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Abstract: We present an automatic method based on transfer learning for the identification of dry
age-related macular degeneration (AMD) and diabetic macular edema (DME) from retinal optical
coherence tomography (OCT) images. The algorithm aims to improve the classification performance
of retinal OCT images and shorten the training time. Firstly, we remove the last several layers from
the pre-trained Inception V3 model and regard the remaining part as a fixed feature extractor. Then,
the features are used as input of a convolutional neural network (CNN) designed to learn the feature
space shifts. The experimental results on two different retinal OCT images datasets demonstrate the
effectiveness of the proposed method.

Keywords: optical coherence tomography; image analysis; age-related macular degeneration;
diabetic macular edema; convolutional neural network

1. Introduction

The macula, which is located in the central part of the retina, is the most sensitive area of vision.
Its healthiness can be affected by a number of pathologies such as AMD and DME. As technology
advances, OCT has been extensively used to capture the textural and morphological variations in the
retina [1–3]. The ability to provide cross-sectional images of tissue makes it possible to diagnose AMD
and DME [4–6].

A majority of the previous works on the retina focused on the methods of retinal layer
segmentation [7–22]. During the past decades, a multitude of classification algorithms were proposed
to facilitate the automatic detection of retinal disorders (especially AMD and DME). Liu et al. [23]
proposed a methodology for computing the Local Binary Pattern (LBP) to encode the texture and shape
information in retinal OCT images, and represented images using a multiple-scale spatial pyramid
followed by a principal component analysis for dimension reduction. Sugruk et al. [24] segmented
the OCT images to find the retinal pigment epithelium (RPE) layer and used a binary classification to
classify between AMD and DME. Srinivasan et al. [25] utilized multiple-scale histograms of oriented
gradient (HOG) descriptors as feature vectors of a support vector machine (SVM)-based classifier.
Hassan et al. [26] extracted five distinct features (three thickness profiles of the sub-retinal layers
and two cyst fluids within the sub-retinal layers) from the images and used SVM for classification.
Sun et al. [27] took advantage of sparse coding and dictionary learning based on scale-invariant
feature transform (SIFT) descriptor for automated detection of AMD, DME, and normal (NOR).
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Venhuizen et al. [28] proposed an unsupervised feature learning approach which extracted a set
of small descriptive image patches from the training data and used the patches to create a patch
occurrence histogram for each image. Wang et al. [29] systematically selected the linear configuration
pattern (LCP) based features of the OCT images by the Correlation-based Feature Subset (CFS) selection
algorithm. All the aforementioned approaches mainly consist of two components, namely extracting
features and training classifier.

The emergence of deep learning brings new methods and ideas to the classification of retinal
OCT images. Especially the development of the CNN has had an important impact on images
classification [30]. The CNN makes it possible to process images in the form of pixels as input and to
give the desired classification as output, which can avoid the complicated feature extraction in the
traditional algorithm. Karri et al. [31] fine-tuned (fix the weights in the lower levels and retrain the
weights of the upper levels with back propagation) the GoogLeNet [32] to identify retinal pathologies
on spectral domain OCT (SD-OCT) images. In the same year, Rasti et al. [33] proposed a multiple-scale
convolutional mixture of expert ensemble model which applies CNN on multiple-scale sub-images.
Recently, Kermany et al. [34] proposed an image-based deep learning (IBDL) method, which fixed the
weights of the network and was used as a feature extractor.

All of the methods mentioned above are used for classifying OCT B-scans, although the method in
Ref. [25] could classify three-dimensional (3-D) retinal OCT images. Nevertheless, Albarrak et al. [35]
first proposed a method based on decomposition and graph analysis which could directly deal with
the 3-D OCT volume image. More recently, Fang et al. [36] presented a method utilizing the principal
component analysis network (PCANet) to extract the features from each B-scan of the 3-D retinal OCT
images and fusing multiple kernels as a composite kernel to exploit the strong correlations among
features of the 3-D OCT images for classification.

CNN is widely used in computer vision (especially in image classification) since the ImageNet [37]
competition in 2012. In recent years, variants of CNN architectures have been developed, such as
AlexNet [30], GoogLeNet [32], ResNet [38]. However, annotating biomedical images is not only tedious
and time consuming, but also demanding of costly, specialty-oriented knowledge and skills [39]. When
deep learning is applied to the specific problems in the field of biomedicine, the problem of overfitting
is often caused by the lack of training data, and a good result cannot be obtained. In the case of only a
small number of annotated data, compared with initializing the weights of the deep CNN randomly,
transfer learning is an effective way to accelerate model convergence and improve the classification
accuracy [31,34,39,40]. Fine-tuning is a commonly used technique to learn the feature space shifts
whose weights in the lower levels are fixed and those of the upper levels can be updated with back
propagation. In each round of training, errors are calculated through forward propagation in the entire
network and weights of the network are updated through backward propagation. The propagation is
time-consuming because of too many parameters. To address the problem of insufficient training data
and time-consuming propagation, we propose a method for automatic diagnosis of AMD, DME, and
NOR in retinal OCT B-scans which can effectively identify different pathologies.

The rest of this paper is organized as follows. Section 2 illustrates our classification method based
on transfer learning in detail. Experimental results and analysis on two SD-OCT are presented in
Section 3, and Section 4 outlines conclusions and suggests some future work.

2. Proposed Method

Our classification approach mainly consists of three parts, as illustrated in Figure 1: (1) preprocess
the OCT B-scans to reduce the morphological variations; (2) apply a pre-trained Inception V3
architecture [41] on each OCT B-scan to extract its middle-level features automatically; (3) train
the CNN to extract the semantic level features of OCT B-scans for image classification.
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Figure 1. Outline of the proposed algorithm.

2.1. Image Preprocessing

We adopt the image preprocessing method in Ref. [27]. It is mainly divided into three stages: (1) In
the perceiving stage, the method detects the overall morphology of a retina. Firstly, the sparsity-based
block matching and 3-D-filtering (BM3D) denoising method [42] are used to reduce noises of the OCT
image. Then, the binarization, median filtering, morphological closing and morphological opening
methods are used to obtain the subject of the image. (2) In the fitting stage, the method automatically
chooses the set of data points and a fitting method (linear fitting or second-order polynomial fitting).
(3) In the normalizing stage, the method normalizes the retinas by aligning them to a relatively unified
morphology and crops the images to trim out insignificant space. Examples can be found in Figure 2.
The first column shows the early stage of AMD and DME, the second column shows the advanced
stage of AMD and DME and the last column shows the noisy OCT B-scans of each category. Regardless
of whether it’s a deformed or a noisy OCT B-scan, the preprocessing method can detect the whole
morphology of a retina and normalize it to a relatively unified morphology, as can be seen in Figure 2.

Algorithms 2018, 11, x FOR PEER REVIEW  3 of 12 

 

Figure 1. Outline of the proposed algorithm. 

2.1. Image Preprocessing 

We adopt the image preprocessing method in Ref. [27]. It is mainly divided into three stages: (1) 

In the perceiving stage, the method detects the overall morphology of a retina. Firstly, the sparsity-

based block matching and 3-D-filtering (BM3D) denoising method [42] are used to reduce noises of 

the OCT image. Then, the binarization, median filtering, morphological closing and morphological 

opening methods are used to obtain the subject of the image. (2) In the fitting stage, the method 

automatically chooses the set of data points and a fitting method (linear fitting or second-order 

polynomial fitting). (3) In the normalizing stage, the method normalizes the retinas by aligning them 

to a relatively unified morphology and crops the images to trim out insignificant space. Examples 

can be found in Figure 2. The first column shows the early stage of AMD and DME, the second 

column shows the advanced stage of AMD and DME and the last column shows the noisy OCT B-

scans of each category. Regardless of whether it’s a deformed or a noisy OCT B-scan, the 

preprocessing method can detect the whole morphology of a retina and normalize it to a relatively 

unified morphology, as can be seen in Figure 2. 

 

Figure 2. Cont.



Algorithms 2018, 11, 88 4 of 12
Algorithms 2018, 11, x FOR PEER REVIEW  4 of 12 

 

Figure 2. Retinal dataset examples. (a) Original B-scans. (b) Corresponding preprocessed B-scans. 

2.2. Inception V3 Feature Extraction 

Using the Keras and Tensorflow we can easily adapt an Inception V3 architecture pretrained on 

the ImageNet. The Inception V3 architecture is represented in Figure 3. Kermany et al. [34] fixed the 

convolutional layer and used a feature extractor to obtain the bottleneck features. The bottleneck 

features described in Ref. 34 is the output of InceptionE2, as shown in Figure 3. However, the features 

learned by deep neurons are too specialized (such as eyes, nose) which do not describe the B-scans 

well, while using the features learned from low-level neurons does not fully exploit the advantages 

of deep learning. Different from the methods in Ref. [34], we extract the middle-level feature from 

the “mixed8” layer (the last layer of the InceptionD as shown in Figure 3) instead of the bottleneck 

(the last layer of the InceptionE2 as shown in Figure 3). The features learned by middle-level neurons 

can better describe the characteristics of the B-scans because of the difference between the natural 

pictures and retinal OCT images. On the other hand, retraining an Inception V3 is not only time 

consuming, but is also likely to have problems with overfitting because of insufficient training set. 

Therefore, we use a strategy to use a modified Inception V3 architecture pretrained on the ImageNet 

as a feature extractor, whose weights are fixed and cannot be updated. The middle-level features of 

OCT B-scans can be initially calculated and stored in order to remove redundant training processes 

and reduce the training time of the method. 

2.3. Convolutional Neural Network 

CNN is a special neural network whose hidden units are only connected to a local receptive 

field. We trained a simple CNN with the features extracted from the previous step as input to improve 

the classification accuracy. The weights of the CNN will be randomly initialized to learn the feature 

space shifts between ImageNet and retinal OCT images. As a result, the features extracted from the 

CNN can better describe the high-level characteristics of retinal OCT images. The CNN architecture 

are illustrated in Table 1. The convolutional layer captures the salient features in the local area, and 

the batch normalization layer can avoid overfitting. More importantly, the max-pooling layer reduces 

the number of parameters and makes the model easier to train. After the last batch normalization 

layer, the flatten layer can change the dimensions of the data for the transition of the batch 

normalization layer and the fully connected layer. The three outputs of the fully connected layer with 

an activation function soft-max shows the probability that the input B-scan belongs to each category 

(AMD, DME, and NOR). The CNN can extract information and identify the different characteristics 

from the training set. Therefore, it can improve the identification accuracy of the proposed method. 

Figure 2. Retinal dataset examples. (a) Original B-scans. (b) Corresponding preprocessed B-scans.

2.2. Inception V3 Feature Extraction

Using the Keras and Tensorflow we can easily adapt an Inception V3 architecture pretrained on
the ImageNet. The Inception V3 architecture is represented in Figure 3. Kermany et al. [34] fixed
the convolutional layer and used a feature extractor to obtain the bottleneck features. The bottleneck
features described in Ref. [34] is the output of InceptionE2, as shown in Figure 3. However, the features
learned by deep neurons are too specialized (such as eyes, nose) which do not describe the B-scans
well, while using the features learned from low-level neurons does not fully exploit the advantages of
deep learning. Different from the methods in Ref. [34], we extract the middle-level feature from the
“mixed8” layer (the last layer of the InceptionD as shown in Figure 3) instead of the bottleneck (the last
layer of the InceptionE2 as shown in Figure 3). The features learned by middle-level neurons can better
describe the characteristics of the B-scans because of the difference between the natural pictures and
retinal OCT images. On the other hand, retraining an Inception V3 is not only time consuming, but is
also likely to have problems with overfitting because of insufficient training set. Therefore, we use a
strategy to use a modified Inception V3 architecture pretrained on the ImageNet as a feature extractor,
whose weights are fixed and cannot be updated. The middle-level features of OCT B-scans can be
initially calculated and stored in order to remove redundant training processes and reduce the training
time of the method.

2.3. Convolutional Neural Network

CNN is a special neural network whose hidden units are only connected to a local receptive field.
We trained a simple CNN with the features extracted from the previous step as input to improve the
classification accuracy. The weights of the CNN will be randomly initialized to learn the feature space
shifts between ImageNet and retinal OCT images. As a result, the features extracted from the CNN
can better describe the high-level characteristics of retinal OCT images. The CNN architecture are
illustrated in Table 1. The convolutional layer captures the salient features in the local area, and the
batch normalization layer can avoid overfitting. More importantly, the max-pooling layer reduces the
number of parameters and makes the model easier to train. After the last batch normalization layer,
the flatten layer can change the dimensions of the data for the transition of the batch normalization
layer and the fully connected layer. The three outputs of the fully connected layer with an activation
function soft-max shows the probability that the input B-scan belongs to each category (AMD, DME,
and NOR). The CNN can extract information and identify the different characteristics from the training
set. Therefore, it can improve the identification accuracy of the proposed method.
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Figure 3. Inception V3 with filter dimensions and illustration of the inception layer.

Table 1. Overview of the convolutional neural network (CNN) architecture.

Name Patch Size/Stride Padding Output Size

Convolution1 3 × 3/1 same 128 × 8 × 8
Max Pooling1 2 × 2/2 valid 128 × 4 × 4

BatchNormalization1 128 × 4 × 4
Convolution2 3 × 3/1 same 128 × 4 × 4
Max Pooling2 2 × 2/2 valid 128 × 2 × 2

BatchNormalization2 128 × 2 × 2
Convolution3 3 × 3/1 same 128 × 2 × 2

BatchNormalization3 128 × 2 × 2
Flatten 512
Dense 3
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3. Experiments and Results

In this section, we introduce two different datasets applied in our experiments and detail several
comparative experiments. Our method mainly compares with the following methods: HOG-SVM [25],
ScSPM [27], and deep CNN [31]. In addition to the results from the proposed method, we also quote
some results directly from the literature.

The effectiveness of the proposed method is evaluated from the following experiments. In the
following experiments 1 and 2, we apply our method to the Duke dataset to classify the volume data
and compare it with the other method. In experiment 3, we apply our method on Beijing clinical
datasets and compare with the good-performing ScSPM [27] in traditional methods and the transfer
learning-based method, IBDL [34], to evaluate the classification performance of our method on retinal
OCT B-scans. In experiment 4, we discuss the efficiency of our method. In experiment 5, we focus on
the model structure itself and compare the results of different architectures.

In our experiments, we utilize cross validation to evaluate the classification performance of the
proposed method. The cross validations are repeated with different random seeds to avoid dataset
splitting bias. The accuracy, sensitivity, and specificity for each category (AMD, DME, and NOR) are
defined by following formula [36]:

accuracy =
TP + TN

TP + FN + FP + FN
(1)

sensitivity =
TP

TP + FN
(2)

speci f icity =
TN

TN + FP
(3)

where TP is true positive, FN is false negative, TN is true negative, FP is false positive.
Our classification algorithm is implemented using Keras and it is conducted on a desktop

computer with an Intel (R) Core (TM) i5-4590 central processing unit (CPU), 8 GB of RAM and a
Nvidia GeForce GTX 1070 graphics processing unit (GPU). The parameters selected for the proposed
method are listed below: 299 × 299 for the image size and the pixel value of the images is divided
by 255 for normalization; “mixed8” for the middle layer name (the output of InceptionD discussed
in Section 2.3); 128 for the filters amount, 3 × 3 for the kernel size and “same” for the padding;
the optimizer for training model is adadelta [43] optimizer.

3.1. Datasets

We apply two different datasets in our experiments and present the experimental results over
them. One of the datasets applied for experiments is the publicly available OCT dataset provided by
the joint efforts from Duke University, Harvard University, and University of Michigan [25]. The Duke
OCT dataset consists of retinal SD-OCT images from 45 subjects (15 AMD, 15 DME, and 15 NOR).
The number of OCT B-scans in each subject varies from 36 to 97.

The other dataset is obtained from clinics in Beijing, using CIRRUS TM (Heidelberg Engineering
Inc., Heidelberg, Germany) SD-OCT device. The dataset consists of 1680 OCT B-scan images (560 AMD,
560 DME and 560 NOR).

3.2. Result Comparisons

Experiment 1: Comparison to the traditional method [25,27]

We first conduct our test on the Duke datasets. To compare our method with that in Ref. [25]
and Ref. [27] fairly, we also use leave-three-out cross-validation for 45 times as done in Refs. [25,27].
In each experiment, 42 volumes are chosen as training set and the other 3 volumes (one volume from
each class) as testing set so that each of the 45 SD-OCT volumes can be classified once. Since a volume
contains many OCT scans of a specific person, majority voting of all predicted labels for each subject
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is treated as class (AMD, DME, or NOR) for the corresponding subject [25]. We do not artificially
exclude the normal tissue slices of AMD or DME as mentioned in the Ref. [25]. The cross-validation
results can be seen in Table 2. As can be seen from Table 2, 100% of 45 OCT volumes are correctly
classified with our method which invariably performs better than the HOG-SVM [25] (95.56%) and
ScSPM [27] (97.78%).

Table 2. Fraction of volumes correctly classified with the three methods on the Duke dataset.

HOG-SVM [25] ScSPM [27] Ours

AMD 15/15 = 100.00% 15/15 = 100.00% 15/15 = 100.00%
DME 15/15 = 100.00% 15/15 = 100.00% 15/15 = 100.00%
NOR 13/15 = 86.67% 14/15 = 93.33% 15/15 = 100.00%

Overall 43/45 = 95.56% 44/45 = 97.78% 45/45 = 100.00%

Experiment 2: Comparison to transfer learning-based method [31]

Recently, some methods based on transfer learning have been proposed to classify the retinal OCT
B-scans. According to Ref. [31], The dataset is divided into 15 folds, with each fold containing three
subjects (one from each class). However, different from the setting in experiment 1, each validation
involves eight folds (24 volumes) for training and the rest seven folds (21 volumes) for testing. Folds
are sequentially chosen instead of randomly. The mean of decision pooling across all validations
for AMD, DME, and NOR are reported in Table 3. The sensitivity of the HOG-SVM and deep CNN
are quoted from Ref. [36]. As can be seen, the proposed method delivers better performance than
HOG-SVM and deep CNN in total.

Table 3. Fraction of volumes correctly classified with the three methods on the Duke dataset.

HOG-SVM [25] Deep CNN [31] Ours

AMD 89 89 89
DME 83 86 92
NOR 90 99 100

Experiment 3: Comparisons on classification performance of retinal OCT B-scans

To evaluate the classification performance of our method on retinal OCT B-scans, we conduct
more experiments on the Beijing clinic dataset with different proportion. To obtain reliable results, we
repeat the experimental process 10 times with different randomly selected images in the clinic dataset
for training the rest for testing. Firstly, we choose a quarter of the images of each class (140 AMD,
140 DME, and 140 NOR) for training and the rest (420 AMD, 420 DME, and 420 NOR) for testing.
Then we choose half of the images of each class (280 AMD, 280 DME, and 280 NOR) and the rest
(280 AMD, 280 DME, and 280 NOR) for testing. Tables 4 and 5 detail the classification results of each
category. The overall classification results are tabulated in Table 6 (the best results among different
methods are labeled in bold). From the results we can see that the proposed method performs better
than ScSPM [27] and IBDL [34]. In particular, IBDL uses more than 100,000 OCT B-scans as training set
with accuracy, sensitivity, and specificity above 95% according to Ref. [34]. However, the classification
performance of IBDL method running on our dataset is not very good, indicating that it is not suitable
for small-scale dataset. In conclusion, the proposed method has better classification performance on
small-scale datasets.
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Table 4. Classification results (%) on 1/4 clinic dataset.

Methods Classes Accuracy Sensitivity Specificity

ScSPM
AMD 97.35 ± 0.58 96.19 ± 0.85 97.94 ± 0.45
DME 97.17 ± 0.44 93.81 ± 0.51 98.87 ± 0.46
NOR 97.87 ± 0.15 98.73 ± 0.49 97.44 ± 0.08

IBDL
AMD 91.23 ± 0.38 85.40 ± 0.81 94.25 ± 0.58
DME 94.77 ± 0.29 96.83 ± 0.22 93.65 ± 0.57
NOR 91.63 ± 0.40 85.32 ± 0.40 94.92 ± 0.66

Ours
AMD 98.51 ± 0.19 98.14 ± 0.49 98.69 ± 0.44
DME 97.80 ± 0.35 94.57 ± 0.76 99.43 ± 0.31
NOR 98.35 ± 0.20 99.33 ± 0.41 97.85 ± 0.38

Table 5. Classification results (%) on 1/2 clinic dataset.

Methods Classes Accuracy Sensitivity Specificity

ScSPM
AMD 97.75 ± 0.21 96.43 ± 0.58 98.43 ± 0.08
DME 97.60 ± 0.29 95.48 ± 0.89 98.67 ± 0.09
NOR 97.91 ± 0.31 98.10 ± 0.84 97.81 ± 0.40

IBDL
AMD 93.36 ± 0.32 88.84 ± 2.78 95.66 ± 1.02
DME 96.96 ± 0.14 98.13 ± 0.46 96.33 ± 0.24
NOR 93.39 ± 0.25 89.11 ± 2.21 95.57 ± 0.99

Ours
AMD 99.01 ± 0.30 99.02 ± 0.39 99.01 ± 0.37
DME 98.51 ± 0.27 96.34 ± 1.08 99.60 ± 0.20
NOR 99.07 ± 0.21 99.55 ± 0.46 98.83 ± 0.32

Table 6. Overall classification results (%) of different methods on clinic dataset.

Partition Methods Overall-Acc Overall-Se Overall-Sp

1/4 dataset
ScSPM 97.46 96.24 98.08
IBDL 92.54 89.18 94.27
Ours 98.22 97.35 98.66

1/2 dataset
ScSPM 97.75 96.67 98.30
IBDL 94.57 92.03 95.85
Ours 98.86 98.30 99.15

Experiment 4: Comparison with the efficiency of the fine-tuning

In this experiment, we focus on comparing the proposed method with fine-tuning a pre-trained
network, including performance, training time, etc. Fine-tuning a pre-trained network is adopted by
Ref. [31]. We conduct an experiment on the Beijing clinic dataset. Half of the clinic dataset are chosen
as training sets and the rest as testing images. The experiment is repeated 10 times with 50 epochs for
each time. We use Inception V3 as the pre-trained network (pre-trained on ImageNet dataset) instead
of GoogLeNet in Ref. [31] for fairness. In this experiment, we fine-tune different layers for comparison:
(1) The weights of fully connected layers are randomly initialized and the other weights of the network
are fixed (model 1). (2) The weights of the InceptionE2 layer and the fully connected layer can be
updated while the others are fixed (model 2). (3) The weights of the InceptionE1, InceptionE2 and the
fully connected layer can be updated while the others are fixed (model 3). (4) All of the weights in the
network can be updated (model 4). The mean sensitivity of each epoch is shown in Figure 4. After
50 epochs for training, the sensitivity of each model (from model 1 to model 4) are 63.81%, 70.36%,
82.86%, and 98.73%, respectively, and ours is 98.61%. In terms of training efficiency, the average time
of the fine-tuning method to train 50 epochs is 474 s while the proposed method is 95 s. To prove the
computational efficiency advantage of our method, we try to use only the CPU to perform calculation,
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the average time of the fine-tuning method to train 50 epochs is 10,106 s while that of our method is
only 151 s. In general, our method demonstrates competitive performance in classification accuracy
and reduces the training time in comparison to the fine-tuning methods.
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Figure 4. The classification sensitivity of different methods.

Experiment 5: Effectiveness of different architectures

Here, we conduct an experiment on the Beijing clinic dataset to prove the effectiveness of different
architectures. The dataset is divided as in experiment 4. The experiment is repeated 10 times with
50 epochs for each time. The accuracy of each epoch is recorded for calculating the mean accuracy of
the 10 experiments.

We build two classification models for comparison. The first model (model 1) extracts features
from the bottleneck instead of middle layer and the features are sent to the CNN to extract advanced
semantic features. Another model (model 2) extracts features from the “mixed8” layer (the output
of InceptionD) but the features are used directly as input to the fully connected layer. The mean
sensitivity of each model was shown in Figure 5. After 50 epochs for training, the sensitivity for
model 1, model 2, and the proposed method are 95.52%, 95.13%, and 98.61%, respectively. From the
result, we can conclude that: (1) Extracting the features from the middle layer is better than from the
bottleneck in our case. (2) The CNN can effectively improve the classification accuracy.

Algorithms 2018, 11, x FOR PEER REVIEW  9 of 12 

 

Figure 4. The classification sensitivity of different methods. 

Experiment 5: Effectiveness of different architectures 

Here, we conduct an experiment on the Beijing clinic dataset to prove the effectiveness of 

different architectures. The dataset is divided as in experiment 4. The experiment is repeated 10 times 

with 50 epochs for each time. The accuracy of each epoch is recorded for calculating the mean 

accuracy of the 10 experiments. 

We build two classification models for comparison. The first model (model 1) extracts features 

from the bottleneck instead of middle layer and the features are sent to the CNN to extract advanced 

semantic features. Another model (model 2) extracts features from the “mixed8” layer (the output of 

InceptionD) but the features are used directly as input to the fully connected layer. The mean 

sensitivity of each model was shown in Figure 5. After 50 epochs for training, the sensitivity for model 

1, model 2, and the proposed method are 95.52%, 95.13%, and 98.61%, respectively. From the result, 

we can conclude that: (1) Extracting the features from the middle layer is better than from the 

bottleneck in our case. (2) The CNN can effectively improve the classification accuracy. 

 

Figure 5. The mean accuracy of different architectures. 

  

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Se
n

si
ti

vi
ty

 (
%

)

Epoch

model 1 model 2 model 3 model 4 ours

80.00

82.00

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Se
n

si
ti

vi
ty

 (
%

)

Epoch

model 1 model 2 ours

Figure 5. The mean accuracy of different architectures.



Algorithms 2018, 11, 88 10 of 12

4. Conclusions

In recent years, many deep learning architectures have been proposed and used for natural
pictures classification, especially for the classification in ImageNet database. On the other hand,
biomedical images are not easily accessible because annotating them is time consuming and requires
specialty-oriented knowledge. For small-scale biomedical training data, transfer learning is one of the
best methods applied to biomedical image classification. A common method is to fine-tune the weights
of the last several layers of the pretrained network and fix the others. In this paper, we present a fully
automatic method to identify AMD, DME, and NOR from retinal OCT B-scans. The proposed method
extracts the middle-level features from the middle layer of a pretrained network, then trains a CNN to
learn the abstract semantic features of the retinal OCT B-scans. The proposed method is successfully
tested in two different datasets for the detection of AMD and DME. The experimental results show
that the proposed method demonstrates competitive performance in classification accuracy and has
an advantage in computational efficiency compared with the fine-tuning method and shows better
classification performance than that of traditional methods. To summarize, our algorithm is an effective
method for retinal OCT detection and is a potentially impactful tool for computer-aided diagnosis and
screening of ophthalmic diseases.

To help both researchers and practitioners further investigate retinal OCT image classification, we
provide a Python implementation of the proposed method. The code is available at https://github.
com/HeWenjie/retina_OCT_images_classification.
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