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Abstract: This paper presents a second order P-type iterative learning control (ILC) scheme with initial
state learning for a class of fractional order linear distributed parameter systems. First, by analyzing
the control and learning processes, a discrete system for P-type ILC is established, and the ILC
design problem is then converted to a stability problem for such a discrete system. Next, a sufficient
condition for the convergence of the control input and the tracking errors is obtained by introducing a
new norm and using the generalized Gronwall inequality, which is less conservative than the existing
one. Finally, the validity of the proposed method is verified by a numerical example.

Keywords: iterative learning control (ILC); fractional order; distributed parameter system;
generalized gronwall inequality

1. Introduction

Iterative learning control (ILC) is an effective technique for improving the performance of systems
that operate repetitively over a fixed time interval [1–4]. The fundamental idea in ILC is that the
task to be carried out by the system is of a repetitive nature. By using such a repetitive nature, it is
possible to adjust the input signal such that the output signal follows the reference signal as closely as
possible. Owing to its simplicity and effectiveness, ILC is playing an important role in many areas and
applications [5–7].

Distributed parameter systems are a class of complicated infinite-dimensional systems,
whose states depend on both spatial position and time [8–11]. In recent years, the application of
ILC to distributed parameter systems has become a new topic [12–15]. In [12], an open-loop P-type
iterative learning controller was designed for the first order hyperbolic distributed parameter system.
The P-type and D-type ILC algorithms were studied in [13] for a class of parabolic distributed parameter
systems. For a class of single-input single-output coupling nonlinear distributed parameter systems,
a P-type learning controller was designed, and the convergence conditions, speed and robustness of the
iterative learning algorithm were also discussed in [14]. For uncertain nonlinear distributed parameter
systems and state time-delay distributed parameter systems, the P-type ILC was investigated in [15,16],
respectively. A D-type anticipatory ILC scheme was applied to the boundary control of a class of
inhomogeneous heat equations in [17]. In [18], a framework in the frequency domain of ILC was
designed for linear inhomogeneous distributed parameter systems. By using the Gronwall–Bellman
inequality, a close-loop P-type iterative learning algorithm is proposed for linear parabolic distributed
parameter systems in [19]. In addition, based on the eigenspectrum and reduced order model, the ILC
was proposed for a class of parabolic distributed parameter systems in [20].

Note that the above existing ILC methods for distributed parameter systems only focus on the
lower order ILC. That is, to update the input profile, the learning algorithms use only the information
from the last cycle. As we all known, the higher order learning algorithm incorporates the information
not only from the last cycle, which can lead to better performance in terms of both robustness and
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convergence rate [21–23]. In [24], for a class of parabolic linear distributed parameter systems with
uncertainty coefficients, an ILC algorithm with a forgetting factor was proposed, and the conditions
for the convergence of the algorithm were established.

On the other hand, in recent years, fractional order control systems have attracted increasing
interest. It was found that many systems in interdisciplinary fields could be elegantly described with
the help of fractional derivatives and integrals, such as viscoelastic systems, dielectric polarization,
electrode-electrolyte polarization and electromagnetic waves [25–27]. In [28], a fractional order
distributed parameter system was used to describe radial ground water flow. The existence and
uniqueness of mild and classical solutions for a class of distributed order fractional differential equations
had been studied in [29]. By using the differential inequality method, some sufficient conditions for the
oscillation of solutions for partial fractional differential equations were presented in [30]. A fundamental
solution of a fractional order distributed parameter system was presented in [31]. The numerical
solutions of such systems were proposed in the literature by means of finite difference methods [32],
spectral collocation methods and others [33,34]. However, it is worth pointing out that up to now,
there is no concern about ILC for fractional order distributed parameter systems.

The purpose of this paper is to present a second order P-type ILC algorithm with initial state
learning for fractional order linear distributed parameter systems. The main contributions of this
paper are as follows. (1) By analyzing the control and learning processes, the second order P-type ILC
design problem for fractional order linear distributed parameter systems is converted to a stability
problem for a discrete system. (2) Using the generalized Gronwall inequality, the control input and the
tracking errors convergence analysis are given in detail. The obtained convergence condition is less
conservative than some existing ones in recent literature in the case of integral order. (3) The proposed
design method can be extended to ILC for fractional order parabolic distributed parameter systems
involving time-delay, locally Lipschitz, as well as bounded external disturbance.

The rest of this paper is organized as follows: In Section 2, the problem formulation and some
preliminaries are presented. The convergence analysis for the second order p-type ILC algorithm is
derived in Section 3. Section 4 presents a numerical example that demonstrates the effectiveness of the
method. Finally, some conclusions are drawn in Section 5.

2. Preliminaries and Problem Statement

In this section, some basic definitions and properties (for more details, see [25]) are first introduced,
which will be used in the following sections.

Definition 1 ([25]). The definition of the Liouville fractional integral is described by:

t0 Iα
t f (t) =

1
Γ(α)

∫ t

t0

(t− τ)α−1 f (τ)dτ, α > 0,

where Γ(·) is the well-known Gamma function, which is defined by Γ(z) =
∫ ∞

0 e−ztz−1dt.

Definition 2 ([25]). The Caputo derivative is defined by:

C
t0
Dα

t f (t) =
1

Γ(n− α)

∫ t

t0

(t− τ)−α+n−1 f (n)(τ)dτ,

where n is the first integer, which is not less than α, i.e., α ∈ [n− 1, n).

In the following, for simplicity, we denote the fractional integral t0 Iα
t by Iα and the Caputo

derivative C
t0
Dα

t by Dα
t , respectively.
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Definition 3 ([25]). The two-parameter Mittag–Leffler function is defined by:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0.

For β = 1, Eα,β(z) = Eα(z). Especially, E1,1(z) = ez.

To proceed with the discussion of the main results, the following lemmas are given.

Lemma 1 ([25]). From the definition of the Caputo derivative, when 0 < α ≤ 1, we have:

Iα
t (Dα

t (x(t)) = x(t)− x(t0).

Lemma 2 ([35]). Let x(t) ∈ Rn be a vector of a differentiable function. Then, for any time instant t ≥ t0,
the following relationship holds:

1
2
Dα

t

(
xT(t)Px(t)

)
≤ xT(t)PDα

t x(t), ∀ α ∈ (0, 1],

where P ∈ Rn×n is a constant, square, symmetric and positive definite matrix.

Lemma 3 ([25]). The fractional order differentiation or integral of the Mittag–Leffler function is:

t0D
ρ
t [t

β−1Eα,β(λtα)] = tβ−ρ−1Eα,β−ρ(λtα),

where ρ < β.

Lemma 4 (Generalized Gronwall inequality [36]). Suppose α > 0, a(t) is a nonnegative, nondecreasing function
locally integrable on 0 ≤ t ≤ T(some T ≤ +∞) and g(t) is a nonnegative, nondecreasing continuous function
defined on 0 ≤ t ≤ T, g(t) ≤ M(constant), and suppose u(t) is nonnegative and locally integrable on
0 ≤ t ≤ T with:

u(t) ≤ a(t) + g(t)
∫ t

0
(t− s)α−1u(s)ds,

on the interval. Then:

u(t) ≤ a(t)Eα(g(t)Γ(α)tα).

In this paper, we consider a class of fractional order linear distributed parameter systems with
repetitive operation characteristics as follows:

Dα
t qk(x, t) = D4qk(x, t) + A(t)qk(x, t),

+ B(t)uk(x, t),
yk(x, t) = C(t)qk(x, t) + G(t)uk(x, t),

(1)

where subscript k denotes the iterative number of the process; x and t respectively denote space
and time variables, (x, t) ∈ Ω × [0, T]; Ω is a bounded open subset with smooth boundary ∂Ω;
qk(·, ·) ∈ Rn, uk(·, ·) ∈ Ru, yk(·, ·) ∈ Ry are the state vector, input vector and output vector of the
system, respectively. The time-varying matrices A(t), B(t), C(t), G(t) with appropriate dimensions
are assumed to be bounded and square integrable on [0, T]. D is a bounded positive constant diagonal
matrix, i.e., D = diag{d1, d2, · · · , dn}. 0 < pi ≤ di < ∞(i = 1, 2, · · · , n), and pi are known, and
∆ = ∑m

j=1
∂2

∂x2
j

is a Laplace operator on Ω.
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Remark 1. When the fractional order α = 1, the fractional order distributed parameter System (1) is reduced to
an integral order one, which has been widely investigated in [11,16–19].

The corresponding initial and boundary conditions of System (1) are:

αqk(x, t) + β
∂qk(x, t)

∂ν
= 0, (2)

qk(x, 0) = qk0(x), x ∈ Ω. (3)

where (x, t) ∈ ∂Ω× [0, T], ∂
∂ν is the unit outward normal derivative on ∂Ω and α and β are known

constant diagonal matrices, satisfying:

α = diag{α1, α2, · · · , αn}, (4)

β = diag{β1, β2, · · · , βn}, (5)

αi, βi ≥ 0, i = 1, 2, · · · , n. (6)

The design objective in this paper is to find an iterative learning control law to generate the
control input uk(x, t) such that the system output yk(x, t) tracks the desired output trajectory yd(x, t)
as accurately as possible when k goes to infinity for all (x, t) ∈ Ω× [0, T].

To this end, the updating law considered in this manuscript is a second order P-type ILC updating
law given by: 

uk+1(x, t) = γuk(x, t) + (1− γ)uk−1(x, t)
+ Λek(x, t) + Γek+1(x, t),

qk+1(x, 0) = qk(x, 0) + Lek+1(x, 0),
(7)

where ek(x, t) = yd(x, t)− yk(x, t) denotes the tracking error, u0(x, t), u1(x, t) are two initial inputs,
0 < γ < 1 is a constant and Λ, Γ and L are unknown parameters to be determined.

Remark 2. The identical initial condition is commonly used in ILC. As pointed out in [37], it will limit the
application of ILC. Many modified strategies have been used to avoid this restriction. Borrowed from [37,38],
we designed a P-type ILC updating law (7) with initial state learning where the strict identical initial condition
is not required.

Throughout, this paper, Rn denotes an n-dimensional Euclidean space, and I means an identity
matrix of appropriate order. For the n-dimensional vector W = (w1, w2, · · · , wn)T , its two-norm

for the n-dimensional vector w = (w1, w2, · · · , wn) is defined as ‖w‖ =
√

∑n
i=1 w2

i , and the

spectrum norm of the n× n order square matrix A is ‖A‖ =
√

λmax(AT A), where λmax represents the
maximum eigenvalue. ρ(A) denotes the spectral radius of matrix A. Let L2(Ω) be the Hilbert
space. If Qi ∈ L2(Ω)(i = 1, 2, · · · , n), we define Q = (Q1, Q2, · · · , Qn) ∈ Rn ⋂ L2(Ω),
then ‖Q‖L2 = {

∫
Ω(Q(x)TQ(x))dx} 1

2 .
For the function f (x, t) : Ω× [0, T]→ Rn, f (x, t) ∈ Rn ⋂ L2(Ω), t ∈ [0, T], we define the norm of

(L2, λ) as:

‖ f ‖(L2, λ) = sup
t∈[0, T]

{e−λt‖ f ‖2
L2}, λ > 0.

For the function sequence fk(x, t) : Ω× [0, T] → Rn, k ∈ {1, 2, · · · }, the norm of (L2, λ, ξ) is
defined as:

‖ fk‖(L2,λ, ξ) = sup
t∈[0, T]

{e−λt‖ fk‖L2 ξk}, λ > 0.
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3. Convergence Analysis for Second Order P-Type ILC

To obtain the main results, some useful lemmas are introduced.

Lemma 5 (Greens formula [39]). Let u, v ∈ c2(Ω), then:∫
Ω
5u · 5vdx = −

∫
Ω

u4 vdx +
∫

∂Ω

∂v
∂ν

uds,

where ∂
∂ν is the unit outward normal derivative on ∂Ω.

For fractional order linear distribute parameter System (1) with the P-type ILC updating law (7),
we first give the following lemmas.

Lemma 6. Let δuk(x, t) = uk(x, t)− uk−1(x, t), δqk(x, t) = qk(x, t)− qk−1(x, t), and:

Qk(x, t) =

[
ek(x, t)

δuk(x, t)

]
,

Π =

(
G11 G12

Λ + ΓG11 (γ− 1)I + ΓG12

)
,

Fk(x, t) =

[
F1δqk+1(x, t)

ΓF1δqk+1(x, t)

]
,

where:

G11 = (I + G(t)Γ)−1(I − G(t)Λ),

G12 = (I + G(t)Γ)−1(1− γ)G(t),

F1 = −(I + G(t)Γ)−1C(t),

then

Qk+1(x, t) = ΠQk(x, t) + Fk(x, t), k ≥ 1. (8)

Proof. It follows from (7) that:

δuk+1(x, t) = (γ− 1)δuk(x, t)

+ Λek(x, t) + Γek+1(x, t). (9)

Since ek+1(x, t)− ek(x, t) = −(yk+1(x, t)− yk(x, t)), then from (1), it can be obtained that:

ek+1(x, t)− ek(x, t)

= −C(t)δqk+1(x, t)− G(t)δuk+1(x, t). (10)

From (9) and (10), by some calculation, it can be obtained that:[
ek+1(x, t)

δuk+1(x, t)

]
= Π

[
ek(x, t)

δuk(x, t)

]
+ Fk(x, t).

The proof is complete.

Based on Lemma 6, it is not difficult to prove the following lemma.
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Lemma 7. For fractional order linear distribute parameter System (1), if:

ρ(Ξ) < 1, (11)

where:

Ξ =

(
Ξ11 Ξ12

Λ + ΓΞ11 (γ− 1)I + ΓΞ12

)
,

Ξ11 = [I + G(0)Γ]−1[I − G(0)Λ− C(0)L],

Ξ12 = [I + G(0)Γ]−1(1− γ)G(0),

then for all x ∈ Ω, the second order P-type ILC updating law (7) guarantees that:

lim
k→∞
‖Qk(x, 0)‖2

L2 = 0. (12)

Proof. According to Lemma 6, we have:[
ek+1(x, 0)

δuk+1(x, 0)

]
= Π̄

[
ek(x, 0)

δuk(x, 0)

]
+ F̄k(x, 0), (13)

where:

Π̄ =

(
Ḡ11 Ḡ12

Λ + ΓḠ11 (γ− 1)I + ΓḠ12

)
,

F̄k(x, 0) =

[
F1δqk+1(x, 0)

ΓF1δqk+1(x, 0)

]
,

Ḡ11 = (I + G(0)Γ)−1(I − G(0)Λ),

Ḡ12 = (I + G(0)Γ)−1(1− γ)G(0),

F̄1 = −(I + G(0)Γ)−1C(0),

From (7), we know that:
δqk+1(x, 0) = Lek(x, 0). (14)

Substituting (14) into (13) gives:[
ek+1(x, 0)

δuk+1(x, 0)

]
= Ξ

[
ek(x, 0)

δuk(x, 0)

]
. (15)

Therefore, according to the contracting mapping principle, we have:

lim
k→∞
‖Qk(x, 0)‖2

L2 = 0. (16)

The proof is complete.

From Lemma 6, it can be see that the design problem of a second order P-type ILC updating
law (7) for fractional order linear distributed parameter System (1) is equivalent to the stability problem
of the discrete System (8).
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Lemma 8. Denote that:

M1 = ‖ F1 ‖ + ‖ ΓF1‖, M2 = |γ− 1|+ ‖Λ‖,
M3 = ‖G11‖+ ‖G12‖,
C1 = ‖B(t)‖ · (M2 + M3‖Γ‖),
C2 = ‖B(t)‖ · ‖Γ‖ · ‖F1‖, h = 2‖A(t)‖+ ‖B(t)‖.

If an appropriate constant λ is chosen such that λα > Eα(hTα)C2, then:

‖ Fk(x, t) ‖(L2,λ,ξ)

≤ λαEα(hTα)M1
λα−Eα(hTα)C2

‖Lek(x, 0)‖2
L2

+ Eα(hTα)C1 M1
λα−Eα(hTα)C2

· ‖Qk(x, t)‖(L2,λ,ξ).

(17)

Proof. It follows the definition of Fk(x, t) and the assumptions that:

‖ Fk(x, t) ‖L2

≤ (‖ F1 ‖ + ‖ ΓF1‖) · ‖δqk+1(x, t)‖L2

= M1‖δqk+1(x, t)‖L2 .

(18)

From (1), we have:
Dα

t δqk(x, t) = D4δqk(x, t) + A(t)δqk(x, t)

+ B(t)δuk(x, t).
(19)

Note that:
Dα

t (‖δqk(x, t)‖2
L2)

=
∫

ΩD
α
t

(
δqT

k (x, t)δqk(x, t)
)

dx

≤ 2
∫

Ω δqT
k (x, t)Dα

t δqk(x, t)dx

= 2
∫

Ω δqT
k (x, t)D4δqk(x, t)dx

+
∫

Ω δqT
k (x, t)(AT(t) + A(t))δqk(x, t)dx

+ 2
∫

Ω δqT
k (x, t)B(t)δuk(x, t)dx

:= I1 + I2 + I3.

(20)

Then, using the Green formula and the boundary condition (2) to I1, we have:

I1 = 2
n

∑
i=1

di

∫
Ω

δqT
ki(x, t)4δqki(x, t)dx

= 2
n

∑
i=1

di

∫
Ω

δqT
ki(x, t)

∂δqki(x, t)
∂ν

dx

− 2
n

∑
i=1

di

∫
Ω
∇qT

ki(x, t)∇qki(x, t)dx (21)

= 2
n

∑
i=1

di

∫
Ω

δqT
ki(x, t)(− αi

βi
δqki(x, t))dx

− 2
n

∑
i=1

di

∫
Ω
∇qT

ki(x, t)∇qki(x, t)dx

≤ 0.
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Clearly,
I2 ≤ 2 ‖ A(t) ‖

∫
Ω δqT

k (x, t)δqk(x, t)dx

= 2 ‖ A(t) ‖ ·‖δqk(x, t)‖2
L2 .

(22)

Using the Hölder inequality of I3, we get:

I3 ≤‖ B(t)‖δqk(x, t)‖2
L2

+ ‖ B(t)‖δuk(x, t)‖2
L2 .

(23)

Therefore, from (20) to (23), we obtain:

Dα
t (‖δqk(x, t)‖2

L2)

≤ (2 ‖ A(t) ‖ +‖B(t)‖)δqk(x, t)‖2
L2

+ ‖ B(t)‖δuk(x, t)‖2
L2 .

(24)

Integrating both sides of (24) above t, we can get:

‖δqk(x, t)‖2
L2

≤ ‖δqk(x, 0)‖2
L2

+ g
Γ(α)

∫ t
0 (t− s)α−1‖δuk(x, s)‖2

L2 ds

+ h
Γ(α)

∫ t
0 (t− s)α−1 ‖ δqk(x, s)‖2

L2 ds,

≤ ‖δqk(x, 0)‖2
L2

+ g
Γ(α)

∫ t
0 (t− s)α−1eλsds‖δuk(x, s)‖2

(L2,λ)

+ h
Γ(α)

∫ t
0 (t− s)α−1 ‖ δqk(x, s)‖2

L2 ds

(25)

where g = ‖B(t)‖, h = 2 ‖ A(t) ‖ +‖B(t)‖. Following from Lemma 3 and the definition of the
Mittag–Leffler function that for λ > 0, we have:

dtαE1,1+α(λt)
dt

= tα−1E1,α(λt) > 0.

As a result,

g
Γ(α)

∫ t

0
(t− s)α−1eλsds = gtαE1,1+α(λt)

is an increasing function.
Using the generalized Gronwall inequality of Inequality (25), it results:

‖δqk(x, t)‖2
L2

≤
(
‖δqk(x, 0)‖2

L2

+ g
Γ(α)

∫ t
0 (t− s)α−1eλsds‖δuk(x, s)‖2

(L2,λ)

)
× Eα(htα).

(26)
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Furthermore, it can be easily proven that:∫ t
0 (t− s)α−1eλsds

=
∫ t

0
wα−1eλ(t−w)dw

= eλt ∫ t
0 wα−1e−λwdw

=
eλt

λα

∫ λt

0
sα−1e−sds <

eλt

λα
Γ(α).

(27)

Substituting it into Inequality (26), one has:

‖δqk(x, t)‖2
L2

≤
(
‖δqk(x, 0)‖2

L2 (28)

+
geλt

λα
‖δuk(x, s)‖2

(L2,λ)

)
× Eα(htα).

Multiplying both sides of the above inequality by e−λt, one has:

‖δqk(x, t)‖2
L2 e−λt

≤ e−λt‖δqk(x, 0)‖2
L2 × Eα(hTα)

+ g
λα ‖δuk(x, s)‖2

(L2,λ) × Eα(hTα)

≤ ‖δqk(x, 0)‖2
L2 × Eα(hTα)

+ g
λα ‖δuk(x, s)‖2

(L2,λ) × Eα(hTα).

(29)

It follows from (7), and we have ‖δqk(x, 0)‖2
L2 ≤ ‖Lek(x, 0)‖2

L2 . By substituting it into (29), we
can obtain:

‖δqk+1(x, t)‖(L2,λ)

≤ Eα(hTα)× ‖Lek(x, 0)‖2
L2

+ g
λα × Eα(hTα)‖δuk+1(x, t)‖(L2,λ).

(30)

On the other hand, it follows from (9) that:

‖ δuk+(x, t)‖(L2,λ)

≤ |(γ− 1)||∆uk(x, t)|(L2,λ) + ‖Λ‖‖ek(x, t)‖(L2,λ)

+ ‖Γ‖ · ‖ek+1(x, t)‖(L2,λ) (31)

≤ M2‖Qk(x, t)‖(L2,λ)

+ ‖Γ‖ · ‖ek+1(x, t)‖(L2,λ),

where M2 = |(γ− 1)|+ ‖Λ‖.
According to (8), we have:

‖ek+1(x, t)‖(L2,λ)

≤ ‖G11‖|∆ek(x, t)|(L2,λ) + ‖G12‖‖δuk(x, t)‖(L2,λ)

+ ‖F1‖ · ‖δqk+1(x, t)‖(L2,λ)

≤ M3‖Qk(x, t)‖(L2,λ)

+ ‖F1‖ · ‖δqk+1(x, t)‖(L2,λ),

(32)
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where M3 = ‖G11‖+ ‖G12‖. As a result, we obtain from (30) to (32) that:

‖δqk+1(x, t)‖(L2,λ)

≤ Eα(hTα)× ‖Lek(x, 0)‖2
L2

+ g
λα Eα(hTα)(M2 + M3‖Γ‖) · ‖Qk(x, t)‖(L2,λ)

+ Eα(hTα) g‖Γ‖·‖F1‖
λα ‖δqk+1(x, t)‖(L2,λ).

(33)

Thus, by defining g(M2 + M3‖Γ‖) = C1, g‖Γ‖ · ‖F1‖ = C2 and selecting a sufficiently large λ

such that λα > Eα(hTα)C2, we can get:

‖δqk+1(x, t)‖(L2,λ)

≤ λαEα(hTα)

λα − Eα(hTα)C2
‖Lek(x, 0)‖2

L2 (34)

+
Eα(hTα)C1

λα − Eα(hTα)C2
· ‖Qk(x, t)‖(L2,λ).

By applying the (L2, λ)-norm and substituting the above equality into (18), we can obtain:

‖ Fk(x, t) ‖(L2,λ)

≤ λαEα(hTα)M1
λα−Eα(hTα)C2

‖Lek(x, 0)‖2
L2

+ Eα(hTα)C1 M1
λα−Eα(hTα)C2

· ‖Qk(x, t)‖(L2,λ).

(35)

Furthermore, applying the (L2, λ, ξ)-norm to Inequality (35), it yields (17), which completes
the proof.

In the following, based on Lemmas 6 to 8, a convergent condition for both tracking errors and
control input is derived for fractional order linear distributed parameter System (1).

Theorem 1. For fractional order linear distributed parameter System (1) and a given reference yd(x, t),
suppose that the condition in Lemma 7 is satisfied. If:

ρ(Π) ≤ ρ0 < 1, (36)

where Π is the same as in Lemma 6, then for all (x, t) ∈ Ω× [0, T], the second order P-type ILC updating
law (7) guarantees that:

lim
k→∞
‖ek(x, t)‖L2 = 0. (37)

Proof. It follows from (8) for k > 1 that:

Qk(x, t) = Πk−1Q1(x, t) +
k−1

∑
i=1

Πk−i−1Fi(x, t). (38)

Therefore,
‖Qk(x, t)‖L2

≤ {ρ(Π)}k−1‖Q1(x, t)‖L2

+ ∑k−1
i=1 {ρ(Π)}k−i−1‖Fi(x, t)‖L2 .

(39)



Algorithms 2018, 11, 85 11 of 20

Noting that ρ(Π) ≤ ρ0 < 1 by assumption, then there exists a constant ξ > 1, ρ0ξ < 1, and a
sufficiently large λ such that λα > Eα(hTα)C2, and:

0 < γ =
ξ

1− ρ0ξ
· Eα(hTα)C1M1

λα − Eα(hTα)C2
< 1. (40)

For the above λ and ξ, multiplying both sides of Inequality (39) by e−λtξk and taking the
(L2, λ, ξ)-norm, it yields:

(‖ Qk(x, t) ‖L2 ξk)e−λt

≤ ρk−1
0 ξk ‖ Q1(x, t) ‖L2 e−λt

+ ∑k−1
i=1 ρk−i−1

0 ξk‖Fi(t)‖L2 e−λt

≤ (ρ0ξ)kρ−1
0 ‖ Q1(x, t)) ‖L2 e−λt

+ ∑k−1
i=1 (ρ0ξ)k−i−1ξ(‖Fi(t)‖L2 ξ i)e−λt

≤ ρ−1
0 ‖ Q1(x, t) ‖(L2,λ)

+ ξ
1−ρ0ξ sup

1≤i≤k
‖Fi(t)‖(L2,λ,ξ)

(41)

It follows from (17) and (41), and we have:

‖ Qk(x, t) ‖(L2,λ,ξ)

≤ ρ−1
0 ‖ Q1(x, t) ‖(L2,λ)

+ γ sup
1≤i≤k

‖Qi(x, t)‖(L2,λ,ξ)

+ ξ
1−ρ0ξ ·

λαEα(hTα)M1
λα−Eα(hTα)C2

‖L‖E0,

(42)

where E0 = sup1≤i≤k−1 ‖ek(x, 0)‖2
L2 . Therefore,

sup
1≤i≤k

‖Qi(x, t)‖(L2,λ, ξ)

≤ ρ−1
0 ‖ Q1(x, t) ‖(L2,λ)

+ γ sup
1≤i≤k

‖Qi(x, t)‖(L2,λ,ξ)

+ ξ
1−ρ0ξ ·

λαEα(hTα)M1
λα−Eα(hTα)C2

‖L‖E0.

(43)

It can be obtained that,
sup

1≤i≤k
‖Qi(x, t)‖(L2,λ, ξ)

≤ ρ−1
0

1−γ ‖ Q1(x, t) ‖(L2,λ)

+ ξ‖L‖E0
(1−ρ0ξ)(1−γ)

· λαEα(hTα)M1
λα−Eα(hTα)C2

.

(44)

Note that:
‖ Qk(x, t) ‖L2

= ξ−keλt(‖ Qk(x, t) ‖L2 ξk)e−λt

≤ ξ−keλt sup
1≤i≤k

‖Qi(x, t)‖(L2,λ, ξ).
(45)
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Consequently, one obtains from (44) and (45) that:

‖ Qk(x, t) ‖L2

≤ ρ−1
0 eλT

(1−γ)ξk ‖ Q1(x, t) ‖(L2,λ)

+ ξ‖L‖E0eλT

ξk(1−ρ0ξ)(1−γ)

× λαEα(hTα)M1
λα−Eα(hTα)C2

.

(46)

Note that the condition in Lemma 7 is satisfied. Theretofore, E0 is convergent and bounded.
Besides, r < 1, ξ > 1, it follows from (46) that:

lim
k→∞

‖ Qk(x, t) ‖L2= 0. (47)

Thus, for all (x, t) ∈ Ω× [0, T], k = 1, 2, . . . , we have:

lim
k→∞

‖ ek(x, t) ‖L2= 0. (48)

The proof is complete.

In particular, we have the following corollary.

Corollary 1. For fractional order linear distributed parameter System (1) and a given reference yd(x, t), if:

ρ{(I + G(0)Γ)−1(I − G(0)Λ− C(0)L)} < 1, (49)

and:

ρ{(I + G(t)Γ)−1(I − G(t)Λ)} < 1, (50)

then for all (x, t) ∈ Ω× [0, T], the following P-type ILC updating law:{
uk+1(x, t) = uk(x, t) + Λek(x, t) + Γek+1(x, t),
qk+1(x, 0) = qk(x, 0) + Lek(x, 0),

(51)

guarantees that:
lim
k→∞
‖ek(x, t)‖L2 = 0. (52)

Proof. Setting γ = 1, from Theorem 1, it can be concluded that if:

ρ(Ξ1) < 1, (53)

where:

Ξ1 =

(
Ξ11 0

Λ + ΓΞ11 0

)
,

Ξ11 = [I + G(0)Γ]−1[I − G(0)Λ− C(0)L],

and:

ρ(Π1) = ρ

(
G11 0

Λ + ΓG11 0

)
< 1, (54)
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where G11 = (I + G(t)Γ)−1(I − G(t)Λ), then the P-type ILC updating law (51) guarantees that
limk→∞ ‖ek(x, t)‖L2 = 0.

Noting that:

det(Ξ1) =

∣∣∣∣∣ λI − Ξ11 0
−Λ− ΓΞ11 λI

∣∣∣∣∣ ,

and:

det(Π1) =

∣∣∣∣∣ λI − G11 0
−Λ− ΓG11 λI

∣∣∣∣∣ ,

it follows from the definition of the spectral radius that:

ρ(Ξ1) = ρ(Π1), ρ(Π1) = ρ(G11).

The proof is completed.

The following corollary is obvious.

Corollary 2. For fractional order linear distributed parameter System (1) and a given reference yd(x, t), if:

ρ{(I + G(0)Γ)−1(I − C(0)L)} < 1, (55)

and:

ρ{(I + G(t)Γ)−1} < 1, (56)

then for all (x, t) ∈ Ω× [0, T], the close-loop P-type ILC updating law:{
uk+1(x, t) = uk(x, t) + Γek+1(x, t),
qk+1(x, 0) = qk(x, 0) + Lek(x, 0),

(57)

guarantees that:
lim
k→∞
‖ek(x, t)‖L2 = 0. (58)

From the proof of Theorem 1, it is not difficult to show the following Corollary.

Corollary 3. For fractional order linear distributed parameter System (1) and a given reference yd(x, t),
suppose that in the learning process, the system states start from the same initial value, or more generally,

qk(x, 0) = ϕk(x), x ∈ Ω, k = 0, 1, 2, · · · , (59)

‖ϕk+1(x)− ϕk(x) ‖2
L2≤ lrk, r ∈ [0, 1), l > 0, (60)

if:

ρ{(I + G(t)Γ)−1} < 1, (61)

then for all (x, t) ∈ Ω× [0, T], the close-loop P-type ILC updating law:

uk+1(x, t) = uk(x, t) + Γek+1(x, t), (62)

guarantees that:
lim
k→∞
‖ek(x, t)‖L2 = 0. (63)
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Remark 3. It should be pointed out that the derived result in Corollary 3 is still true for the integral order
(α = 1) case. Note that the convergence analysis of ILC updating law (62) for integer order linear distributed
parameter System (1) has been investigated in [19], in which the convergence condition is:

‖(I + G(t)Γ)−1‖2 ≤ ρ0 <
1
2

. (64)

Since ρ{(I + G(t)Γ)−1} ≤ ‖(I + G(t)Γ)−1‖, the convergence Condition (61) is less conservative than
Condition (64) (see, e.g., the example in Section 4).

4. Numerical Example

In this section, two numerical examples are presented to demonstrate the validity of the
design method.

Consider a tubular flow reactor with a cooling jacket where an irreversible exothermic zeroth
order reaction takes place. The reaction rate is considered to be temperature dependent, then it varies
with time and the location of the reactor. The cooling jacket and feed temperatures are chosen as the
manipulated variables. The thermal spatiotemporal dynamics can be derived from the energy balance
inside the reactor and can be presented as the following distributed parameter systems [40]:

∂T
∂t = k

ρCp
∂2T
∂z2 − u ∂T

∂z

− hAc
ρCp

T + (−∆H)
ρCp

r0e(
−E
RT ),

(65)

where T is the stream temperature inside the reactor, t is time and z ∈ [0, L] denotes the spatial
coordinate, L is the reactor length. The terms k, ρ, Cp, u, (−∆H), r0, E and h are used for thermal
conductivity, density, heat capacity, axial velocity, heat of reaction, pre-exponential reaction constant,
activation energy and the heat transfer coefficient between the reactor and cooling jacket, respectively.
Ac presents the cooling jacket temperature.

In the vicinity of the steady-state working point, nonlinear Model (65) can be linearized as [41]:

∂T(z, t)
∂t

= θ1
∂2T
∂z2 + θ2(t)T(z, t) + θ3(t)U(z, t), (66)

where θ2(t) and θ3(t) vary nonlinearly with temperature during the entire heating process. Define the
measured value of the thermocouple as:

Y(z, t) = θ4(t)T(z, t) + θ5(t)U(z, t). (67)

In order to simplify the example, set the above distributed parameter system with fractional order
α = 0.9 and:

θ1 = I2, θ2(t) =

[
e−2t 0
0 e−3t

]
,

θ3(t) =

[
e−t 0
0.5 e−1.5t

]
,

θ4(t) =

[
0.5 1
0.9 2

]
, θ5(t) =

[
0.98 0
1.80 1.5

]
.

where (z, t) ∈ [0, 1]× [0, 0.8].
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Let the reference be y1d = (1− cos z)t, y2d = sin(2π2t) cos(2πz). For the above system, we apply
the following P-type ILC updating law:

uk+1(z, t) = uk(z, t) + Γek+1(z, t), (68)

where Γ =

[
0.98 0
1.80 1.5

]
. The initial state value is q0(z, 0) = sin z, while the control input value at

the beginning of learning is set to zero.
By some straightforward calculations, we can find:

‖(I + G(t)Γ)−1‖2 = 0.81 > 0.50.

That is, the convergence Condition (64) is not satisfied (Theorem 1 in [19] is invalid). However,

ρ{(I + G(t)Γ)−1} = 0.51 < 1.

From Corollary 3, it can be concluded that the tracking error is convergent.
To simulate the fractional order operator, we use the following expression: [42]

∆αy(k) =
1
hα

L

∑
j=0

(−1)j
(

α

j

)
y(k− j) (69)

where h represents the sampling interval and the number of samples is denoted as k. (α
j) is the notation

of the binomial coefficients. To conserve computing resources, the length of the memory L is set as a
finite recording number [42], usually L = 20. To obtain the numerical solution, we use the two order
explicit center difference scheme, in which the sampling periods are taken as ∆z = 0.1, ∆t = 0.001.

From the viewpoint of viscoelastic theory, the initial history (terminal) should be the state over a
time-interval, not a state at a given time [43,44]. To consider the physically consistent initial conditions,
a simple solution could be obtained by the procedure proposed in [43,45]. To simplify this discussion,
the initial time of setting the integral is zero.

Figures 1 and 2 are the desired curved surfaces. Figures 3 and 4 show the system output of
the ninth iterations. It can be seen that the system output is capable of approaching the desired
trajectory accurately within a few iterations. Figures 5 and 6 are the error surface when iteration
number k = 9. When the number of iterations is nine, the absolute values of the maximum tracking
error are 1.376× 10−4, 1.583× 10−2, respectively. Figure 7 shows the L2-norm of the tracking errors in
each iteration. Thus, Figures 1 to 7 show that the designed ILC is effective.
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Figure 1. The desired output y1d.
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Figure 7. The iterative number-max tracking error.

Let the reference be y1d(t) and the fractional order α ∈ {0.3, 0.6, 0.8, 0.9, 1}. The two-norm of
the tracking errors in each iterations is shown in Figure 8. It can be seen that the fastest tracking speed
happens as α = 0.8.
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Figure 8. The iterative number-max tracking error with different α.

5. Conclusions

In this paper, a second order P-type ILC scheme was applied to fractional order distributed
parameter systems. The convergent condition was derived using the Gronwall inequality, which has
a broader range of applications and is less conservative than some existing ones. The validity of the
proposed design method was demonstrated by a numerical example. Our future work includes ILC
with initial state learning and D-type ILC. Moreover, the high order ILC law will also be included.
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