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Abstract: Covering the edges of a bipartite graph by a minimum set of bipartite complete graphs
(bicliques) is a basic graph theoretic problem, with numerous applications. In particular, it is used to
characterize parsimonious models of a set of observations (each biclique corresponds to a factor or
feature that relates the observations in the two sets of nodes connected by the biclique). The decision
version of the minimum biclique cover problem is NP-Complete, and unless P = NP, the cover
size cannot be approximated in general within less than a sub-linear factor of the number of nodes
(or edges) in the graph. In this work, we consider two natural restrictions to the problem, motivated
by practical applications. In the first case, we restrict the number of bicliques a node can belong to.
We show that when this number is at least 5, the problem is still NP-hard. In contrast, we show
that when nodes belong to no more than two bicliques, the problem has efficient approximations.
The second model we consider corresponds to observing a set of independent samples from an
unknown model, governed by a possibly large number of factors. The model is defined by a bipartite
graph G = (L, R, E), where each node in L is assigned to an arbitrary subset of up to a constant f
factors, while the nodes in R (the independent observations) are assigned to random subsets of the
set of k factors where k can grow with size of the graph. We show that this practical version of the
biclique cover problem is amenable to efficient approximations.

Keywords: biclique cover; approximation algorithms; probabilistic models

1. Introduction

We study the approximability of two variants of the minimum biclique cover problem, motivated
by the problem of characterizing parsimonious models in computational biology settings.

Given a bipartite graph G = (L, R, E), a biclique in G is a set of edges H ⊆ E that induces a
complete bipartite subgraph of G. A biclique cover of G is a collection of bicliques that cover all the
edges of G. The biclique cover number or the biclique dimension of G is the minimum number of
bicliques that cover E.

Covering a bipartite graph with a minimum number of bicliques is a fundamental graph theory
problem that has received significant attention in theoretical computer science [1–6]. The computational
problem has numerous applications, ranging from computational biology [7–9], data mining [10],
and machine learning [11], to automata theory [4], communication complexity [6], and graph
drawing [12].

The problem of determining whether a bipartite graph G has a biclique cover of size k is known
to be NP-Complete even if the graph is a chordal bipartite graph [5,13]. Chalermsook et al. [1]
recently showed that the biclique cover problem is also not approximable in polynomial time to
less than an O(|V|1−ε) or O(|E|1/2−ε) factor for any ε > 0 unless P = NP. This improved previous
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inapproximability results [3,4]. Moreover, unless NP ⊆ BPTIME(2poly(log(n))), there are also no

polynomial time O
(

|V|
2log7/8+ε(|V|)

)
or O

( √
|E|

2log7/8+ε(|V|)

)
approximation algorithms [1]. These results

are almost tight in terms of lower-order factors of |V| as an O
(

min( |V|√
log(|V|)

, |E| (log(log(|E|))2

log3(|E|)
)

)
approximation algorithm is known [1].

Given these strong impossibility results, theoretical work has focused on developing polynomial
time solutions for specific graph subclasses, such as C4-free graph [13], and domino-free graphs [14].
Another line of research developed parametrized complexity results, showing that it is possible
to determine in time O( f (k)poly(n)) whether a bipartite graph G admits a cover with at most k
bicliques [2,7] where f (k) is an exponential function of k, but it does not depend on n. Other work
has focused on the version of the problem where bicliques are edge-disjoint or vertex-disjoint [1,2].
Dawande et al. [15] studied the size of maximum cardinality of bicliques in random bipartite graph.
The related problem of clique cover in non-bipartite graphs has also received significant attention [5].

Finally, a problem related to our work here, is the local biclique cover problem [16], where for a
given (not necessarily bipartite) graph G and a parameter f we want to determine whether there exists
a biclique cover of the edges of G (using an arbitrary number of bicliques) in which each node belongs
to at most f bicliques. Arora et al. [17] studied a generalization of clique cover with applications to
community detection where nodes are limited to participate in a few cliques.

We note that the biclique cover problem is equivalent to the binary matrix factorization
problem [10], where the goal is to decompose an n × m binary matrix A into a product of n × k
and k × m binary matrices. The minimum k for which such a decomposition exists, known as the
Boolean rank of A, equals the minimum biclique cover number of a bipartite graph G with adjacency
matrix A. Biclique cover can also be seen as a form of biclustering [18].

Motivation

The two restricted biclique cover problems studied here are motivated by the application of
minimum biclique cover to the fundamental inference problem of characterizing parsimonious models.
We present combinatorial abstractions of two computational biology problems that motivates this
work [7–9] . We note that similar applications are found in other fields [10].

The goal of HLA (human leukecyte antigen) serology studies [9] is to identify antigens responsible
for acceptance and rejections of transplanted tissues. For the combinatorial model, it is sufficient to
know that an implant is rejected if it has an antigen that has a specificity in common with some
antibody in the recipient serum. Thus, a donor and recipient are not compatible if the donor has an
antigen that has specificity in common with at least one of the recipient antibodies. Given a set of
donors and recipients, we construct a bipartite graph G = (L, R, E), where L is the set of donors, R is
the set of recipients, and v ∈ L is connected with u ∈ R if v and u are not compatible. The goal is to
determine the minimum number of (antigens, antibodies) pairs with common specificity that explains
the observed compatibility structure between the sets of donors and recipients. It is easy to verify that
a (antigens, antibodies) pair with common specificity defines a biclique in the graph G and therefore
the minimum number of bicliques corresponds to the minimum number of pairs that explain the
observed data.

A second problem is the Mod-Resc Parsimony Inference problem [7]. Here, the bipartite graph
G = (L, R, E) represents reproductive incompatibility between strains of male L, and female R insects.
An edge (u, v) indicates that a cross between u ∈ L and v ∈ R is incompatible. The biology model
postulates that incompatibility is a result of a bacteria (mod-factor) in the male sperm and a lack
of the corresponding (resc-factor) in the female. The goal is to find the minimum number of (mod,
resc) factor pairs that explains the data. Since the edges of the graph correspond to incompatible
pairs, it is easy to verify that a biclique corresponds to a factor, and a minimum biclique cover gives a
parsimonious model.
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In these two applications, it is reasonable to assume that the total number of different factors
(antigens or bacteria) is growing with the size of the sample. Thus, a parameterized solution,
exponential in the total number of bicliques, is not practical. On the other hand, it is reasonable
to assume that the number of different antigens or antibodies of a given person, or the number
of different bacteria infecting one insect, is not a function of the total sample size. Furthermore,
in particular in the Mod-Resc model, evaluation considerations imply that the number of factors per
sample must be very small, justifying the first restricted model we study here.This is also consistent
with the observation in [8] that in their data for a weighted version of the biclique cover problem each
node was covered by at most 2 weighted bicliques.

A second characteristic of the observed data is that it corresponds to independent samples.
To incorporate the effect of random samples, we distinguish between two cases. Two factors can be
highly correlated. For example, in the case of HLA serology, two antigens may appear together in
donors and their corresponding antibodies may appear together in recipients. In that case we cannot
distinguish between the two factors, as they correspond to the same biclique. Otherwise, we can
assume that appearances of factors are relatively independent in at least one of the two sets of nodes.
This observation motivates the second, stochastic model we study here.

2. Overview of New Results

Motivated by the above applications, we study two variations of the biclique cover problem.
We present almost tight positive and negative results for each of the variants.

2.1. Model I: A Node belongs to a Small Number of Bicliques

In this model, we consider bipartite graphs with minimum biclique covers in which each
node participates in only a small number of different bicliques. More formally, we introduce the
( fL, fR, k)-biclique cover decision problem for bipartite graphs:

Problem 1 (( fL, fR, k)-biclique cover problem). Given a bipartite graph G = (L, R, E), and parameters
fL, fR and k, distinguish between the following two cases:
Yes-instance: There is a biclique cover of G with ≤ k bicliques, such that ∀u ∈ L (resp. v ∈ R), u belongs to at
most fL distinct bicliques in the cover (resp. v belongs to at most fR distinct bicliques in the cover).
No-instance: No such cover exists.

When fL = fR = f , we write ( f , k)-biclique cover instead of ( f , f , k)-biclique cover.
Notice that this problem is related to the local biclique cover problem where one is only interested

in minimizing the number of distinct bicliques covering each node without minimizing the total
number of bicliques [16]. Clearly, if a graph satisfies the ( fL, fR, k)-biclique cover condition it also
satisfies the (max( fL, fR))-local biclique cover condition, but the converse is not always true.

Results 1. Our first result (Section 3.3) shows that the ( f , k)-biclique problem remains computationally hard
even for small values of f . Specifically, we prove that the ( f , k)-biclique problem is NP-Complete for any f ≥ 5.

On the positive side, we first note that the (1, k)-biclique case is trivial since the graph must
consist of disjoint bicliques. We present two results for the non-trivial (2, k)-biclique case. (1) For
any graph with a (2, k)-biclique cover, we present a polynomial time algorithm that finds a biclique
cover with at most ≈ 2.83k bicliques. (2) For any graph with a (2, k)-biclique cover, we present a
polynomial time algorithm that covers at least a 1− 1

e fraction of the edges of the graph with k bicliques.
These algorithms do not guarantee that each node is covered by at most 2 bicliques.



Algorithms 2018, 11, 84 4 of 19

2.2. Model II: A One-Side Stochastic Model

In this model, we capture the fact that nodes represent independent observations, but the bipartite
graph has more structure than a standard random bipartite graph. This structure is dictated by the
semi-random assignment of factors to nodes.

Formally, we define the ( f , p̄, k)-biclique cover problem, for a constant f , a vector of k probabilities
p̄, and an arbitrary large number of factors k. An input to the ( f , p̄, k)-biclique cover problem is a
bipartite graph G = (L, R, E) generated by the following process: Factors are assigned arbitrarily to
nodes in L, subject to a limit of f factors per node. Nodes in R are assigned factors by a random process
in which each node is assigned factor i with probability pi, independent of any other choice. A node
u ∈ L and a node v ∈ R are connected if they share a factor. Given the observed graph G = (L, R, E),
and the parameters f , p̄ and k, we want to find a k-biclique cover of the graph.

Results 2. We show that for an arbitrary large constant f , and under some simple conditions on the distribution
p̄, there is a O((|L|+ |R|)O(1)) time algorithm that w.h.p. obtains a k-biclique cover of the graph, as long as
|R| ≥ c log(|L|) for some large enough constant c > 0. Here, the O(1) depends only on the constant f .

For an arbitrary probability vector p̄, we present an algorithm that in O((|L|+ |R|)O(1)) time
with high probability finds a set of bicliques of size k covering at least a 1− 1

e fraction of the edges,
or O(k log(|R|)) bicliques covering all edges of G, as long as |R| ≥ c log(|L|) for some large enough
constant c > 0. Here, the O(1) depends on the distribution p̄ and f but not on the size of the graph.

3. Model I: ( f , k)-Biclique Cover

In this section, we study the ( f , k)-biclique problem introduced. For the rest of the paper we use
N(u) to indicate the neighborhood of any node u ∈ L ∪ R. Also, we represent (bipartite) subgraphs of
G with capital letters, and we use A = (LA, RA) to indicate that subgraph A has nodes LA (resp. RA)
in the left (resp. right) side of the graph.

3.1. (1, k)-Biclique Cover

First, we observe that the (1, k)-biclique problem can be trivially solved in polynomial time.

Lemma 1. A bipartite graph G = (L, R, E) can be covered with a (1, k)-biclique cover iff it has ≤ k connected
components and each of them is a biclique.

Proof. Suppose each connected component of G is a biclique. It is easy to see that then all edges can
be covered by using each connected component as the biclique in the cover. Also, each node is covered
by a single biclique.

Then, assume G is a yes-instance. Let B1, . . . Bt, be the set of bicliques covering all the edges of G,
in the solution. Notice that the bicliques define a partition of the nodes in G as each node can belong
to a single biclique. We show that there is no edge that connects two nodes in two distinct bicliques,
and hence the graph consists of t ≤ k connected components, each a complete subgraph. Suppose to
get a contradiction that (u, v) ∈ E is an edge connecting the nodes in Bi, Bj for i 6= j. Since (u, v) does
not belong to any of the two bicliques, the edge must be covered by a third biclique. However, all
edges of u are covered by a single biclique.

This condition can be easily checked in polynomial time.

3.2. Results for the (2, k)-Biclique Cover

In this section, we assume that we are given in input a bipartite graph G = (L, R, E) and a
parameter k such that G is a yes-instance of the (2, k)-biclique cover problem. Our goal it to compute
approximate solution to the following two optimization problems: covering all edges of G with as few
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bicliques as possible and covering as many edges of G as possible with k bicliques. We denote the
union of the sets of node by V = L ∪ R.

3.2.1. Maximize Edge Coverage with k Bicliques

We prove the following result:

Theorem 1. There exists a O
(
min

(
|V|3 + k15|E|, k|V|7|E|

))
time algorithm that given in input a bipartite

graph G = (L, R, E) and a parameter k, where G is a yes-instance of the (2, k)-biclique cover problem, it outputs
a set of at most k bicliques in G covering at least (1− 1

e )|E| edges of G.

We first provide an overview of the main ideas on which Algorithm 1, which maximizes the
number of edges covered with k bicliques, is based. The algorithm has four steps. First, we use
a kernelization method to obtain a smaller graph G′ which has a (2, k)-biclique cover iff G has a
(2, k)-biclique cover. Then, we exploit the properties of the (2, k)-biclique covers for the kernelized
graph G′ to identify a set B′ of all large enough bicliques that are part of any cover of G′. Then, we will
show how to enumerate the set C ′ containing all possible small bicliques of any cover of G′ not in B′.
We will keep a mapping from bicliques in the smaller graph G′ to bicliques in the original graph G.
Then, we cast the problem of selecting≤ k bicliques as a monotone submodular maximization problem
hence showing that we can cover at least (1− 1

e )|E| edges of the original graph G with k bicliques.
We now prove formally Theorem 1, showing an algorithm that outputs a set of at most k bicliques

in G covering at least (1− 1
e )|E| edges of G. We describe each step of Algorithm 1 in details.

Step 1: Kernelization.

We apply the kernelization technique introduced by Fleischner et al. [2] for showing the
parametrized complexity of biclique cover, which we now recall.

Given an instance (G, k) of biclique cover, the kernelization obtains an instance (G′, k) where G′ is
constructed by applying the following two rules to G: (1) remove all nodes from G with no neighbors;
(2) for each set of vertices that have the same neighborhood in G, keep only one of them. We call G′ the
kernelized graph of G if G′ is constructed from G by applying the two rules. Fleischner et al. [2] show
that G admits a k-biclique cover iff G′ admits a k-biclique cover. We now show that using the same
kernelization, G admits a ( fL, fR, k)-biclique cover iff G′ admits a ( fL, fR, k)-biclique cover.

Lemma 2. G = (L, R, E) is a yes-instance of the ( fL, fR, k)-biclique cover problem iff the kernelized graph
G′ = (L′, R′, E′) of G is a yes-instance of the ( fL, fR, k)-biclique cover problem.

Proof. The lemma is a corollary of the results for general kernelization of biclique cover [2,7].
Notice that nodes with no neighbors can be ignored without complications. We show that

one application of the rule that removes one node u if another node v has the same neighborhood
transforms yes-instances into yes-instances and no-instances to no-instance. The result will follow then
by induction (over the number of application of the rule). Let G′ be the graph obtained by removing
v ∈ L from G when there is a v 6= u ∈ L s.t. N(u) = N(v) (the case with v ∈ R is similar and omitted).

Consider a ( fL, fR, k)-biclique cover of G. Removing a node v from G and from all the bicliques
involving v gives a graph that can be covered with ≤ k bicliques each covering at most fL nodes on
the left side and fR on the right side.

Consider a ( fL, fR, k)-biclique cover of G′. As node u has the same neighbors of v, we can extend
each of the (at most fL bicliques) covering u to include v on the left side. This preserves the fact that
they are bicliques. Also v is covered by at most fL bicliques, and in total we use k bicliques. The nodes
on the right side are still covered by the same number of bicliques.

The algorithm first applies the kernelization to obtain the bipartite graph G′ = (L′, R′, E′).
This can be done in time O(|V|3). We define V′ = L′ ∪ R′. We will store a mapping kern : V′ → 2V
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that records for each node in v ∈ V′ the set kern(v) of nodes in V that had the same neighborhood
and of which v is the only node left in G′ – i.e., kern(v) is an equivalence class of the nodes with the
same neighborhood. Notice that for each node v ∈ V′, kern(v) contains at least one node and that all
nodes in G with non-zero degree are in a unique kern(v) set.

Algorithm 1 ApproxMaxCover(G = (L, R, E), k)

Assumes G is a yes-instance for (2, k)-biclique cover.
— Step 1 —
Let G′ = (L′, R′, E′) be the graph obtained applying the Fleischner et al. [2] kernelization.

Store mapping kern.
Let V′ = L′ ∪ R′
if |V′| ≥ 2k2 then

report no (2, k)-biclique cover exists for G and quit.
end if
— Step 2 —

Let B′ ← ∅.
For all A ⊆ V′ such that G[A] = K3,4 or G[A] = K4,3.

• Let AL = A ∩ L′ and AR = A ∩ R′

• Let AL ←
⋂

v∈AR
N(v)

• Let AR ←
⋂

v∈AL
N(v)

• Let A′ = (AL, AR) and add biclique A′ to the set B′

if |B′| ≥ k then
report no (2, k)-biclique cover exists for G and quit.

end if
— Step 3 —

Let C ′ be the set containing all bicliques of G′ of the form:

• All the bicliques ({u},N(u)) for u ∈ L′ or (N(u), {u}) for u ∈ R′

• All the bicliques ({u, v}, N(u) ∩ N(v)) for u, v ∈ L′ or (N(u) ∩ N(v), {u, v}) for u, v ∈ R′

• And all the K3,3 in G′.
— Step 4 —

Let B = {kern(B′)|B′ ∈ B′}.
Let C = {kern(C′)|C′ ∈ C ′}.
Let O = B.
while |O| < k do

Select C ∈ C s.t. the number of edges covered in G by the union of the bicliques in O ∪ {C} is

maximized.
Add C to O.

end while
return O.

First, notice that given a biclique B′ = (B′L, B′R) of G′, we can construct a biclique B = (BL, BR) of
G using the mapping kern: BL =

⋃
v∈B′L

kern(v) and BR =
⋃

v∈B′R
kern(v). It is possible to observe that

(BL, BR) is a biclique in G if (B′L, B′R) is a biclique in G′. Given a biclique B′ in G′, we write kern(B′)
for the biclique B in G′ obtained in this way.

The following properties of the kernelized graph G′ of G will be exploited in the rest of the paper.

Lemma 3. Let G = (L, R, E) be a yes-instance of the (2, k)-biclique cover problem and let G′ = (L′, R′, E′) be
the kernelized version of the graph G. Then the following statements are true:

• G′ admits a (2, k)-biclique cover.
• |L′ ∪ R′| ≤ O(k2).
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• In any (2, k)-biclique cover of G′ there are no two nodes on the same side of the graph covered by the exact
same set of bicliques.

Proof. The first statement is a corollary of Lemma 2. Notice that all nodes on the same side of G′,
by construction, have distinct neighborhoods. Hence, they cannot be covered by the same set of 2
bicliques in any (2, k)-biclique cover. Finally, since each node in one side is covered by distinct subsets
of at most 2 bicliques out of k, there are at most 2k2 = O(k2) nodes in G′.

Step 2: Identifying Large Bicliques in the Cover.

We call Kl,r biclique any biclique that has exactly l nodes in the left side of the bipartite graph
and exactly r nodes in the right side. For a graph G and a set of vertices A, we call G[A] the induced
subgraph containing all nodes A and the edges between them.

We will also use the following notation. Given a (2, k)-biclique cover B of the graph G, where B is
a set of bicliques covering all the edges of G, we define FB(u) as the set of bicliques covering the node
u in the cover B. We have 1 ≤ |FB(u)| ≤ 2. We will omit B from F(·) when it is clear which cover we
are discussing.

We now make a series of important observations for the structure of the (2, k)-biclique cover of
the kernelized graph G′ of a (2, k)-biclique cover yes-instance G.

Lemma 4. Let G be a yes-instance for the (2, k)-biclique cover problem and let G′ be the kernelized graph of G.
Suppose A ⊆ L′ (resp. A ⊆ R′) is such that |A| ≥ 3. Let B be a (2, k)-biclique cover of G′. If there is a single
biclique B ∈ B that covers all the nodes in A, then, in the cover B, all nodes S ⊆ R′ (S ⊆ L′) connected to all
nodes in A are covered by the same biclique B.

Proof. Fix a solution B of the (2, k)-biclique cover of G′. Let B be the biclique that covers all nodes in
A in the solution B. We prove the case for A ⊆ L′, the other case is similar.

First, fix three distinct nodes a1, a2, a3 in A. All the nodes are covered by biclique B. Notice that
by the third item of Lemma 3, each node in A is covered by a different set of (at most 2) bicliques in
B. Hence, there is no other single biclique B′ that covers two nodes in A (otherwise there will be two
nodes both covered by the pair B, B′ of bicliques).

Now consider a node v ∈ R′ connected to all nodes in A. If v is not part of biclique B, in the
biclique cover B, all the edges (ai, v) ∈ E for i ∈ [3] are covered by a distinct biclique. This is a
contradiction, as v is covered by at most 2 bicliques in B.

We use the previous lemma to prove the following useful result.

Lemma 5. Let G′ = (L′, R′, E′) be the kernelized graph of a (2, k)-biclique cover yes-instance G. Suppose that
A ⊆ L′ ∪ R′ is such that G′[A] is a K3,4 biclique (or a K4,3 biclique). Let AL = A ∩ L′ and AR = A ∩ R′.
Let A′L =

⋂
v∈AR

N(v) and let A′R =
⋂

v∈A′L
N(v). Then the biclique A′ = (A′L, A′R) is part of any

(2, k)-biclique cover of G′ and it is the unique biclique that covers all nodes in A.

Proof. Suppose to get a contradiction that in a given (2, k)-biclique cover B of G′ there is no such
unique biclique A′ covering all nodes in A. From now on in this proof, when we use F(u), we refer to
FB(u), i.e., the set of bicliques covering u in the cover B.

W.l.o.g., we assume that |AL| = 3 and |AR| = 4. The proof follows similarly in the opposite case.
Notice that if any set of at least 3 nodes in either side of A is covered by the same biclique B ∈ B

then, B covers all nodes in A. This is because, by Lemma 4, if three nodes in side L′ in A (resp. R′) are
covered by B then all nodes in side R′ in A (resp. L′) are covered by B, and this implies that the all
nodes in side L′ (resp. R′) are covered by B.

Consider any node u ∈ A. If |F(u)| = 1, than there is a contradiction. In fact, all neighbors of u
are covered by a single biclique and hence we get that more than 3 on one side are covered by the same
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biclique. By the previous argument than there is a biclique covering all nodes in A. So we assume for
the rest of the proof that |F(u)| = 2 for all nodes u ∈ A. Fix a node u in A ∩ L′ and let B1, B2 be the
two distinct bicliques covering the node u in B. All nodes in A ∩ R′ are covered by either B1 or B2.

We now show that there is no node v ∈ A ∩ R′ such that F(v) = {B1, B2}. In fact, if such a node
exists, then there are no assignments of B1 and B2 to nodes in A ∩ R′ such that all nodes in A ∩ R′

belong to one of the two bicliques but no bicliques covers 3 nodes in A ∩ R′ (recall that if a biclique
covers 3 nodes in A ∩ R′ we get a contradiction because then all nodes in A ∩ L′ are covered by the
same biclique and hence the fourth node in A ∩ R′ is covered as well by that biclique). Also similarly,
this implies that B1 and B2 both cover exactly two distinct nodes A∩ R′. Let r1, . . . r4 ∈ A∩ R′. W.l.o.g.,
we assume that F(r1) = {B1, C1} and F(r2) = {B1, C2}, F(r3) = {B2, D1} and F(r4) = {B2, D2} where
by kernelization we have C1 6= C2 and D1 6= D2.

Now, we have that all nodes in A ∩ L′ \ {u} do not belong to both B1 and B2. For sake of
contradiction, let, w.l.o.g., v ∈ A ∩ L \ {u} be a node that belongs to B1. We know that v does not
belong to B2 (by kernelization). So {B1, D1, D2} ⊆ F(v), as it is connected to r3, r4 and hence F(v) > 2,
giving a contradiction.

This implies, for any node v ∈ A ∩ L′ \ {u} to be connected to all nodes in A ∩ R′, that the
following conditions are met: {C1, C2} = {D1, D2} and F(v) = {C1, C2}. By kernelization, this gives a
contradiction, as two distinct nodes in A ∩ L′ \ {u} belong to the same set of bicliques.

We have shown that in any (2, k)-biclique cover B of G′ there is at least one biclique A′ covering all
nodes in A. Now notice that there can be only one biclique covering all nodes in A, as otherwise there
will be two nodes with the same set of bicliques in the cover on the same side of the graph. Hence, A′ is
the unique biclique covering all nodes in A in any (2, k)-biclique cover. Finally, by applying Lemma 4
to all nodes connected to each node in A ∩ L′ (resp. A ∩ R′), we know that the unique biclique A′ is
(A′L, A′R), as in the statement of the lemma.

The previous lemma means that if A is a K3,4 (or K4,3) of G′ then the biclique A′ obtained as in the
statement is part of any optimal solution. Also notice that clearly if in a given (2, k)-biclique cover of
G′ there is a biclique of size at least 3 in the smallest side, and at least 4 in the largest side, this biclique
induces a K3,4 (or K4,3) in G′.

Hence, by enumerating all K3,4 and K4,3 in G′ in polynomial time we can find a set B′ of bicliques
in G′ such that: B′ contains all large enough bicliques—i.e., with ≥ 3 nodes (resp. ≥ 4) in the smaller
(resp. larger) side that are part of all (2, k)-covers of G′; and no biclique not in B′ which is large
enough (again it contains a K3,4 or a K4,3) is part of any (2, k)-biclique cover. This is done in Step 2 of
Algorithm 1.

Step 3: Small Bicliques

We know that all the bicliques necessary to cover the remaining edges of G′ (besides the one in
B′) need to involve at most 3 nodes in the smaller side. We can then enumerate a set C ′ of bicliques,
in polynomial time, containing a super-graph of each biclique not in B′ that is part of any (2, k)-biclique
cover. It is possible to verify that at the end of Step 3 of the algorithm, C ′ contains at least one biclique
that covers all edges of any biclique with at most 3 nodes in the smallest side of the biclique. Step 3
runs in polynomial time.

Step 4: Max Coverage

Finally, we have a set B′, which contains bicliques that are necessary part of any optimal solution
of G′ and a set C ′ of bicliques G′ that are sufficient to cover all edges of G′ not covered by bicliques in B′.

Let B be the set of bicliques of G obtained by B = {kern(B′)|B′ ∈ B′} (recall the definition of the
mapping). Similarly we obtain the set C from C ′.

The algorithm will output all the bicliques in B. For t = |B| ≤ k the algorithm will obtain the
remaining k′ = k− t bicliques in the following way. First, let O = B. The algorithm will add greedily
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a single biclique from C to O for k′ times choosing each time the biclique that maximizes the number
of newly covered edges in G′. It is easy to see that, since this function is monotone submodular and k′

additional bicliques are sufficient to cover all edges not covered by B, at least (1− 1
e )|E| of the edges

of G are covered at the end of the process. We can now complete the proof of Theorem 1.

Proof of Theorem 1. Notice that by the previous considerations, the set O at the end of Algorithm 1
contains at most k bicliques, and these bicliques covers (1− 1

e )|E| edges of G.
The algorithm requires O(|V|3) time for the kernelization. Then, the remaining graph G′ has at

most n = min(2k2, |V|) nodes and at most m = min(4k4, k|E|) edges, by Lemma 3.
The most expensive operation is enumerating all the K3,4, K4,3 of the graph which can be done in

O(n7) time. Hence, Step 2 takes O(n7m) time.
Step 3 takes at most O(n6) time.
Finally, Step 4 does at most k iterations over a set of size O(n6) each step of the iteration taking at

most O(|E|) time.
The total is hence O(|V|3 + kn7|E|), and the result follows.

3.2.2. Covering All Edges with the Minimum Number of Bicliques

In this section we prove Theorem 2, the existence of an algorithm that outputs a set of at most
H(9)k bicliques covering all edges of the graph.

Theorem 2. There exists a O
(
min

(
|V|3 + k15|E|, k|V|7|E|

))
time algorithm that given in input a bipartite

graph G = (L, R, E) and a parameter k, where G is a yes-instance of the (2, k)-biclique cover problem, outputs:
a set of at most H(9)k bicliques in G covering all edges of G.

Here, H(i) = ∑1≤j≤i j−1 is the i-th harmonic number and H(9) ≈ 2.83.
For this problem, we use similar techniques described before. We outline the main differences

from Algorithm 1. As before, we will construct the set B′, which contains large bicliques that are part
of any optimal solution. In this set, besides the bicliques including a K3,4 (or K4,3), we will identify as
well certain bicliques with size K2,a for a ≥ 5 and K1,b for b ≥ 10 (and the cases Ka,2, Kb,1).

This will ensure that all remaining bicliques necessary for covering all edges in G′ will have at
most 9 edges in G′ (i.e., they will be K3,3, K2,a, Ka,2 for a ≤ 4 and K1,b, Kb,1 for b ≤ 9.)

Then, we cast the problem of selecting the minimum number of bicliques in C ′ that cover all
remaining edges of G′ (besides the one in B′) as a set cover problem with sets of size at most 9. For this
problem, it is known that the greedy algorithm gives a H(9) approximation factor showing that all
remaining edges in G′ are covered with additional ≤ H(9)(k− k′) bicliques plus the k′ ≤ k in B′ for a
total of ≤ H(9)k bicliques.

Finally, from the biclique cover of G′, we can reconstruct the biclique cover in G with the same
techniques of the previous section, outputting a cover with at most H(9)k bicliques.

Properties of the Kernelized Graph of a (2, k)-Biclique Cover Yes-Instance

We show some additional properties of the kernelized graph of a (2, k)-biclique cover yes-instance
that will be exploited by the algorithm. In this subsection, we always assume G′ is the kernelized
graph of (2, k)-biclique cover yes-instance G.

Lemma 6. Let (LA, RA) be a K2,5 biclique in G′ such that LA is not included in any K3,4 biclique in G′. Then,
in any (2, k)-biclique cover B, there is always a unique biclique that covers all the nodes in LA and no other
node in the left side. (A similar result holds for K5,2 bicliques.)

Proof. We first show that in any K2,5 biclique (LA, RA), all nodes in the small side LA need to belong
to the same biclique in any (2, k)-biclique cover .

Fix a (2, k)-biclique cover B. F(u) refers to the set of bicliques covering u in the cover B.
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Let LA = {u, v}. Suppose to get a contradiction that F(u) ∩ F(v) = ∅, then each node in RA
contains one biclique from F(u) and one from F(v). It is possible to verify that at most 2× 2 = 4
distinct sets of size at most 2 can be formed by taking one element from F(u) and one from F(v).
Hence, there are two nodes in RA that are covered by the same set of bicliques, giving a contradiction
as the graph is kernelized.

So we know that there is a biclique A ∈ F(u) ∩ F(v). Consider a node x ∈ RA such that A /∈ F(x).
It is easy to see that there can be only one such node, as this node must be covered by the other biclique
of F(u) and the other biclique of F(v) not equal to A. Again, for the kernelization, only one such node
can exist.

So at least 4 nodes in RA belong to a unique biclique. Finally, notice that if there is another node
in the side of LA in the same biclique, that would form a K3,4 biclique.

Lemma 7. Let (LA, RA) be a K1,10 biclique in G′ such that RA is not in any K2,5 biclique including the node
in LA in the left part of the biclique. Then, in any optimal solution, there is a single biclique that covers the node
in LA and no other node on that side.

Proof. Fix a (2, k)-biclique cover B. F(u) refers to the set of bicliques covering u in the cover B.
Let u ∈ LA. If F(u) = A, then all node in RA belong to A and we can apply Lemma 4. Let F(u) =

{A, B}, we have that all nodes in RA belong either to A or to B or both. W.l.o.g., let A be the more
common of the two. We have that A appears at least 5 times. So, if any other node in u side belongs to
A, that would form a K2,5 biclique.

Algorithm

We now state how the algorithm for this problem constructs the set B′. First, we add to B′ all
bicliques including a K3,4, as done in Step 2 of Algorithm 1. Then, we add to B′ all bicliques of the
form ({u, v}, N(u) ∩ N(v)) (and similar form (N(u) ∩ N(v)), {u, v}) for u 6= v ∈ L′ such that u, v are
part of a K2,5 and not of a K3,4. Finally, we add bicliques ({u}, N(u)) (and the form (N(u), {u})) such
that u ∈ L′ has at least 10 edges not covered by the bicliques added before.

We claim the following property for B′.

Lemma 8. There is a (2, k)-biclique cover of G′ which contains all bicliques in B′ and only other bicliques with
at most 9 edges.

Proof. The lemma follows by combining Lemmas 5 and 6. By Lemma 5, we know that there is no
other biclique in any (2, k)-biclique cover with at least 3 nodes on the smaller side and at least 4 on the
largest side.

Suppose there is a (2, k)-biclique cover of G′ containing all bicliques of B′ and another biclique
B = (LB, RB) /∈ B′ of the form K2,a for a ≥ 5. If nodes in LB are part of a K3,4 biclique, we get a
contradiction, as we have two nodes in LB that are both covered by the biclique B and the other
biclique in B′ identified by the algorithm (by kernelization this is not possible). So we know that LB is
not part of a K3,4 biclique. However, in this case, by construction of the algorithm, there is another
biclique B′ covering LB, so again we get a contradiction. (The same proof works for the Ka,2 case for
a ≥ 5).

Finally notice that, by construction, at most 9 edges of each node are left uncovered by bicliques
in B′ so there is a (2, k)-biclique cover that includes all bicliques in B′ and other bicliques with at most
9 edges each.

Finally, notice that we can enumerate the set C ′ of all bicliques with at most 9 edges necessary to
cover the edges left uncovered by the bicliques in B′ in time O(n6), where n is the number of nodes in
the graph G′.

The proof of Theorem 2 follows by the properties of set cover.
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3.3. NP-Complete Result for f ≥ 5

Theorem 3. ( f , k)-biclique cover is NP-Complete for any f ≥ 5.

3.4. Proof of Theorem 3

Recall that the (∆, k)-clique vertex partition problem is defined as follows. Given a graph G =

(V, E), with maximum degree ≤ ∆ and an integer k, determine whether there is a partition of nodes in
V in t ≤ k subsets C1, . . . , Ct, such that each subset Ci is a clique.

Král et al. [19] showed a reduction to clique vertex partition from the NP-Complete Clause-Linked
Planar 3-SAT problem [20]. The latter is the following decision problem: given a CNF formula, where
each clause contains either 2 or 3 literals and each literal appears in exactly 3 clauses (twice negated
and once positive), determine whether the formula is satisfiable.

Král et al. [19] showed that given such formula φ we can construct a graph Gφ = (Vφ, Eφ) such
that nodes in Vφ can be partitioned in |X|+ 3|C| cliques iff φ is satisfiable (where X and C are the
sets of variables and clauses of φ, respectively). The graph Gφ is constructed as follows. For each
variable x ∈ X, create the subgraph Gx = ({x, x+, x−1 , x−2 }, {xx+, xx−1 , xx−2 , x−1 x−2 }). For each clause
c ∈ C, create a 7-node cycle Gc. If the clause c has 3 literals x,y,z, fix three non pairwise adjacent nodes:
c(x), c(y), c(z) in the cycle (e.g., let c(x) be at distance two from c(y), and let c(y) be at distance two
from c(z) and let c(z) be at distance three from c(x)). If the clause has two variables, ignore c(z). Now,
for each literal x if c is the clause in which it appears positive, let the c(x) node in Gc be coincident with
the node x+ in Gx. For the clauses in which x appears negated, we similarly use nodes x−1 and x−2 .

The following result is a corollary of those of Král et al. [19].

Lemma 9. (∆, k)-clique vertex partition is NP-Complete for ∆ ≥ 4.

Proof. By Král et al. [19], we know that φ is satisfiable iff the nodes in Vφ can be partitioned in
|X| + 3|C| cliques. Notice that graph Gφ has maximum degree ∆ ≤ 4. Hence, (4, k)-clique vertex
partition is NP-Complete as well.

Now, using the reduction of Orlin [5], we show that (∆, k)-clique vertex partition can be reduced
to (∆ + 1, ∆ + 1, k′)-biclique cover for some k′ ≥ k.

Given a graph G = (V, E), construct a bipartite graph BG = (L, R, EB) as follows. For each node
vi ∈ V, create two nodes xi ∈ L, yi ∈ R. Moreover, for each edge vivj ∈ E, make two nodes xij ∈ L
and yij ∈ R. For each vi ∈ V. we have xiyi ∈ EB. Also for each edge vivj ∈ E. we have the following
edges in EB xiyj, xijyj, xiyij, xijyij. Orlins [5] showed that a graph G admits a clique vertex partition in
k cliques iff the edges of BG can be cover by at most k + |E| bicliques. The following lemma can also
be shown.

Lemma 10. Let G be a graph with maximum degree at most ∆, and let BG the corresponding bipartite graph
defined before, there exists a (∆ + 1, k + |E|)-biclique cover of BG iff there is k-clique vertex partition of G.

Proof. Suppose there is no k-clique vertex partition of G. Then, by Orlins [5], we know that there is
no biclique cover of the edges of BG with k + |E| bicliques (irrespectively of how many bicliques a
node belongs). Suppose there is a k-clique vertex partition of nodes in G. Let C be any set in the
partition. Then, it is possible to see that BC = ({xi|vi ∈ C}, {yi|vi ∈ C}) is a biclique in BG and that k
such bicliques covers all edges of the form xiyi. Also, as the sets in the partition are disjoint, each node
in V(BG) belongs to at most one such biclique.

Now, consider the edges of the form xiyj ∈ EB, for vivj ∈ E. Any such edge can be covered with
the biclique Bij = ({xij, xi}, {yj, yij}). Notice that by using |E| such bicliques we can complete the
cover of all the remaining edges in EB (including the edges of the form xijyij). Now, each node of the
form xij (or yij) belongs to only one biclique in this cover. Nodes xi belong to one biclique of the form
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BC as well as other deg(vi) bicliques of the form Bij such that vivj ∈ E. So we have that each node is
part of at most ∆ + 1 bicliques because of the degree of G.

Theorem 3 is a corollary of the above lemma.

4. Model II: One-Side Stochastic Model

We recall the definition of the model. In the ( f , p̄, k)-biclique cover model, there is a constant f ,
a vector of k probabilities p̄ = p1, . . . pk, and a number of factors k. The input is a graph G = (L, R, E)
where each node in L is assigned to ≤ f factors from [k] arbitrary and each node in R is assigned
independently to factor i with probability 0 < pi < 1. A node u ∈ L and a node v ∈ R are connected
iff they share a common factor.

We show that, under certain conditions on the parameters f and p̄, we can recover an optimal or
close to optimal ( f , k, k)-biclique cover of the graph.

We will make the following two assumptions throughout the section. First, let Li ⊆ L be the set of
nodes assigned to factor i in L. We will always assume that for no pair i 6= j ∈ [k], Li ⊆ Lj. Notice that
if Li ⊆ Lj for i 6= j then the biclique of factor i is completely covered by the biclique of factor j and
there is a equivalent ( f , p̄′, k− 1)-biclique cover model without the factor i.

Let pm = mini∈[k](pi), pM = maxi∈[k](pi). Second, we assume that the right side R is sufficiently
large w.r.t. the left side. In particular we assume |R| > C f ,pm ,pM log(|L|) for a sufficiently large constant
C f ,pm ,pM which depends on f , pm, pM only. This is to allow extracting enough information from the
random assignment in the right part.

In the rest of the section, we present two results. First, we show that under an additional condition
on the constants p̄ that ensures that no factor has much higher probability than another factor and that
no factor has too large a probability, then an exact ( f , p̄, k)-biclique cover can be obtained in polynomial
time. We then show that for any vector of constants p̄, it is possible to obtain an approximate cover.

4.1. Optimal ( f , p̄, k)-Biclique Cover

We first state the additional condition on p̄:

pm

2
> 1− (1− pM)2 f−1(1 + (2 f − 1)pM) (1)

Notice that for any f there is a non-empty set of vectors p̄ for which the condition holds.
For instance, it holds for any vector s.t. 0 < pm = pM < c f where c f < 1 is constant depending on f .
We will prove the following theorem.

Theorem 4. Let G = (L, R, E) be the graph obtained by the ( f , p̄, k)-biclique cover model, such that |R| ≥
Ω(log(|L|)) and where the condition in Equation (1) holds for p̄. There exists a O(k|L| f+1|E|) time algorithm
that given G, f , k and pm outputs a ( f , k, k)-biclique cover of G w.h.p. In the paper, we say that an event
happens with high probability if it happens with probability ≥ 1− |V|c for some constant c > 0.

Main Ideas

Before entering into the details of the proof here we present the main ideas of the proof. First,
we show that, under the condition in Equation (1) and for |R| ≥ Ω(log(|L|)), it is possible to
distinguish in polynomial time w.h.p., whether in any given set S ⊆ L there exists at least a factor
i ∈ [k], such that all nodes in S belong to the Li (are assigned to the factor). In particular, we show that
this is possible by just looking at the number of the common neighbors of all the nodes in S.

We will then assume to have an oracle I : 2L → {0, 1} that returns, w.h.p. I(S) = 1, iff there is
factor to which all nodes in S belong.
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We will show that there is an algorithm that makes a polynomial numbers of calls to this oracle
and finds an ( f , k, k)-biclique cover of G. We stress that this algorithm could be used also for other
probabilistic models where the function I can be computed with sufficient accuracy.

The intuition of the algorithm is that we can construct each biclique in the cover, one at a time,
once we identify a set of nodes S ⊆ L such that there exists a unique factor i ∈ [k] to which all nodes in
S belong. Furthermore, we show that for any factor there is at least one set of size ≤ f of nodes in L for
which this happens. We can then identify each biclique in polynomial time, w.h.p.

We now proceed to prove formally the results the this model.

4.1.1. Determining Whether Nodes in S ⊆ L Share a Common factor

Recall that in this section we assume we are given a bipartite graph G = (L, R, E) obtained by
the ( f , p̄, k)-biclique cover where the condition Equation (1) holds, |R| ≥ Ω(log(|L|)) and no Li set is
subset of Lj for two distinct factors i, j ∈ [k].

First, we show that, given a set S ⊆ L, it is possible to distinguish based on the graph G whether
there is at least a common factor assigned to all nodes in S. In this section, we use F(u) to indicate
the set of bicliques covering node u in the model (i.e., each biclique corresponds to the nodes with
one factor).

Lemma 11. Given a set S ⊆ L, if
⋂

u∈S F(u) = ∅ then the probability that

|
⋂

u∈S
N(u)| > (1 + ε)2(1− (1− pM)2 f − 2 f pM(1− pM)2 f−1))|R|

for 0 < ε < 1 is smaller than exp (−1/3ε2C|R|), for some constant C not dependent on |R|.

Proof. Let Xw be the indicator variable of the event that ∀u ∈ S (u, w) ∈ E.
We claim that the probability of Xw is upper-bounded by twice the probability of the following

event: w is part of at least two bicliques selected from a set F′ of cardinality at most 2 f . Suppose in fact
that w is part of a single biclique B, then as

⋂
u∈S F(u) = ∅, w cannot be connected to all nodes in S.

w must be part of at least two bicliques. Now, fix a single node u ∈ S. |F(u)| ≤ f , and w is part of at
least one biclique in F(u). If w is part of two bicliques in F(u), then our bound holds (use F′ = F(u) as
a the sets from which the bicliques must be selected). If w is part of a single biclique B ∈ F(u), then fix
v ∈ S, a node such that B /∈ F(v) (the node exists for the empty intersection in S). We have that w is
part of another biclique from F(v) with |F(v)| ≤ f . In this case, w is part of at least two bicliques from
the set F′ = F(v) ∪ F(u) of size at most 2 f . By union bound on these two cases

Pr (Xw) ≤ 2(1− (1− pM)2 f − 2 f pM(1− pM)2 f−1))

where the inequality comes from the fact that the probability is maximized when the set F′ contains
exactly 2 f bicliques of maximum probability pM, the probability of selecting at least 2 bicliques is the
opposite of the probability of not selecting 0 of 1 biclique.

Let X be the random variable that measures the cardinality of |⋂u∈S N(u)|. Then, it is easy to
see that

E [X] ≤ |R|2(1− (1− pM)2 f − 2 f pM(1− pM)2 f−1),

and by the Chernoff bound, for 0 < ε < 1, we have

Pr (X > (1 + ε)E [X]) < exp (−1/3ε22(1− (1− pM)2 f − 2 f pM(1− pM)2 f−1|R|)).

Similarly, we can show
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Lemma 12. Let S ⊆ L such that
⋂

u∈S F(u) 6= ∅ then the probability that |⋂u∈S N(u)| < (1− ε)pm|R| for
0 < ε < 1 is smaller than exp (−1/3ε2 pm|R|).

Proof. Let Xw be the indicator variable of the event that ∀u ∈ S, we have (u, w) ∈ E. Let A be one of
the common biclique of the nodes. We have

Pr (Xw) ≥ Pr (A ∈ F(w)) = pA ≥ pm,

the result follows by the Chernoff bound.

Lemma 13. Let pm > 2(1− (1− pM)2 f − 2 f pM(1− pM)2 f−1), given a set S ⊆ L, then there is a constant
0 < ε < 1 and a constant c > 0 such that, for |R| ∈ Θ(log(|L|)) with probability ≥ 1− exp(−c|R|)

|
⋂

u∈S
F(u)| > 0

if and only if |⋂u∈S N(u)| ≥ (1− ε)pm|R|.

Proof. If pm > 2(1− (1− pM)2 f − 2 f pM(1− pM)2 f−1 then there is an ε > 0 for which (1− ε)pm >

(1 + ε)2(1− (1− pM)2 f − 2 f pM(1− pM)2 f−1.
Notice that (1/3)ε2 pm > 1/3ε22(1− (1− pM)2 f − 2 f pM(1− pM)2 f−1.
Then we can apply the previous lemma and show that that with probability at least

1− exp(−(1/3)ε2 pm|R|)

we have |⋂u∈S N(u)| ≥ (1− ε)pm|R| iff |
⋂

u∈S F(u)| > 0.

Given the previous results, we can implement a function I(S) that given a set S determines
correctly, in time O(|E|), whether |⋂u∈S F(u)| > 0 with probability at least

1− exp(−(1/3)ε2 pm|R|).

4.1.2. Algorithm Based on the Oracle I

In this section, we will assume that there is a function I(S) that returns I(S) = 1 iff |⋂u∈S F(u)| >
0. We will assume that the function returns the correct answers all times. Given the previous results,
since we make O(|L|c) calls to such function, this happens w.h.p. as long as |R| ≥ C f ,pm ,pM log(|L|) for
such sufficiently large constant C f ,pm ,pM depending on f , pm, pM.

The algorithm is presented in Algorithm 2.
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Algorithm 2 OptCoverOneSideRandom(G = (L, R, E), f , pm, k)

Mark all edges in E as uncovered.
Let B ← ∅ be the set of bicliques in the cover
while ∃u ∈ L adjacent to an uncovered edge do

— Step 1 —
LB ← {u}.
— Step 2 —
while ∃S ⊆ L \ LB s.t. 1 ≤ |S| ≤ f , I(S ∪ LB) = 1 and there is no biclique in B that covers all

nodes in S ∪ LB do
LB ← LB ∪ S.

end while
— Step 3 —
for ∀v ∈ L do

if v /∈ LB and I(LB ∪ v) = 1 then
LB ← LB ∪ {u}.

end if
end for
— Step 4 —
RB =

⋂
u∈LB

N(u)
B← (LB, RB)
B ← B ∪ B
Mark all edges in B as covered.

end while
return B

Intuition of the Algorithm

The main idea of the algorithm is to isolate a single new biclique B at a time from the optimal
cover B given by the model. We do so by finding any subset LB ⊆ L of left nodes such that: any node
in S belong to biclique B; and there is no other biclique to which all nodes in S belongs. Then we will
identify all the left nodes that belong to biclique B.

Correctness of the Algorithm

We first show the following lemma.

Lemma 14. For any biclique B = (LB, RB) in the cover B given by the model, there is a set of S ⊆ L of size at
most f such that

⋂
u∈S F(u) = B.

Proof. Consider a node u ∈ LB. This node can belong to at most other f − 1 bicliques B1, . . . Bc ∈ B
with c ≤ f − 1. Notice that for any biclique Bi there exists a node ui s.t. B ∈ F(ui) and Bi /∈ F(ui)

(by assumption in the model left nodes in biclique B are not a subset of biclique Bi). Hence the
set S = {u, u1, . . . uc} (where ui might not be distinct) has the property that

⋂
u∈S F(u) = B and

|S| ≤ f .

We now show that Algorithm 2 is correct.

Theorem 5. The Algorithm 2 computes a biclique cover for the graph G with k bicliques.

Proof. We show this by induction on the order of the bicliques determined by the algorithm.
More precisely, we will show that for any k′ ≥ 0, there exists an optimal cover containing all
the first k′ bicliques determined by the algorithm. The base case for k′ = 0 is obvious (no clique
has been determined). Suppose the statement holds for the first k′ − 1 bicliques. If the algorithm
ends without adding another biclique, this concludes the proof. Otherwise, let B be the k′-th biclique
determined. Notice that for the algorithm to not stop, this means that a node u ∈ L had at least an
edge uncovered. So we know that u must belong to another biclique in an optimal cover. We will now
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show that until the end of Step 3, the set LB preserves the property that there is a biclique B in the
optimal cover (not already found) containing all nodes in LB. This is clearly true at the beginning (Step
1). In Step 2, we check this property explicitly. Notice that in Step 3 we add nodes in LB only if they
maintain the property I(LB ∪ v) = 1, so the property continues to hold.

We now show that at the end of Step 3 there is a unique biclique not in the cover determined so
far that covers all nodes in LB in the optimal solution. Suppose there exists a set of 2 or more distinct
new bicliques that covers all the nodes in the set LB obtained after the end of Step 3. Notice that by
Lemma 14 there is set S ⊆ L of size |S| ≤ f such that only one of the two bicliques covers all nodes
in S. S respects the condition of the while, so we would not have exited the loop of Step 2 giving a
contradiction. Hence, at the end of Step 2, there is a unique new biclique B, such that all nodes in LB
belong to the biclique.

Hence, it follows that all left nodes of biclique B are found in Step 3, (they intersect because of
biclique B, and the loop greedily adds all nodes that intersect).

Finally, during Step 4, it is clear that we construct a biclique B that covers all the edges covered
by the biclique in the optimal solution with left side given by LB. So there is an optimal solution that
contains the biclique B computed.

Time Complexity

Notice that the outer loop can be executed only O(k) times (once for each biclique found). In Step
2, the loop is executed at most O(n) times and requires at most O(|L| f ) calls to I each of cost O(|E|)
for a total of O(|L| f+1|E|). Step 3 requires O(|L|) calls to I for a total of O(L|E|). Finally, Step 4 costs
O(|E|). The total cost is O(k|L| f+1|E|).

The correctness of Theorem 4 follows from the previous results.

4.2. Approximate Biclique Cover

In this section, we show that for any constants in p̄ subject only to 0 < pi < 1 for i ∈ [k] we can
construct an approximate solution to the problem.

Theorem 6. Let G = (L, R, E) be the graph obtained by the ( f , p̄, k)-biclique cover model, such that |R| ≥
Ω(log(|L|)). There exists a O((|L|+ |R|)α f ,pm ,pM ) time algorithm where α f ,pm ,pM is a constant depending
only on f , pm, pM but not on the size of the graph, such that, given G, f , k, and pm the algorithm outputs 1) a
set of k′ = O(log(|L|+ |R|)k) bicliques covering all edges of G; and 2) a set of k bicliques covering (1− 1

e )|E|
edges of G.

Before entering into the details of the proof, we present the main idea of the algorithm, which is
the following. There exists a constant c f ,pm ,pM depending on f , pm, pM such that if we sample u.a.r.
a set S ⊆ R of size |S| = c f ,pm ,pM log(|L|) we have that for each factor i ∈ [k] there is a set Si ⊆ S
such that |Si| ≥ c′ log(|L|) for some constant c′ < c f ,pm ,pM and all nodes in Si belong to the factor i.
Moreover, it is possible to show that the set of common neighbors of Si in L is, w.h.p., exactly the set of
nodes Li. Given such set Si, we can reconstruct the biclique Bi that covers all nodes with factor i. Now,
we can list all subsets S′ ⊆ S of size ≤ c′ log(|L|) in polynomial time and construct a single candidate
biclique B′ from each subset S′. We have that k of these bicliques cover all edges of G, so we can cast
the problem as a maximum coverage problem and find a set of k bicliques covering (1− 1

e )|E| edges
or as a set cover problem and find a set of log(|E|)k bicliques covering all edges.

Algorithm

We now outline the algorithm (Algorithm 3). Suppose we are given a bipartite graph G = (L, R, E)
obtained by the ( f , p̄, k)-biclique cover model.
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Algorithm 3 ApproxCoverOneSideRandom(G = (L, R, E), f , pm, pM, k)

Let

c̄ = max
(

16p−1
m , 2p−1

m log(1−(1−pM) f )−1(3)
)

Sample a set S ⊆ R of c̄ log(|L|) nodes u.a.r. from R (without replacement).
Let C ← ∅
for Each subset S′ ⊆ S do

Let L′ ← ⋂
v∈S′ N(v).

Let S′′ ← ⋂
v∈L′ N(v).

Let B be the set of the edges covered by biclique (L′, S′′).
C ← C ∪ B.

end for
Apply the greedy max coverage (or set cover) algorithm using C as the input sets and E as the

universe set to cover.

Let pm = mini pi and pM = maxi pi. Let c̄ be a constant to be determined subsequently.
The algorithm first samples a subset S of R by selecting c log(|L|) u.a.r. nodes in R without replacement.
In the next lemma, we show that, for each biclique Bi (in the cover defining the model), we have a
large number of nodes in S covered by that biclique.

Lemma 15. Suppose for c̄ ≥ 16p−1
m a set of S of c̄ log(|L|) nodes is drawn u.a.r. without replacement.

No biclique i ∈ [k], Bi = (Li, Ri) of the model is such that |Ri ∩ S| < 1
2 c̄pm log(|L|) with probability at least

1− 1
|L| .

Proof. Consider a single biclique Bt, t ∈ [k]. Let Xi be an indicator random variable of the event that

the i-th node drawn in S is covered by B in the cover of the model. Let X = ∑
c̄ log(|L|)
i=1 Xi. Notice that

as nodes in R are assigned to biclique Bt independently with probability pt, and the sampling
without replacement maintains the independence, we have E [X] = c̄ log(|L|)pt ≥ c̄ log(|L|)pm and by
Chernoff bound

Pr
(

X <
1
2

c̄ log(|L|)pm

)
≤ exp(−1

8
c̄pm log(|L|)).

For c̄ ≥ 16p−1
m , we have

Pr
(

X <
1
2

c̄ log(|L|)pm

)
≤ |L|−2,

and hence by union bound as k ≤ |L| with probability ≥ 1− 1
|L| no biclique appears in less than

1
2 c̄ log(|L|)pm nodes in S.

Then, we show that if a subset S′ ⊆ S ⊆ R of size > c′ log(n), where c′ is a constant, is such that
all nodes of S′ belong to biclique Bi then no node v ∈ L is connected to all nodes in S′, w.h.p, unless it
belongs to the same biclique.

Lemma 16. Suppose c′ ≥ log(1−(1−pM) f )−1(3). Fix a set S′ ⊆ S of size c′ log(|L|) of nodes in R. Suppose that
all nodes in S are such that they all belong to biclique Bt = (Lt, Rt) in the cover defining the model, then⋂

v∈S′
N(v) = Lt,

with probability ≥ 1− 1
|L|2 .

Proof. Notice that Lt ⊆
⋂

v∈S′ N(v), as all nodes in Lt are connected to nodes in S′ by definition.
We prove that a given node v ∈ L \ Lt is connected to all nodes in S′ with probability ≤ 1

|L|3 .
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Notice that all bicliques are assigned to nodes in R independently. So consider a node u ∈ L such that
Bt /∈ F(u).

Pr
(

u ∈ ⋂
v∈S′

N(v)
)

= ∏
v∈S′

Pr (F(u) ∩ F(v) 6= ∅)

= ∏
v∈S′

(1− Pr (F(u) ∩ F(v) = ∅))

= ∏
v∈S′

(
1− ∏

Bt∈F(u)
(1− pt)

)
≤ ∏

v∈S′

(
1− (1− pM) f )

)
≤

(
1− (1− pM) f )

)c′ log(|L|)

≤ |L|−3

(2)

By union bound on the n nodes in L, the result follows.

Now, we fix a constant c̄ such that 1
2 c̄pm ≥ log(1−(1−pM) f )−1(3) and such that the requirement of

Lemma 15 is satisfied.
It is easy to see that for all i ∈ k the bicliques in the optimal cover there is a set S′i ⊂ S that by

Lemma 16 w.h.p. is such that for L′i =
⋂

v∈S′i
N(v), S′′i =

⋂
v∈L′i

N(v), the biclique (L′i, S′′i ) covers more
edges than the i-th biclique in the cover defining the model, w.h.p.

Notice that we can obtain all subsets S′ ⊆ S in polynomial time O(2c̄ log(|L|)) = O(|L|c̄).
The correctness of Algorithm 3 follows from the fact that the set C contains w.h.p. each biclique

from the cover defining the model, and the set C has size O(|L| + |E|)α f ,pm ,pM ) for some constant
α f ,pm ,pM depending on f , pm, pM but not on the size of the graph or the number of bicliques.

5. Conclusions

We have studied two natural restrictions to the well-known problem of biclique cover in bipartite
graphs that are motivated by practical applications in computational biology and other fields. For these
restrictions, we have shown some non-trivial optimal or approximation algorithms which run in
polynomial time.

As a future work, it would be interesting to determine whether ( f , k)-biclique cover is
NP-Complete for 2 ≤ f ≤ 4 and to determine inapproximability results for general values of f .
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