basic benchmark functions with 60 dimensions.

Functions Metrics SLABC1 SLABC2 SLABC3 SLABC4 SLABC

Best 3.64 × 10−30 2.41 × 10−25 2.53 × 10−31 2.35 × 10−30 1.99 × 10−29

Median 7.91 × 10−29 1.67 × 10−24 1.27 × 10−30 9.15 × 10−30 8.70 × 10−29

f1 Worst 1.45 × 10−27 8.14 × 10−24 1.85 × 10−29 3.80 × 10−29 4.59 × 10−28

Mean 2.22 × 10−28 2.10 × 10−24 4.10 × 10−30 1.18 × 10−29 1.25 × 10−28

Std 3.80 × 10−28 2.04 × 10−24 5.43 × 10−30 9.38 × 10−30 1.06 × 10−28

Best 1.40 × 10−60 1.16 × 10−54 1.47 × 10−63 9.24 × 10−63 1.79 × 10−61

Median 2.55 × 10−59 3.53 × 10−53 3.48 × 10−62 1.21 × 10−61 5.17 × 10−60

f2 Worst 2.09 × 10−57 8.46 × 10−52 1.04 × 10−60 3.52 × 10−60 2.17 × 10−58

Mean 3.02 × 10−58 8.29 × 10−53 1.48 × 10−61 6.99 × 10−61 2.75 × 10−59

Std 5.46 × 10−58 1.85 × 10−52 2.55 × 10−61 1.15 × 10−60 5.94 × 10−59

Best 5.20 × 10−16 1.49 × 10−13 6.73 × 10−17 2.14 × 10−16 3.23 × 10−16

Median 7.69 × 10−16 2.31 × 10−13 1.80 × 10−16 3.96 × 10−16 6.49 × 10−16

f3 Worst 1.83 × 10−15 3.98 × 10−13 3.25 × 10−16 6.87 × 10−16 1.24 × 10−15

Mean 8.93 × 10−16 2.49 × 10−13 1.78 × 10−16 4.14 × 10−16 6.75 × 10−16

Std 3.85 × 10−16 7.91 × 10−14 7.65 × 10−17 1.26 × 10−16 2.71 × 10−16

Best 1.00 × 10−3 1.40 × 10−3 4.52 × 10−2 2.54 × 10−4 4.53 × 10−2

Median 2.91 × 100 2.37 × 100 5.14 × 100 2.12 × 100 2.48 × 100

f4 Worst 7.04 × 101 1.06 × 102 1.43 × 102 8.68 × 101 8.20 × 101

Mean 8.10 × 100 1.84 × 101 3.30 × 101 1.87 × 101 1.07 × 101

Std 1.57 × 101 3.05 × 101 4.12 × 101 3.00 × 101 2.43 × 101

Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Median 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

f5 Worst 0.00 × 100 0.00 × 100 9.95 × 10−1 0.00 × 100 0.00 × 100

Mean 0.00 × 100 0.00 × 100 4.97 × 10−2 0.00 × 100 0.00 × 100

Std 0.00 × 100 0.00 × 100 2.22 × 10−1 0.00 × 100 0.00 × 100

Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Median 2.00 × 10−14 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

f6 Worst 1.35 × 10−4 6.66 × 10−16 8.99 × 10−14 1.11 × 10−16 6.66 × 10−16

Mean 9.21 × 10−6 3.33 × 10−17 4.50 × 10−15 5.55 × 10−18 5.55 × 10−17

Std 3.16 × 10−5 1.49 × 10−16 2.01 × 10−14 2.48 × 10−17 1.75 × 10−16

In order to avoid the interference between the early stage and the latter stage, SLABC algorithm
divides the whole optimization process into two stages. We can divide the optimization process
into much more stages to further reduce interference between each stage. To show the effect of such
division, this section constructed another SLABC algorithm variants (SLABC4) which divides the
whole optimization process into ten stages. As can be seen from Table 6, SLABC4 obtained the better
solution than SLABC on most of the functions. Dividing the optimization process into several stages
can improve the performance of SLABC algorithm and how to divide the optimization process remains
to be a problem should be further studied.

This paper proposes a self-learning mechanism to select the appropriate SSE according to the
previous success ratio. Such mechanism is a reinforcement mechanism and other optimization
algorithms can construct novel algorithms variants to improve the performance by using the
self-learning mechanism.

6. Conclusions

This paper proposes an improved ABC algorithm based on the self-learning mechanism with five
SSEs as the candidate operator pool. Among them, one SSE is good at exploration; other two SSEs are
good at exploitation; another SSE intends to balance the two aspects. The last SSE with Lévy flight
step-size can avoid trapping in local optimal solution. Meanwhile, a simple self-learning mechanism is

Algorithms 2018, 11, 78 20 of 21

proposed, wherein the SSE is selected according to the previous success ratio in generating promising
solutions at each iteration. Experiments verify that the proposed SLABC algorithm can improve search
efficiency and speed up the convergence rate.

Author Contributions: B.P. conceived the experiments and wrote most of the paper. Y.S. performed the
experiments and provided funding. C.Z. analyzed and processed the experimental data; H.W. and R.Y. helped
with the data conversion and contributed several figures.

Funding: This research is supported by the NSFC under grant no. 61573213, 61473174, 61473179, by the Natural
Science Foundation of Shandong Province under grant no. ZR2015PF009, ZR2014FM007, ZR2017PF008, by
the China Postdoctoral Science Foundation under grant no. 2017M612270, by Shandong Province Science and
Technology Development Program under grant no. 2014GGX103038, and Special Technological Program of
Transformation of Initiatively Innovative Achievements in Shandong Province under grant no. 2014ZZCX04302.

Acknowledgments: The authors also gratefully acknowledge the helpful comments and suggestions of the
reviewers, which have improved the presentation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report TR06; Erciyes
University: Kayseri, Turkey, 2005.

2. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial
bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

3. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Let a biogeography-based optimizer train your Multi-Layer Perceptron.
Inf. Sci. 2014, 269, 188–209. [CrossRef]

4. Zorarpacı, E.; Özel, S.A. A hybrid approach of differential evolution and artificial bee colony for feature
selection. Expert Syst. Appl. 2016, 62, 91–103. [CrossRef]

5. Das, R.; Akay, B.; Singla, R.K.; Singh, K. Application of artificial bee colony algorithm for inverse modelling
of a solar collector. Inverse Probl. Sci. Eng. 2016, 25, 887–908. [CrossRef]

6. Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Guerrero, J.M. An Optimal Energy Management System for
Islanded Microgrids Based on Multiperiod Artificial Bee Colony Combined With Markov Chain. IEEE Syst. J.
2017, 11, 1712–1722. [CrossRef]

7. Luo, J.; Liu, Q.; Yang, Y.; Li, X.; rong Chen, M.; Cao, W. An artificial bee colony algorithm for multi-objective
optimisation. Appl. Soft Comput. 2017, 50, 235–251. [CrossRef]

8. Lozano, M.; García-Martínez, C.; Rodríguez, F.J.; Trujillo, H.M. Optimizing network attacks by artificial bee
colony. Inf. Sci. 2017, 377, 30–50. [CrossRef]

9. Sonmez, M.; Akgüngör, A.P.; Bektaş, S. Estimating transportation energy demand in Turkey using the
artificial bee colony algorithm. Energy 2017, 122, 301–310. [CrossRef]

10. Zhou, J.; Yao, X. Multi-population parallel self-adaptive differential artificial bee colony algorithm with
application in large-scale service composition for cloud manufacturing. Appl. Soft Comput. 2017, 56, 379–397.
[CrossRef]

11. Sundar, S.; Suganthan, P.N.; Jin, C.T.; Xiang, C.T.; Soon, C.C. A hybrid artificial bee colony algorithm for the
job-shop scheduling problem with no-wait constraint. Soft Comput. 2017, 21, 1193–1202. [CrossRef]

12. Woźniak, M.; Połap, D. Bio-inspired methods modeled for respiratory disease detection from medical images.
Swarm Evol. Comput. 2018, in press. [CrossRef]

13. Bansal, J.C.; Sharma, H.; Arya, K.V.; Nagar, A. Memetic search in artificial bee colony algorithm. Soft Comput.
2013, 17, 1911–1928. [CrossRef]

14. Kang, F.; Li, J.; Li, H. Artificial bee colony algorithm and pattern search hybridized for global optimization.
Appl. Soft Comput. 2013, 13, 1781–1791. [CrossRef]

15. Gao, W.; Liu, S.; Huang, L. Enhancing artificial bee colony algorithm using more information-based search
equations. Inf. Sci. 2014, 270, 112–133. [CrossRef]

16. Zhou, X.; Wang, H.; Wang, M.; Wan, J. Selection Mechanism in Artificial Bee Colony Algorithm: A Comparative
Study on Numerical Benchmark Problems. In Neural Information Processing; Springer: Cham, Switzerland, 2017;
pp. 61–69.

http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1016/j.ins.2014.01.038
http://dx.doi.org/10.1016/j.eswa.2016.06.004
http://dx.doi.org/10.1080/17415977.2016.1209748
http://dx.doi.org/10.1109/JSYST.2015.2422253
http://dx.doi.org/10.1016/j.asoc.2016.11.014
http://dx.doi.org/10.1016/j.ins.2016.10.014
http://dx.doi.org/10.1016/j.energy.2017.01.074
http://dx.doi.org/10.1016/j.asoc.2017.03.017
http://dx.doi.org/10.1007/s00500-015-1852-9
http://dx.doi.org/10.1016/j.swevo.2018.01.008
http://dx.doi.org/10.1007/s00500-013-1032-8
http://dx.doi.org/10.1016/j.asoc.2012.12.025
http://dx.doi.org/10.1016/j.ins.2014.02.104

Algorithms 2018, 11, 78 21 of 21

17. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

18. Zhu, G.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization.
Appl. Math. Comput. 2010, 217, 3166–3173. [CrossRef]

19. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

20. Gao, W.; Liu, S. Improved artificial bee colony algorithm for global optimization. Inf. Process. Lett. 2011,
111, 871–882. [CrossRef]

21. Gao, W.; Liu, S. A modified artificial bee colony algorithm. Comput. Oper. Res. 2012, 39, 687–697. [CrossRef]
22. Akay, B.; Karaboga, D. A modified Artificial Bee Colony algorithm for real-parameter optimization. Inf. Sci.

2012, 192, 120–142. [CrossRef]
23. Gao, W.; Liu, S.; Huang, L. A Novel Artificial Bee Colony Algorithm Based on Modified Search Equation

and Orthogonal Learning. IEEE Trans. Cybern. 2013, 43, 1011–1024. [PubMed]
24. Babaoglu, I. Artificial bee colony algorithm with distribution-based update rule. Appl. Soft Comput. 2015,

34, 851–861. [CrossRef]
25. Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with

time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]
26. Viswanathan, G.M.; Buldyrev, S.V.; Havlin, S.; Da, L.M.; Raposo, E.P.; Stanley, H.E. Optimizing the success

of random searches. Nature 1999, 401, 911–914. [CrossRef] [PubMed]
27. Viswanathan, G.M.; Afanasyev, V.; Buldyrev, S.V.; Murphy, E.J.; Prince, P.A.; Stanley, H.E. Lévy flight search

patterns of wandering albatrosses. Nature 1996, 381, 413–415. [CrossRef]
28. Edwards, A.M.; Phillips, R.A.; Watkins, N.W.; Freeman, M.P.; Murphy, E.J.; Afanasyev, V.; Buldyrev, S.V.;

Da, L.M.; Raposo, E.P.; Stanley, H.E. Revisiting Lévy flight search patterns of wandering albatrosses,
bumblebees and deer. Nature 2007, 449, 1044–1048. [CrossRef] [PubMed]

29. Reynolds, A.M.; Frye, M.A. Free-flight odor tracking in Drosophila is consistent with an optimal intermittent
scale-free search. PLoS ONE 2007, 2, e354. [CrossRef] [PubMed]

30. Mantegna, R.N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes.
Phys. Rev. E 1994, 49, 4677–4683. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.amc.2010.08.049
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.ipl.2011.06.002
http://dx.doi.org/10.1016/j.cor.2011.06.007
http://dx.doi.org/10.1016/j.ins.2010.07.015
http://www.ncbi.nlm.nih.gov/pubmed/23086528
http://dx.doi.org/10.1016/j.asoc.2015.05.041
http://dx.doi.org/10.1109/TEVC.2004.826071
http://dx.doi.org/10.1038/44831
http://www.ncbi.nlm.nih.gov/pubmed/10553906
http://dx.doi.org/10.1038/381413a0
http://dx.doi.org/10.1038/nature06199
http://www.ncbi.nlm.nih.gov/pubmed/17960243
http://dx.doi.org/10.1371/journal.pone.0000354
http://www.ncbi.nlm.nih.gov/pubmed/17406678
http://dx.doi.org/10.1103/PhysRevE.49.4677
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Classical ABC Algorithm
	Employed Bee Stage
	Onlooker Bee Stage
	Scouts Bee Stage

	SLABC Algorithm
	Lévy Flight Step-Size
	The Modified Solution Search Equations
	Self-Learning Mechanism
	Description of the SLABC Algorithm

	Experiments and Results
	Experimental Setup
	Experimental Results
	Comparison Regarding the t-Test

	Discussion
	Conclusions
	References

