
algorithms

Article

The Gradient and the Hessian of the Distance
between Point and Triangle in 3D

Igor Gribanov * , Rocky Taylor and Robert Sarracino

Faculty of Engineering and Applied Science, Memorial University of Newfoundland, 40 Arctic Ave,
St. John’s, NL A1B 3X7, Canada; rstaylor@mun.ca (R.T.); rsarracino@mun.ca (R.S.)
* Correspondence: ig1453@mun.ca

Received: 5 June 2018; Accepted: 10 July 2018; Published: 12 July 2018
����������
�������

Abstract: Computation of the distance between point and triangle in 3D is a common task in
numerical analysis. The input values of the algorithm are coordinates of three points of the triangle
and one point from which the distance is determined. An existing algorithm is extended to compute
the gradient and the Hessian of that distance with respect to coordinates of involved points. Derivation
of exact expressions for gradient and Hessian is presented, and numerical accuracy is evaluated for
various cases. The algorithm has O(1) time and space complexity. The included open-source code
may be used in applications where derivatives of point-triangle distance are required.

Keywords: point-triangle distance; gradient; Hessian

1. Introduction

The algorithm developed by Eberly [1] evaluates the distance function between a point and
a triangle in 3D. The input parameters are coordinates of four points, which are involved in the
point-triangle setup. Three points are vertices of the triangle, with the remaining point being the one
to which the distance is computed. The motivation for this work is the need to obtain the gradient and
the Hessian of that distance with respect to the input variables. Each of the four input points possesses
three coordinates, giving 12 independent variables for the distance function. The distance function,
accordingly, has 12 first derivatives and 12× 12 second derivatives, the components of the symmetric
Hessian matrix.

Our approach is to differentiate the distance function provided by Eberly [1] and extend that
algorithm with evaluation of first and second derivatives. The characteristics of the algorithm remain
the same, i.e., the time and space complexity of the algorithm is O(1). A linear array of first derivatives
and a 2D array of second derivatives are added to the output. The main contribution of the authors
is the derivation of the expressions for the gradient and the Hessian of the distance. A potential
application of this algorithm is in finding penetration penalty forces and their differentials for colliding
polygonal objects in finite element (FE) simulations.

Numerical simulations of mechanical systems often involve contact interactions, and the penalty
method is a common way of addressing this problem [2]. Implicit FE approaches rely on calculating
derivatives of the forces generated in collisions, which in turn require first and second derivatives
of the distance function. The FE simulation ARCSim [3] relies on penalty contact resolution for
modeling deformation and fracture. ARCSim includes an approximation technique for obtaining the
gradient and the Hessian of the distance function based on the surface normal of the interacting object.
The approximation is not always accurate, which results in reduction of time steps, which sometimes
halts the simulation.

In another method described by Fisher and Lin [4], the distance from the interior point to the
surface of the object is precomputed on the nodes of interior polygonal mesh, representing a distance

Algorithms 2018, 11, 104; doi:10.3390/a11070104 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-3675-726X
http://www.mdpi.com/1999-4893/11/7/104?type=check_update&version=1
http://dx.doi.org/10.3390/a11070104
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 104 2 of 9

field. This discretized field allows one to estimate the spacial gradient of the distance. The accuracy
is limited by the resolution of the mesh. In general, such approximation techniques are inaccurate,
and there is a need for developing and utilizing the exact formula.

2. Mathematical Formulation

Figure 1 shows the point p0(x0, x1, x2) and the triangle with vertices p1(x3, x4, x5), p2(x6, x7, x8)

and p3(x9, x10, x11). The projection point pc has the barycentric coordinates ζ1, ζ2, ζ3:

pc = ζ1p1 + ζ2p2 + ζ3p3. (1)

The squared distance between the point and the triangle is

s = |p0 − pc|2 =
2

∑
k=0

(
xk −

3

∑
m=1

ζmxk+3m

)2

. (2)

Figure 1. Distance f is determined between the point p0 and its projection pc onto the triangle p1p2p3.
Vectors e0, e1 and v are used in calculating f .

To obtain the gradient of s, Expression (2) is differentiated:

∂s
∂xi

= 2
2

∑
k=0

(
xk −

3

∑
m=1

ζmxk+3m

)(
δ(k)(i) −

3

∑
m=1

(
ζmδ(k+3m)(i) + xk+3m

∂ζm

∂xi

))
, (3)

where δij denotes the Kronecker symbol. Expressions for the barycentric coordinates ζm are given by
Eberly [1], who introduces the following scalar coefficients:

a = e0 · e0, b = e0 · e1, c = e1 · e1, d = e0 · v, e = e1 · v, (4)

where e0 = p2 − p1, e1 = p3 − p1 and v = p1 − p0. The barycentric coordinates are then

ζ1 = 1− (ζ2 + ζ3); ζ2 =
be− cd
ac− b2 ; ζ3 =

bd− ae
ac− b2 . (5)

Expression (5) is used when pc belongs to the interior region of the triangle. Cases when pc

belongs to an edge or coincides with one of the vertices are discussed in the next section. To obtain
derivatives of ζ2 and ζ3, Expression (5) is differentiated:

∂ζ2

∂xi
=

1
∆

(
e

∂b
∂xi

+ b
∂e
∂xi
− d

∂c
∂xi
− c

∂d
∂xi

)
− 1

∆2
∂∆
∂xi

(be− cd) , (6)

∂ζ3

∂xi
=

1
∆

(
d

∂b
∂xi

+ b
∂d
∂xi
− e

∂a
∂xi
− a

∂e
∂xi

)
− 1

∆2
∂∆
∂xi

(bd− ae) , (7)

Algorithms 2018, 11, 104 3 of 9

where ∆ = ac− b2 and ∂∆
∂xi

= a ∂c
∂xi

+ c ∂a
∂xi
− 2b ∂b

∂xi
. Derivatives of ζ1 are

∂ζ1

∂xi
= −

(
∂ζ2

∂xi
+

∂ζ3

∂xi

)
. (8)

Coefficients a, b, c, d, e (4) can be expanded in terms of xi:

a = (x6 − x3)
2 + (x7 − x4)

2 + (x8 − x5)
2,

b = (x9 − x3)(x6 − x3) + (x10 − x4)(x7 − x4) + (x11 − x5)(x8 − x5),

c = (x9 − x3)
2 + (x10 − x4)

2 + (x11 − x5)
2, (9)

d = (x3 − x0)(x6 − x3) + (x4 − x1)(x7 − x4) + (x5 − x2)(x8 − x5),

e = (x9 − x3)(x3 − x0) + (x10 − x4)(x4 − x1) + (x11 − x5)(x5 − x2).

Then, gradients of Equation (9) are[
∂a
∂xi

]
= 2× [0, 0, 0, x3 − x6, x4 − x7, x5 − x8, x6 − x3, x7 − x4, x8 − x5, 0, 0, 0],[

∂b
∂xi

]
= [0, 0, 0, 2x3 − x6 − x9, 2x4 − x7 − x10, 2x5 − x8 − x11, x9 − x3, x10 − x4,

x11 − x5, x6 − x3, x7 − x4, x8 − x5],[
∂c
∂xi

]
= 2× [0, 0, 0, x3 − x9, x4 − x10, x5 − x11, 0, 0, 0, x9 − x3, x10 − x4, x11 − x5], (10)[

∂d
∂xi

]
= [x3 − x6, x4 − x7, x5 − x8, x0 − 2x3 + x6, x1 − 2x4 + x7, x2 − 2x5 + x8,

x3 − x0, x4 − x1, x5 − x2, 0, 0, 0],[
∂e
∂xi

]
= [x3 − x9, x4 − x10, x5 − x11, x0 − 2x3 + x9, x1 − 2x4 + x10,

x2 − 2x5 + x11, 0, 0, 0, x3 − x0, x4 − x1, x5 − x2].

Substituting Equation (10) into Equations (6) and (7) allows for obtaining ∂s
∂xi

in terms of xi.
The second derivatives of s are procured in the same manner. First, Expression (3) is differentiated

to obtain
∂2s

∂xi∂xj
= 2

2

∑
k=0

(
(ξ ′)2 + 2ξξ ′′

)
, (11)

where

ξ = xk −
3

∑
m=1

ζmxk+3m, (12)

ξ ′ = δ(k)(i) −
3

∑
m=1

(
ζmδ(k+3m)(i) + xk+3m

∂ζm

∂xi

)
, (13)

ξ ′′ = −
3

∑
m=1

(
∂ζm

∂xj
δ(k+3m)(i) +

∂ζm

∂xi
δ(k+3m)(j) + xk+3m

∂2ζm

∂xi∂xj

)
. (14)

Second derivatives of barycentric coordinates are obtained by differentiating Expressions (6)
and (7):

Algorithms 2018, 11, 104 4 of 9

∂2ζ2

∂xi∂xj
=

1
∆

(
∂b
∂xj

∂e
∂xi

+
∂b
∂xi

∂e
∂xj
− ∂c

∂xj

∂d
∂xi
− ∂c

∂xi

∂d
∂xj

)

+
1
∆

(
e

∂2b
∂xj∂xi

+ b
∂2e

∂xj∂xi
− d

∂2c
∂xj∂xi

− c
∂2d

∂xj∂xi

)

+
1

∆2
∂∆
∂xj

(
d

∂c
∂xi

+ c
∂d
∂xi
− e

∂b
∂xi
− b

∂e
∂xi

)
+

1
∆2

∂∆
∂xi

(
d

∂c
∂xj

+ c
∂d
∂xj
− e

∂b
∂xj
− b

∂e
∂xj

)

+

(
2

∆3
∂∆
∂xi

∂∆
∂xj
− 1

∆2
∂2∆

∂xi∂xj

)
(be− cd) ,

(15)

∂2ζ3

∂xi∂xj
=

1
∆

(
∂b
∂xj

∂d
∂xi

+
∂b
∂xi

∂d
∂xj
− ∂a

∂xj

∂e
∂xi
− ∂a

∂xi

∂e
∂xj

)

+
1
∆

(
d

∂2b
∂xj∂xi

+ b
∂2d

∂xj∂xi
− e

∂2a
∂xj∂xi

− a
∂2e

∂xj∂xi

)

+
1

∆2
∂∆
∂xj

(
e

∂a
∂xi

+ a
∂e
∂xi
− d

∂b
∂xi
− b

∂d
∂xi

)
+

1
∆2

∂∆
∂xi

(
e

∂a
∂xj

+ a
∂e
∂xj
− d

∂b
∂xj
− b

∂d
∂xj

)

+

(
2

∆3
∂∆
∂xi

∂∆
∂xj
− 1

∆2
∂2∆

∂xi∂xj

)
(bd− ae) ,

(16)

where ∂2∆
∂xi∂xj

= ∂a
∂xj

∂c
∂xi

+ ∂a
∂xi

∂c
∂xj

+ c ∂2a
∂xi∂xj

+ a ∂2c
∂xi∂xj

− 2 ∂b
∂xi

∂b
∂xj
− 2b ∂2b

∂xi∂xj
. Similarly to Equation (8):

∂2ζ1

∂xi∂xj
= −

(
∂2ζ2

∂xi∂xj
+

∂2ζ3

∂xi∂xj

)
. (17)

Second derivatives of the coefficients a, b, c, d, e are constants that are included in Appendix A.
The first and the second derivatives of the distance f =

√
s are then expressed as:

∂ f
∂xi

=
1

2
√

s
∂s
∂xi

, (18)

∂2 f
∂xi∂xj

=
1

2
√

s
∂2s

∂xi∂xj
− 1

4s3/2
∂s
∂xi

∂s
∂xj

. (19)

3. Point-Edge and Point-Point Cases

If the projection of p0 falls outside of the interior area of the triangle (Figure 2), the closest point
pc coincides with one of the vertices or belongs to one of the edges of the triangle. In the point–point
case (Figure 3a), the squared distance is expressed as

s = |p0 − pc|2 ,

where pc is one of p1, p2 or p3. The derivatives of s with respect to xi are obtained trivially, and the
details are not discussed here.

Algorithms 2018, 11, 104 5 of 9

Figure 2. Partitioning of the plane by the triangle domain. Different domains are distinguished by the
values of barycentric coordinates of the projection of p0 onto the plane of the triangle.

(a) point–point case (b) point-edge case

Figure 3. The closest point pc may coincide with (a) one of triangle’s vertices or (b) belong to one of
the edges.

In the point-edge case, one of the barycentric coordinates of pc is zero, which simplifies
Expression (2). Let pm and pn be the vertices of the edge, to which the closest point pc belongs
(Figure 3b). Then pc is expressed as the linear combination:

pc = (1− ζk)pm + ζkpn,

where ζk is the non-zero barycentric coordinate of pc. This coordinate can be found as [5]:

ζk =
(pm − p0) · (pn − pm)

|pn − pm|2
. (20)

Similarly to the previous derivations, Expression (20) can be differentiated to obtain the first and
the second derivatives of the ζk, which are then substituted into Expressions (3) and (11).

4. Algorithm and Testing

The calculations are implemented in double-precision floating-point arithmetic in C, and the
tests are performed with squared distance s and its first and second derivatives. The first step
is to determine the partition to which pc belongs (Figure 2). This step coincides with the original
point-triangle algorithm [1], but subsequent calculations are extended to evaluate ∂s

∂xi
and ∂2s

∂xi∂xj
. If pc

belongs to partitions 1, 3, 5, then the point-line algorithm is invoked. For partitions 2, 4, 6, point–point
calculations are performed. For partition 0, the point-plane algorithm is used.

For testing, 10 million cases were generated, about 2/3 of which are random coordinates that
come from the uniform distribution in the range [−1, 1]. The remaining cases come from the finite
element simulation of fracture, where the point pc is often close to one of the triangle’s vertices. Most of
the cases that come from the simulation have a low ratio of the distance to the shortest edge of the
triangle, in the range between 10−8 and 10−5. Such test cases result in a lower accuracy of the final
answer than the random arrangements of points.

Algorithms 2018, 11, 104 6 of 9

To evaluate the accuracy of the proposed algorithm, calculations are first performed using arbitrary

precision arithmetic with at least 17 digits calculated precisely. These results are denoted sp, ∂sp
∂xi

, ∂2sp
∂xi∂xj

and are compared to the results obtained in floating-point arithmetic sc, ∂sc
∂xi

, ∂2sc
∂xi∂xj

. Relative errors are
computed separately for the squared distance, its first derivatives and its second derivatives:

E0 =
∣∣(sc − sp)/sp

∣∣ , (21)

E1 = max
i

∣∣∣∣(∂sc

∂xi
−

∂sp

∂xi

)
/

∂sp

∂xi

∣∣∣∣ , (22)

E2 = max
i,j

∣∣∣∣∣
(

∂2sc

∂xi∂xj
−

∂2sp

∂xi∂xj

)
/

∂2sp

∂xi∂xj

∣∣∣∣∣ . (23)

E0 is the relative error of the squared distance and is used as a baseline to compare with the
relative errors of the first and second derivatives E1 and E2. Ideally, the values of E0, E1 and E2

would have the same order of magnitude. However, due to the large number of algebraic operations,
the accuracy of the calculation of the second derivative is lower. The values E0, E1 and E2 cover a wide
range of values. In about half of the cases, the precision for calculating second derivatives is better
than 10−13. However, the practical interest lies in investigating the worst cases because one incorrect
calculation could affect a whole scientific study.

Discussion

The highest errors among all test cases are shown in Table 1. The values come from separate
test cases: E0max is the maximum error for s, E1max is the maximum error for ∂sc

∂xi
and E2max is the

maximum error for ∂2sc
∂xi∂xj

. E2max is higher than E0max by two orders of magnitude, which is a good
result, considering that it is the least accurate of 10 million tests. The tests show that the precision is
adequate for all cases, including the ones form the collision simulation.

Table 1. Relative errors for squared distance and its first and second derivatives. The maximum values
from 10 million test cases are shown.

Error Measure Value

E0max 3.78× 10−5

E1max 2.75× 10−5

E2max 1.27× 10−3

Cases with the lowest accuracy usually correspond to the variables whose absolute values are very
small, and computer simulations are often robust against such cases. For example, results of the grain
interaction simulation where the current algorithm is applied are shown on Figure 4. The simulation
advances with large time steps even when multiple fragments interact with each other.

The ratio between the distance and the largest edge of the triangle is one of the factors that affect
the precision. When this ratio drops below 10−10, the accuracy of the result is likely to deteriorate.
The problem of the round-off error is common in numerical analysis and should be addressed properly.
If the influence of the round-off error is suspected when applying this algorithm, additional testing
should be performed. In some cases, calculations can be performed with arbitrary-precision arithmetic
to yield accurate results.

Algorithms 2018, 11, 104 7 of 9

(a) step 16, t = 0.17 (b) step 40, t = 0.23 (c) step 66, t = 0.30

Figure 4. Simulation of falling and colliding grains performed with implicit finite element method.

5. Conclusions

The presented algorithm has O(1) time and space complexity. Only static memory allocation takes
place. The algorithm has several branches that evaluate algebraic expressions sequentially, with each
branch completing in constant time. The main contribution of the authors is the derivation of the exact
formulae for the gradient and the Hessian of the distance function. Additionally, testing of the reference
implementation was performed to ensure that adequate precision is met. The proposed algorithm may
be used in applications where point-triangle distance derivatives are required. The potential future
work may include precision testing for more complex cases. The C code is available as open-source [6]
and may be modified by the research community as needed.

Author Contributions: Conceptualization, I.G.; Software, I.G.; Writing—Original Draft Preparation, I.G.;
Writing—Review and Editing, R.T. and R.S.; Supervision, R.T.

Funding: This research was funded by the Natural Sciences and Engineering Research Council (NSERC) of
Canada and the Research Development Corporation of Newfoundland and Labrador (RDC).

Acknowledgments: The authors thank C-CORE for providing computing resources, office space, and creating
productive working environment.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Second Derivatives of Coefficients a, b, c, d, e

[
∂2a

∂xi∂xj

]
=

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 −2 0 0 0 0 0
0 0 0 0 2 0 0 −2 0 0 0 0
0 0 0 0 0 2 0 0 −2 0 0 0
0 0 0 −2 0 0 2 0 0 0 0 0
0 0 0 0 −2 0 0 2 0 0 0 0
0 0 0 0 0 −2 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

, (A1)

Algorithms 2018, 11, 104 8 of 9

[
∂2b

∂xi∂xj

]
=

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 −1 0 0 −1 0 0
0 0 0 0 2 0 0 −1 0 0 −1 0
0 0 0 0 0 2 0 0 −1 0 0 −1
0 0 0 −1 0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0 0 0 0 1
0 0 0 −1 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0

, (A2)

[
∂2c

∂xi∂xj

]
=

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 −2 0 0
0 0 0 0 2 0 0 0 0 0 −2 0
0 0 0 0 0 2 0 0 0 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 2 0 0
0 0 0 0 −2 0 0 0 0 0 2 0
0 0 0 0 0 −2 0 0 0 0 0 2

, (A3)

[
∂2d

∂xi∂xj

]
=

0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 −1 0 0 0
1 0 0 −2 0 0 1 0 0 0 0 0
0 1 0 0 −2 0 0 1 0 0 0 0
0 0 1 0 0 −2 0 0 1 0 0 0
−1 0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

, (A4)

[
∂2e

∂xi∂xj

]
=

0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 −1
1 0 0 −2 0 0 0 0 0 1 0 0
0 1 0 0 −2 0 0 0 0 0 1 0
0 0 1 0 0 −2 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0 0 0

. (A5)

Algorithms 2018, 11, 104 9 of 9

References

1. Eberly, D. Distance between Point and Triangle in 3D. 1999. Available online: https://www.geometrictools.
com/Documentation/DistancePoint3Triangle3.pdf.pdf (accessed on 9 July 2018).

2. Laursen, T.A. Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in
Nonlinear Finite Element Analysis; Springer Science & Business Media: Heidelberg/Berlin, Germany, 2013.

3. Pfaff, T.; Narain, R.; De Joya, J.M.; O’Brien, J.F. Adaptive tearing and cracking of thin sheets.
ACM Trans. Graph. 2014, 33, 110. [CrossRef]

4. Fisher, S.; Lin, M.C. Fast penetration depth estimation for elastic bodies using deformed distance fields.
In Proceedings of the Intelligent Robots and Systems, Maui, HI, USA, 29 October–3 November 2001; Volume 1,
pp. 330–336.

5. Weisstein, E.W. Point-Line Distance–3-Dimensional. MathWorld–A Wolfram Web Resource. Available online:
http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html (accessed on 10 July 2018).

6. Gribanov, I. Distance Derivatives, GitHub Repository. Available online: https://github.com/Spear520/dist/
(accessed on 10 July 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf. pdf
https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf. pdf
http://dx.doi.org/10.1145/2601097.2601132
http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
https://github.com/Spear520/dist/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Formulation
	Point-Edge and Point-Point Cases
	Algorithm and Testing
	Conclusions
	Second Derivatives of Coefficients a, b, c, d, e
	References

