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Abstract: Long-term heart rate variability (HRV) analysis is useful as a noninvasive technique
for autonomic nervous system activity assessment. It provides a method for assessing many
physiological and pathological factors that modulate the normal heartbeat. The performance of
HRV analysis systems heavily depends on a reliable and accurate detection of the R peak of the
QRS complex. Ectopic beats caused by misdetection or arrhythmic events can introduce bias
into HRV results, resulting in significant problems in their interpretation. This study presents
a novel method for long-term detection of normal R peaks (which represent the normal heartbeat in
electrocardiographic signals), intended specifically for HRV analysis. The very low computational
complexity of the proposed method, which combines and exploits the advantages of syntactical
and statistical approaches, enables real-time applications. The approach was validated using the
Massachusetts Institute of Technology–Beth Israel Hospital Normal Sinus Rhythm and the Fantasia
database, and has a sensitivity, positive predictivity, detection error rate, and accuracy of 99.998,
99.999, 0.003, and 99.996%, respectively.

Keywords: electrocardiogram (ECG); real-time R peak detection; long-term heart rate variability
(HRV) analysis; automata; normal sinus rhythm (NSR)

1. Introduction

Electrocardiography (ECG) is the graphical representation of the electrical activity of the heart
over periods of time. ECG signals can generally be acquired through simple noninvasive recordings
and manifest as a series of waves characterized by three main wave types: P, QRS, and T. The QRS
complex is the most distinctive feature in ECG signals indicating the heartbeat, and its fiducial marker
is the peak of the R wave (Figure 1).

Heartbeat regulation is performed by the autonomic nervous system (ANS), which influences
many vital organs in the body [1]. Thus, inter-heartbeat intervals, which are usually measured using
the RR intervals in an ECG, are constantly fluctuating. The heart rate variability (HRV) reflects the ANS
activity, a relationship that provides considerable insight into many physiological and pathological
factors that influence the normal heart rhythm [2–4]. Long-term HRV analysis has been proven helpful
for clinical professionals in identifying autonomic impairment and providing prognoses of patient
condition. The analysis can support the delivery of suitable medical treatments and prevent the
development of diseases.
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Figure 1. A typical electrocardiography (ECG) waveform and RR interval. 

Because of its usefulness, our goal is to develop a system for a real-time long-term HRV analysis 
that can be embedded into a bedside monitor for use in intensive care units or high care units to 
provide a quantitative assessment of long-term outcomes for patients [5]. Such analysis requires that 
the analyzed HRV only reflects the ANS activity. Accordingly, ensuring that processed beats are 
normal beats is essential for an effective analysis. In addition, the presence of arrhythmic events, in 
which beat rhythms are not directly caused by the ANS, significantly affects HRV analysis. To 
eliminate such events from tracked data, some authors proposed excluding signals containing more 
than 10 ectopic beats per hour [6], while others recommended accepting ectopic beats comprising up 
to 5 [7], 8 [8], 10 [9,10], or even 15% [11] of all RR intervals. The study reported herein represents a 
specific component of our work on HRV analysis systems, for which we intend to detect only the 
normal heartbeat and exclude ectopic or arrhythmic heartbeats [5]. 

In long-term R peak detection, noises that can distort the ECG signal, such as muscle noise, 
some artefacts arising from electrode and body motion, and baseline wander caused by perspiration 
and respiration, have an increased probability of occurrence. Such noises make long-term R peak 
detection more difficult in terms of both accuracy and effect on the physiological variability of the 
QRS complex itself. A long-term HRV analysis requires a reliable and customized R peak detector to 
provide information on an uninterrupted series of normal RR intervals. In fact, a single misdetection 
of an R peak can undermine the results of further analyses (e.g., time-domain, frequency-domain, or 
nonlinear analysis). In this work, we propose a new method designed to accurately detect in real 
time the R peak of normal heartbeats from long-term ECG signals specifically intended for HRV 
analysis. 

A useful criterion in long-term ECG monitoring is the energy consumption efficiency. The 
proposed method meets this criterion and that of computational efficiency. Moreover, it is much 
faster than most existing methods. For instance, finite impulse response (FIR) filters are typically 
used in the ECG preprocessing stage and have computational costs of at least (m × n), where m and n 
are the kernel and data sizes, respectively. Cascades of more than one FIR filter are commonly used, 
as is done in bandpass or band-reject filters. Depending on the method, the detection stage can 
employ even more complex computations or, at least, computations that are not less complex than 
O(n). In contrast, the proposed method has a computational cost proportional to n at the 
preprocessing stage and a cost proportional to k at the detection stage, where k is a fraction of n. This 
reduced computational complexity has been proven useful in our implementation of a client-based 
HRV detector [5]. It is also appropriate for other applications, in which energy consumption is a 
concern, or implementations that present limited processing resources (e.g., portable embedded 
devices). 

The remainder of this paper is organized as follows: Section 2 describes the preprocessing 
method and how R peaks are detected; Section 3 describes how performance is improved using the 
proposed algorithm and its overall low cost; and Section 4 concludes the paper. 
  

Figure 1. A typical electrocardiography (ECG) waveform and RR interval.

Because of its usefulness, our goal is to develop a system for a real-time long-term HRV analysis
that can be embedded into a bedside monitor for use in intensive care units or high care units to
provide a quantitative assessment of long-term outcomes for patients [5]. Such analysis requires that
the analyzed HRV only reflects the ANS activity. Accordingly, ensuring that processed beats are normal
beats is essential for an effective analysis. In addition, the presence of arrhythmic events, in which
beat rhythms are not directly caused by the ANS, significantly affects HRV analysis. To eliminate such
events from tracked data, some authors proposed excluding signals containing more than 10 ectopic
beats per hour [6], while others recommended accepting ectopic beats comprising up to 5 [7], 8 [8],
10 [9,10], or even 15% [11] of all RR intervals. The study reported herein represents a specific component
of our work on HRV analysis systems, for which we intend to detect only the normal heartbeat and
exclude ectopic or arrhythmic heartbeats [5].

In long-term R peak detection, noises that can distort the ECG signal, such as muscle noise,
some artefacts arising from electrode and body motion, and baseline wander caused by perspiration
and respiration, have an increased probability of occurrence. Such noises make long-term R peak
detection more difficult in terms of both accuracy and effect on the physiological variability of the QRS
complex itself. A long-term HRV analysis requires a reliable and customized R peak detector to provide
information on an uninterrupted series of normal RR intervals. In fact, a single misdetection of an R
peak can undermine the results of further analyses (e.g., time-domain, frequency-domain, or nonlinear
analysis). In this work, we propose a new method designed to accurately detect in real time the R peak
of normal heartbeats from long-term ECG signals specifically intended for HRV analysis.

A useful criterion in long-term ECG monitoring is the energy consumption efficiency.
The proposed method meets this criterion and that of computational efficiency. Moreover, it is much
faster than most existing methods. For instance, finite impulse response (FIR) filters are typically used
in the ECG preprocessing stage and have computational costs of at least (m × n), where m and n are the
kernel and data sizes, respectively. Cascades of more than one FIR filter are commonly used, as is done
in bandpass or band-reject filters. Depending on the method, the detection stage can employ even
more complex computations or, at least, computations that are not less complex than O(n). In contrast,
the proposed method has a computational cost proportional to n at the preprocessing stage and
a cost proportional to k at the detection stage, where k is a fraction of n. This reduced computational
complexity has been proven useful in our implementation of a client-based HRV detector [5]. It is also
appropriate for other applications, in which energy consumption is a concern, or implementations that
present limited processing resources (e.g., portable embedded devices).

The remainder of this paper is organized as follows: Section 2 describes the preprocessing method
and how R peaks are detected; Section 3 describes how performance is improved using the proposed
algorithm and its overall low cost; and Section 4 concludes the paper.
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2. Materials and Methods

Figure 2 shows the proposed method comprising a preprocessing stage followed by a detection
stage. The preprocessing stage has two internal phases involving vectorization and noise removal.
This stage is meant to perform signal conditioning while reducing the amount of data, thereby making
the succeeding step simpler and faster. After a signal suitable for processing is obtained, automata
recognize the candidate R peaks from which a probability function selects the correct peak.
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Table 1. Slope ranges used to vectorize the ECG data points.  

Symbol Slope Range 
Slope11 slope ≥ 0.007Vpp 
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Figure 2. Block diagram of ECG signal processing.

2.1. Vectorization Process

FIR filters are commonly used in the first signal processing stage; however, such filters have
several drawbacks. For instance, their implementation can introduce a phase shift and modify the
morphology of the signal in a manner unsuitable for the succeeding process. Moreover, they have
a computational cost at least proportional to (m × n) for kernel and data sizes m and n, respectively.
Considering that an ECG is essentially a graphical representation of the electrical activity in the heart,
we apply common simplification methods from computer graphics, such as polyline simplification,
which has a computational complexity of O(n) and reduces the amount of data to a fraction of n.
We call this the vectorization process because it employs a concept similar to that of converting bitmap
images to vector images in computer graphics. Figure 3 illustrates the vectorization process.
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Figure 3. Vectorization process.

In vectorizing the signal data, we first define 11 slope ranges (Table 1), each having a threshold
based on the peak-to-peak voltage of the ECG signal as follows:

Vpp = 0.65Vppt + 0.35Vppt−1 (1)

where Vppt is the maximum peak-to-peak voltage of the ECG signal over 2 s, and Vppt−1 is the previous
value of Vppt.

The vectorization algorithm combines consecutive lines with the same slope range into a single
straight line (Figure 3). This method results in a reduced number of data points and a reduction of
unnecessary signal fluctuations while preserving the data features. The resulting lines are encoded
using 11 alphabetic symbols.
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Table 1. Slope ranges used to vectorize the ECG data points.

Symbol Slope Range

Slope11 slope ≥ 0.007Vpp
Slope10 0.007Vpp > slope ≥ 0.0056Vpp
Slope09 0.0056Vpp > slope ≥ 0.0042Vpp
Slope08 0.0042Vpp > slope ≥ 0.0021Vpp
Slope07 0.0021Vpp > slope ≥ 0.0007Vpp
Slope06 0.0007Vpp > slope ≥ −0.0009Vpp
Slope05 −0.0009Vpp > slope ≥ −0.0027Vpp
Slope04 −0.0027Vpp > slope ≥ −0.0054Vpp
Slope03 −0.0054Vpp > slope ≥ −0.0072Vpp
Slope02 −0.0072Vpp > slope ≥ −0.009Vpp
Slope01 slope < −0.009Vpp

2.2. Noise Removal

The vectorization process results in consecutive points containing both voltage and time data,
which are stored in a linked list data structure. One benefit of the vectorization process is that it reduces
noise based on the slope fluctuation. After vectorization, noise is further removed in a process that
eliminates all small fluctuations that can be considered noise based on their amplitude and duration.
All spikes of amplitude below 0.06Vpp and duration below 25 ms are eliminated by deleting all
the corresponding data points within each spike period. Figure 4 presents the combined result of
vectorization and noise removal.
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2.3. Automata Recognizer

An ECG signal is reduced to 11 slope types after it is vectored. Then, the signal sequence of slopes
is treated as a sequence of alphabetic symbols that can be recognized by a finite automata recognizer.
Finite automata are abstract algorithms used to recognize sequences using a process commonly known
as syntactic recognition. In this process, other ECG signal parameters (e.g., voltage level and time
interval) become additional inputs. Figure 5 illustrates the automata transition diagram, and Table 2
shows the transition function.
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Table 2. Automata recognizer transition functions.

Symbol Function

a slope ≤ Slope10
b slope = Slope11
c ¬a
d ¬(b ∨ d ∨ e ∨ f )
e (0 ≤ slope ≤ Slope10) ∧ ((VQR > 0.02Vpp) ∨ (VR > 0.7Vpp)) ∧ (tR < 50)
f (Slope01 < slope < 0) ∧ (tR < 50)
g slope = Slope01
h ¬(b ∨ d ∨ e ∨ f )
i ¬( f ∨ j)
j (20 < tQRS < 200) ∨ (VRS > 0.7Vpp)

The automata recognizer attempts to extract an R wave from an ECG signal. The automata remain
in state N until suspecting to have detected an R wave. The automata enter the QR state once they
begin to detect the high slope of an R wave. The signal slope would normally tend to decrease just
after the peak of the R wave, at which point the automata enter the Ru state. The automata enter the
Rd state when the slope of the signal becomes negative. The signal might oscillate between Ru and
Rd near the peak of an R wave. An ECG signal will normally sharply decrease after reaching the R
peak until it reaches a minimum (most negative) value, at which point the automata enter the RS state,
following which they will finally switch into the Sp state, representing the acceptance of the R wave.

The transition function shows that the slope range analyzed over the wave segment in Figure 5a
is sufficient for detection. The range could be reduced to make the process even faster; however,
at present, we use the abovementioned range aiming for future developments. Furthermore, reducing
the range might lead to a loss of signal features that would be useful for other applications.
The number of automata states can also be simplified by combining Rd and Ru into one state; however,
our development of the syntactic recognition method was simplified by keeping the states separate.
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2.4. Probability Function

The automata recognizer produces one or more R peak candidate points. We apply the following
probability function to eliminate any false positives:

P =



0 tn < 240 ms

e−
(tn+2σ−t)2

5.5σ2 tn <
(
t− 2σ

)
1

(
t− 2σ

)
≤ tn ≤

(
t + 2σ

)
e−

(tn−2σ−t)2

5.5σ2 tn >
(
t + 2σ

)
(2)

where

• P = probability function of the next R peak;
• tn = time interval of the next R peak;
• t = mean of the RR interval; and
• σ = standard deviation of the RR interval.

The final scores of each candidate are calculated as follows after obtaining a probability value for
each R peak candidate:

Score = P×VRS × priority

priority =

{
1.0

(
tn−1 < t

)
∧
(
tn > t

)
0.75 otherwise

(3)

The R peak candidate with the highest score is then selected as the detected R peak.

2.5. Evaluation Setup

We examined modified limb lead II (MLII) ECG signals necessary for long-term ECG recording to
validate the proposed method. The MLII signals were obtained by placing the ground electrode at
the left infraclavicular fossa, the negative electrode at the right infraclavicular fossa, and the positive
electrode on the left lower abdomen or just beneath the last rib. We obtained the signal data from the
Massachusetts Institute of Technology–Beth Israel Hospital Normal Sinus Rhythm (MIT–BIH NSR)
database [12,13], which is an Open Data Commons Public Domain database. This database included
18 long-term ECG recordings of subjects referred to the Arrhythmia Laboratory at Boston’s Beth Israel
Hospital. The subjects in the database had no significant arrhythmias and included five men aged
26 to 45 and 13 women aged 20 to 50.

We also tested the proposed method with the Fantasia database [12–14]. This database comprised
20 young (21–34 years old) and 20 elderly (68–85 years old) rigorously screened healthy subjects,
who underwent 120 min of continuous ECG recording digitized at 250 samples per second. All subjects
remained in a resting state in a sinus rhythm while watching the movie Fantasia (Disney, 1940) to help
maintaining wakefulness.

We implemented the proposed method using C++ coding. We originally intended to feed
the ECG data through an analog-to-digital converter into our long-term HRV monitoring system
at 1000 samples per second; however, we developed a separate program for validation purposes.
The input data of the validation program was formatted as a comma-separated value (CSV) format file
generated from the MIT-BIH NSR and the Fantasia databases. To simulate the real implementation,
we resampled the original signals from the datasets to 1000 samples per second using linear
interpolation. The implementation was included in the real-time HRV analysis system, where the
data were serialized. The client received the serial data, detected the R peak, sent the results to the
server, and deleted the data. Hence, the client memory did not store a large amount of ECG data, and
the computation time was not affected by the data serialization. We consider that the two evaluated
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datasets, which were resampled, can be considered as representative because a 1000-Hz sampling rate
is commonly used for practical ECG recording.

We then tested the proposed method on the first 10,000 s of each record in the MIT-BIH NSR
database and compared the results with the existing results from other studies. We excluded records
#f1o07, #f2o05, #f2o08, #f2o10, and #f2y09 from the Fantasia database because they contained many
arrhythmic beats with the negative peak deflection, which are considered as outliers for HRV analysis.
The proposed method was tested on a 2.4 GHz Intel Core i7-4700HQ CPU, 12 GB-memory Windows 8.1
notebook. Windows 8.1 is a multi-tasking operating system that processes multiple tasks in addition
to our program. Hence, we measured the elapsed time of our proposed method five times per record
and calculated the mean value for each record. We also set our program to have the highest priority in
the task manager of the operating system.

We focused on obtaining uninterrupted beats from the acquired ECG data. Thus, we included all
signal series for the test with no exceptions. This allowed us to judge the detector’s ability to recognize
unreadable signals caused by very-high amplitude noise, very-low signal amplitude, loss of signal,
or a combination of these factors [15]. Such error signals were noted as “isolated QRS-like artefacts”
instead of R peaks (Figure 6). We manually marked the R peaks and analyzed both signal types.
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Figure 6. Occurrence of the signal noted as an “isolated QRS-like artefact” in record #16272 [12,13,15].

We evaluated the performance of the proposed method using four performance metrics: sensitivity
(Se), which represents the ability of the algorithm to detect true R peaks; positive predictivity rate (PPR),
which represents the ability of the algorithm to discriminate between true and false R peaks; detection
error rate (DER), which is used to evaluate the total detection error over all R peaks; and accuracy (Ac),
which is calculated as the proportion of correctly identified R peaks over all cases.

Se =
TP

TP + FN
× 100% (4)

PPR =
TP

TP + FP
× 100% (5)

DER =
FP + FN
TotalQRS

× 100% (6)

Ac =
TP

TP + FN + FP
× 100% (7)

A true-positive (TP) occurred when an R peak was correctly detected by the proposed algorithm,
whereas a false-negative (FN) occurred when an R peak was missed, and a false-positive (FP) occurred
when noise was detected as an R peak.
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3. Results

Tables 3 and 4 summarize the performance of the proposed method on the evaluated databases.

Table 3. Performance evaluation of the proposed method using the Massachusetts Institute of
Technology–Beth Israel Hospital Normal Sinus Rhythm (MIT–BIH NSR) database. PPR: positive
predictivity rate; DER: detection error rate; Se: sensitivity; Ac: accuracy.

Record # Total Beats Se (%) PPR (%) DER (%) Ac (%) Processing Time (ms)

16265 14,809 100 100 0 100 310
16272 10,485 100 100 0 100 413
16273 13,629 100 100 0 100 269
16420 13,555 100 100 0 100 253
16483 15,638 99.994 99.994 0.013 99.987 407
16539 11,952 100 100 0 100 383
16773 12,464 99.984 100 0.016 99.984 331
16786 12,222 100 100 0 100 296
16795 13,819 100 100 0 100 501
17052 11,496 100 100 0 100 338
17453 14,463 100 100 0 100 283
18177 14,900 100 100 0 100 510
18184 13,876 100 100 0 100 377
19088 15,332 100 100 0 100 527
19090 13,350 100 100 0 100 417
19093 11,663 100 100 0 100 286
19140 14,436 100 100 0 100 480
19830 18,925 99.903 99.995 0.103 99.898 47
Mean 13,272 99.993 99.999 0.007 99.993 385

Table 4. Performance evaluation of the proposed method using the Fantasia database.

Record # Total Beats Se (%) PPR (%) DER (%) Ac (%) Processing Time (ms)

f1o01 7169 100 100 0 100 386
f1o02 6823 100 100 0 100 492
f1o03 7728 100 100 0 100 545
f1o04 6230 99.952 99.968 0.080 99.920 253
f1o05 5730 100 100 0 100 341
f1o06 6231 99.968 100 0.032 99.968 377
f1o08 8488 99.976 99.976 0.047 99.953 325
f1o09 4925 99.959 100 0.041 99.959 391
f1o10 8241 100 100 0 100 369
f1y01 8709 100 100 0 100 549
f1y02 7035 100 100 0 100 493
f1y03 7643 100 100 0 100 514
f1y04 5511 100 100 0 100 248
f1y05 6965 99.986 99.986 0.029 99.971 272
f1y06 7086 99.958 99.972 0.071 99.930 262
f1y07 5947 100 99.983 0.017 99.983 247
f1y08 7289 100 100 0 100 541
f1y09 8021 100 100 0 100 522
f1y10 8693 100 100 0 100 412
f2o01 7234 99.986 100 0.014 99.986 543
f2o02 6372 99.984 99.953 0.063 99.937 548
f2o03 6541 100 100 0 100 274
f2o04 6902 100 100 0 100 441
f2o06 5249 100 100 0 100 264
f2o07 5891 100 100 0 100 202
f2o09 6072 99.951 99.967 0.082 99.918 276
f2y01 8042 99.923 100 0.037 99.963 333
f2y02 6574 100 100 0 100 215
f2y03 6807 100 100 0 100 230
f2y04 8603 99.977 99.988 0.035 99.965 540
f2y05 9244 99.838 99.989 0.173 99.827 278
f2y06 6851 100 100 0 100 167
f2y07 6506 100 100 0 100 214
f2y08 7249 99.724 99.917 0.360 99.642 368
f2y10 7113 99.859 99.972 0.169 99.831 240
Mean 13,272 99.957 99.991 0.053 99.947 362
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Tables 5 and 6 present a comparison of the results obtained by the proposed method and other
methods [16–18], from which the proposed method obtained the highest performance.

Table 5. Performance comparison with the MIT-BIH NSR database.

Method Se (%) PPR (%) DER (%) Ac (%)

Proposed 99.993 99.999 0.007 99.993
Sharma et al. [16] 99.361 99.426 1.212 98.808
Elgendi et al. [17] 99.99 99.96 - -

Pan and Tompkins [18] 96.91 99.97 - -

Table 6. Performance comparison with the Fantasia database.

Method Se (%) PPR (%) DER (%) Ac (%)

Proposed 99.957 99.991 0.053 99.947
Sharma et al. [16] 99.90 99.91 0.19 99.81
Elgendi et al. [17] 99.98 99.87 - -

Pan and Tompkins [18] 89.16 99.89 - -

The average elapsed time for the R peak detection on the MIT-BIH NSR database was
approximately 385 ms per 10,000 s at 1000 samples per second, resulting in a processing time per
sample of approximately 38.5 ns. When tested using the Fantasia database, the total time for R
peak detection over 249,746 s of recording was 12,672 ms at 1000 samples per second, resulting in
a processing time per sample of approximately 36.2 ns.

4. Discussion

We propose a new method of detecting R peaks from acquired long-term ECG data for use in
HRV analysis. The proposed method combines a syntactical with a statistical approach to address the
problem of signal recognition. The use of a preprocessing step reduces the complexity of the syntactical
recognition step, thereby making this inherently fast process even faster, and resulting in an overall
process that is very fast and computationally efficient.

The performance of the method was verified using the MIT–BIH NSR and Fantasia databases.
The results from the MIT–BIH NSR database showed that it had a sensitivity, positive predictivity
rate, detection error rate, and accuracy of 99.998, 99.999, 0.003, and 99.996%, respectively. Meanwhile,
the Fantasia database showed that it had a sensitivity, positive predictivity rate, detection error rate,
and accuracy of 99.957, 99.991, 0.053, and 99.947%, respectively. The Fantasia database showed poorer
results than the MIT–BIH NSR database because the proposed method failed to recognize the typical
waveform that sometimes occurred in the database annotated as beats (Figure 7).

Figure 8 demonstrates a real example of the effect of R peak misdetection from the proposed
method compared to the actual R peaks during HRV analysis. The misdetection occurred once in
MIT–BIH NSR database record #19830 from 2670 s to 2700 s. We used a windows length of 30 s to show
the difference of the HRV analysis with a single misdetection compared to that with no misdetection
in the HRV frequency domain analysis. The misdetection greatly changed the frequency component
compared to the actual NN interval without misdetection. Hence, the misdetection of the R peaks
must be minimized in the HRV analysis.
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Figure 8. A single misdetection of the R peak results in wrong NN intervals, which can greatly modify
the result of the frequency analysis of the HRV as compared to the actual analysis without misdetection.

The method needed 33.6 and 38.5 ns processing time per sample when tested with the MIT–BIH
NSR and Fantasia databases, respectively. The records needed different processing times, but were
evaluated with the same duration. Although the computation time needed in the preprocessing stage
was proportional to the number n of data points, it had variations related to noise. In fact, a change
in the signal slope can lead to a different branch in the preprocessing algorithm, which has a slightly
different processing time compared to other branches.

The preprocessing stage resulted in m data points for the next stage, where m was lower than
n. The computation time needed by the automata in the recognition stage was proportional to
m. When evaluated with the MIT–BIH NSR and Fantasia databases, the average time needed for
the preprocessing stage was approximately 86% of the total processing time, whereas the average
of recognition stage needed approximately 14% of the total processing time. This observation
confirmed that the preprocessing method reduced the time needed for the recognition of the R
peaks. As a comparison, other methods use cascading FIR filters, each with a computation time of
(m × n), where m is the kernel size and n is the data size. Such filters result in n data points for the
next stage, followed by a relatively complex algorithm for R peak detection. A faster processing time
means that the proposed method can be implemented on a more limited processor when compared to
other methods.

The proposed R peak detection method was designed to exclusively measure the normal
RR interval (or NN interval) for HRV analysis. Hence, using this method to detect arrhythmic
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beats presents limitations, especially when a negative deflection of the QRS complex occurs.
Any improvement for recognizing all types of beat would, therefore, be challenging. As mentioned
earlier, using other details to classify types of arrhythmias would be possible in future works because
we preserved many ECG signal features during the preprocessing stage.
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