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Abstract: Extreme learning machine (ELM) is a single hidden layer feedforward neural network
(SLFN). Because ELM has a fast speed for classification, it is widely applied in data stream
classification tasks. In this paper, a new ensemble extreme learning machine is presented.
Different from traditional ELM methods, a concept drift detection method is embedded; it uses
online sequence learning strategy to handle gradual concept drift and uses updating classifier to deal
with abrupt concept drift, so both gradual concept drift and abrupt concept drift can be detected
in this paper. The experimental results showed the new ELM algorithm not only can improve the
accuracy of classification result, but also can adapt to new concept in a short time.

Keywords: extreme learning machine; data stream classification; online learning; concept drift detection

1. Introduction

With the explosively growing Internet and rapid development of information society,
many industries have generated a large number of data streams, such as medical diagnosis,
online shopping, traffic flow detection and satellite remote sensing. Different from conventional static
data, data streams often have the characteristics of infinite quantity, rapid arrival, and conceptual drift,
which make data stream mining faces an enormous challenges [1–3]. Since data stream classification
was put forward, it has attracted much attention from scholars and made many achievements [4–9].
Up to now, the achievements are divided into three groups: statistical analysis model, decision tree
model and neural network model. In statistical analysis model, Brzezinski et al. proposed an online
leaning algorithm called OAUE [10] which utilizes mean square error to determine the weight of
the classification model. When the detection period is reached, the concept drift will be replaced by
replacement strategy. Farid et al. proposed a weighted case ensemble classification algorithm [11],
and clustering algorithm is introduced to detect concept drift. If a data point does not belong to
any existing class, it is considered that the class corresponding to this data may be a new concept,
and then is further confirmed by data statistics in nodes. Bifet et al. proposed an adaptive window
algorithm called HWF-ADWIN [12]. It uses Hoeffding inequality [13] to divide the nodes with the
attributes corresponding to the maximum and second largest information gain to train a classifier;
when the accuracy of the classifier is significantly changed, concept drift will be thought to have
happened. Xu et al. proposed a data stream classification method based on Kappa coefficient [14];
in the process of classification, the algorithm calculates the Kappa coefficients of each block, and detects
the changes of concepts in data streams by using Kappa coefficients. When the concept of data stream is
changing, the system will eliminate the classifiers which do not meet the requirements according to the
existing knowledge. Compared with the contrast algorithm, this algorithm can not only obtain a higher
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accuracy, but also reduce the time cost to a certain extent, and get better results. Decision tree model is
very common in data stream classification tasks and there have been many publications. Domingos and
Hulten et al. proposed a series of algorithms based on Hoeffding tree called VFDT and CVFDT [15,16];
Wu and Li et al. proposed semi-random decision tree algorithms [17,18]; Brzezinski et al. proposed
a red–black tree structure algorithm to improve the efficiency of finding and removing outdated
nodes for imbalanced data stream classification [19]. Rutkowski et al. developed a McDiarmid
Tree algorithm according to McDiarmid inequality and the threshold of the difference between the
maximum information gain and the second large information gain is determined by the McDiarmid
boundary [20]. With the heat of the neural network, many scholars apply neural network in data stream
classification tasks. Aiming at imbalanced data stream classification [21], telecommunication fraud
detection [22], spatiotemporal event streams [23] and so on, many algorithms have been proposed.
However, statistical analysis model, decision tree model and neural network model need to repeatedly
scan data classifiers and data several times, or there are many parameter needing to adjustment.
Thus, the above drawbacks limit these models to be more widely used in data stream environment.

Extreme learning machine is a single hidden layer feedforward neural network; the input weights
and biases of hidden layer are randomly generated and the output weights can be automatically
determined by input data [24–28]. ELM does not need to adjust the parameters repeatedly and it
has an obvious advantage in the speed of the training process comparing with the traditional neural
networks [29], so it is very suitable for data stream classification tasks. Liang et al. proposed an
ELM algorithm based on online sequential learning mechanism called OS-ELM [30], and it extends
ELM to the field of data stream classification. After OS-ELM being proposed, many scholars have
proposed a series of improved OS-ELM. Gu et al. proposed a timeliness online sequential extreme
learning machine for timeliness problem [31]; it adopts the batch processing and weighting mechanism
to make TOSELM have good stability and prediction ability. Shao et al. proposed a regularization
extreme learning machine with online sequential learning called OS-RELM [32]. OS-RELM combines
OS-ELM and RELM [33]; at the same time, the minimum error rate is guaranteed, and the norm of the
minimum weight is obtained, so that OS-RELM can have good generalization performance. Zhao et al.
proposed a FOS-ELM with forgetting mechanism for timeliness stock data [34]. In FOS-ELM, it only
uses latest data to update model, so it can avoid the invalid data to participate in updating the weights
of the output layer. Bilal et al. proposed an ensemble online sequential extreme learning machine for
imbalanced classification [35]; each OS-ELM focuses on the minority class data and is trained with
a balanced subset of the data stream. For distributed multi-agent system, Vanli et al. proposed a online
nonlinear extreme learning machine [36]; it uses optimization method to minimize empirical risk and
structural risk. Singh et al. applied OS-ELM in intrusion detection system [37]; before dealing with
data, it introduces features selection to eliminate redundant or unrelated attributes.

The above OS-ELM and its developments provide a number of ways to solve the problem of
data stream classification. However, most of them lack concept drift detection mechanism; they have
a good performance for data stream without concept drift or concept changing slowly, but cannot
cope with the rapid change of concept in data stream. In this paper, an ensemble extreme learning
machine with concept drift detection (CELM) is proposed. CELM uses manifold learning to reduce the
dimensions of data and introduces concept drift detection mechanism which effectively overcomes the
shortcomings of OS-ELM. The contributions of this paper are as follows:

• An ensemble extreme learning machine algorithm is presented. In the data stream environment,
the performance of ensemble classifiers is better than that of single classifier [38], so CELM
employs ensemble learning method and improves the performance of ELMs.

• Because data stream classification is very demanding for real time and the high dimensions of
data tend to reduce the efficiency of algorithm, CELM introduces a manifold learning method to
reducing the dimension of data which reduces the time consumption of CELM.

• Concept drift detection is incorporated into the training process of ELM classifiers. The change of
data stream is divided into three categories: normal condition, warning level and concept drift.
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Different from the traditional ELMs, CELM not only can detect gradual concept drift, but also can
handle abrupt concept drift.

The rest of this paper is organized as follows: Section 2 reviews the background knowledge
of data stream classification and ELM. Section 3 states the details of ELM, and then elaborates the
reducing dimension method of the manifold learning and the principles of CELM. In Section 4, CELM is
compared with comparison algorithms and we discusses the experimental results. Finally, Section 5
concludes the research and gives future directions.

2. Background Knowledge

In this section, we give a brief introduction about data stream classification and extreme learning
machine and explain their basic principles.

2.1. Data Stream Classification

Let {· · · , dt−1, dt, dt+1, · · · } be a data stream generated by a system, and dt a datum at t moment;
dt = {xt1, xt2, · · · , xtm, yt}, where m is the features number of dt and yt is the class label. Data stream
classification generally adopts a sliding window mechanism, and several data make up a dataset called
data block and denoted Bi, where Bi =

{
d(1), d(2), · · · , d(n)

}
and n is the size of data block. At every

moment, only one or several data blocks are allowed to enter sliding window. After one data block is
processed, a new data block can be loaded to sliding window.

Suppose that in ∆t time, if the error rate of classifier system is at a low level in the sliding window,
it is said that the concept of data stream is stable in this period and P (error− best ≤ ε) ≥ 1 − α,
where error is the current error rate of classifier system, best is the classification error rate of optimal
performance classifier for data stream and α is a significance level. Let the classification model of
data stream be M, which is trained by the data blocks in sliding window at t moment; after ∆t time,
the classification model changes to N. If M 6= N, it means concept drift has happened in data stream.
If ∆t is a short time, the concept drift is called abrupt concept drift; otherwise, it is called as gradual
concept drift [14].

2.2. Extreme Learning Machine

Extreme learning machine is a single hidden layer feedforward neural network. The input weights
and biases are randomly generated, while the output weights can be automatically determined.
Compared with the traditional methods such as BP neural network [39], the speed of ELM is
faster [40,41]. The structure of ELM is shown in Figure 1.

Figure 1. The structure of ELM.
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For N arbitrary distinct samples, {xi, ti}N
i=1, xi = [xi1, xi2, · · · , xin]

T ∈ Rn, ti = [ti1, ti2, · · · , tim]
T ∈ Rm.

If the activation function is g(x) with L hidden nodes, the output of ELM is as

L

∑
j=1

β jg(wj · xi + bj) = oj, i = 1, 2, · · · , N (1)

where wj =
[
wj1, wj2, · · · , wjn

]T is the weights connecting the jth hidden node with the input nodes,

β j =
[
β j1, β j2, · · · , β jm

]T is the weights connecting the jth hidden node with the output nodes, bj is the
bias of the jth hidden nodes. According to the theory [24], ELM can approximate these N samples with
zero error and ∑N

i=1 ‖oi − ti‖ = 0. Thus, the output of ELM can be expressed compactly as

Hβ = T (2)

where H is the output matrix of hidden layer and T is the output matrix of output layer. They are as:

H =

 g(w1, b1, x1) · · · g(wL, bL, x1)
...

. . .
...

g(w1, b1, xN) · · · g(wL, bL, xN)


N×L

and T =

tT
1
...

tT
N


N×m

(3)

The output weights matrix β can be estimated as

β̂ = H†T (4)

where H† is the Moore–Penrose generalized inverse of the hidden layer output matrix H. It can be
computed by orthogonal projection method, orthogonalization method and singular value composition
(SVD) [42]. To improve the generalization performance of ELM, regularization is introduced and the
optimization problem of ELM is as follows:

min
1
2
‖β‖2 + C

1
2

N

∑
i=1
‖ξ i‖

s.t. h(xi)β = tT
i − ξT

i i = 1, 2, · · · , N

(5)

where C is a penalty factor, and ξ i is the training error which is used to eliminate over-fitting. According
to KKT conditions [26], if L < N, the β is as

β = (
I
C
+ HT H)−1HTT (6)

Thus, the output of ELM is as

f (x) = h(x)β = h(x)(
I
C
+ HT H)−1HTT (7)

If L ≥ N, the β is as

β = HT(
I
C
+ HHT)−1T (8)

Thus, the final output of ELM is

f (x) = h(x)β = h(x)HT(
I
C
+ HHT)−1T (9)
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The classification label of ELM is as

label(x) = argmax
i∈{1,2,··· ,m}

fi(x) (10)

where f (x) = [ f1(x), f2(x), · · · , fm(x)].
From the above descriptions, the steps of ELM are summarized as follows (Algorithm 1) [24,25]:

Algorithm 1 ELM.

Input: a training data X = {(xi, yi)|xi ∈ Rn, yi ∈ Rm}; the number of hidden nodes L; the activation
function g(·);

Output: ELM classifier.
Step 1: Randomly generate the input weights wj and biases bj, j = 1, 2, · · · , L;
Step 2: Calculate the output matrix of hidden layer H for dataset X ;
Step 3: Obtain the output weights β according to Equation (6) or Equation (8);

3. The Basic Principles of CELM

In this section, we introduce the dimension-reduction method which is used to reduce the
dimension of the data at first, and then explain the details of concept drift detection mechanism and
classification steps of CELM.

3.1. The Method of Dimensionality Reduction for Data Stream

Dimensionality reduction is important for data stream classification. It can reduce the dimension
of the data and improve the efficiency of the algorithm. In this paper, LLE method [43] is used to
handle data stream. Let a data block be Bi = {x1, x2, · · · , xN}, for a data point xi, i = 1, 2, · · · , N, LLE
(https://cs.nyu.edu/~roweis/lle/) finds k neighborhood points of xi to reconstruct xi. The objective
function of the optimization problem is as follows:

min J(w) = ∑N
i=1

∥∥∥xi −∑k
j=1 wijxj

∥∥∥2

2
s.t. ∑k

j=1 wij = 1
(11)

where wij is the weight of the neighborhood sample xj. If xj is not the neighborhood of xi, wij = 0.
From Equation (11), it follows:

J(w) = ∑N
i=1

∥∥∥1 · xi −∑k
j=1 wijxj

∥∥∥2

2
= ∑N

i=1

∥∥∥∑k
j=1 wijxi −∑k

j=1 wijxj

∥∥∥2

2

= ∑N
i=1

∥∥∥∑k
j=1 wij(xi − xj)

∥∥∥2

2
= ∑N

i=1
∥∥(xi − xj)Wi

∥∥2
2

= ∑N
i= W T

i (xi − xj)
T(xi − xj)Wi

(12)

where Wi = [wi1, wi2, · · · , wik]
T . Let Zi = (xi − xj)

T(xi − xj), so it will have

J(w) =
N

∑
i=

W T
i ZiWi and

k

∑
j=1

wij = W T
i 1k = 1 (13)

where 1k is a vector in which all elements are 1. The optimization function of Equation (13) can be
expressed as

L =
N

∑
i=1

W T
i ZiWi + λ(W T

i 1k − 1)⇒ ∂L
∂Wi

= 2ZiWi + λ1k = 0 (14)

https://cs.nyu.edu/~roweis/lle/
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From Equations (13) and (14), it will obtain

Wi =
Z−1

i 1k

1T
k Z−1

i 1k
(15)

For Bi = {x1, x2, · · · , xN}, the projection of Bi in low dimension space is {y1, y2, · · · , yN}.
The objection of dimension reduction is to make the following loss function is minimized.

min
N

∑
i=1

∥∥∥∥∥yi −
k

∑
j=1

wijyj

∥∥∥∥∥
2

2

s.t.
N

∑
i=1

yi = 0 and
1
N

N

∑
i=1

yiyT
i = I

(16)

Equation (16) can be changed as

J(Y) =
N

∑
i=1

∥∥∥∥∥yi −
k

∑
j=1

wijyj

∥∥∥∥∥
2

2

=
N

∑
i=1
‖Y Ii − YWi‖2

2

= tr(YT(I −W)T(I −W)Y)

(17)

Let M = (I −W)T(I −W), so the objective function of the optimization problem is

min J(Y) = tr(YT MY)

s.t. YTY = NI
(18)

Construct the following Lagrange function

L(Y) = tr(YT MY) + λ(YTY − NI) (19)

By solving the partial derivation of L(Y), it will get

∂L
∂Y

= MY − λY = 0⇒ MY = λY (20)

Equation (20) means Y is the eigenvectors of M. If it wants to get d-dimensional data, it only needs
to find a matrix which is made up by d + 1 eigenvectors corresponding to the least d + 1 eigenvalues of
the matrix M, and Y = {y2, y3, · · · , yd+1}. The dimension-reduction algorithm of CELM is as follows
(Algorithm 2).

Algorithm 2 Dimension-reduction of data stream.

Input: Data stream S, the size of data block Bi: winsize, k and d;
Output: Y = {y1, y2, · · · , yd}.

while S 6= NULL do
Get a data block Bj = {x1, x2, · · · , xN} with N samples from sliding window;
Calculate Wi, i = 1, 2, · · · , N;
Calculate M = (I −W)T(I −W);
Calculate d+1 eigenvectors of the matrix M;
Get the low dimensional matrix Y ;
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3.2. The Data Stream Classification and Concept Drift Detection of CELM

Data stream is different from the traditional static data, concept drift is often happened, so concept
drift detection must be included in the training process. For a data block Bi, the error rate of classifiers
is pi which is a random variable obeying the Bernoulli distribution, so the standard deviation is

si =
√

pi(1−pi)
i where i is the number of samples [44,45]. In this paper, CELM utilizes pi and si to detect

concept drift. The change of data stream is divided into three types: stable, error level and concept drift.
If pi + si ≤ pmin + 2smin and pi < ε, it suggests that the error rate of classifiers system is in a low

level and the concept of data stream is stable where ε is a threshold. Thus, the classifiers are suitable
for the classification task of the current data stream and they do not need to make any adjustment.

If pi + si ≥ pmin + 2smin and pi < ε, it suggests that the error rate of classifiers system is still in
a low level, but the performance of classifers has a big fluctuation, the classifiers will give a warning
and CELM will use online sequence learning mechanism [30] to update each classifier. At the initial
time, let the data block be B0 = {xi, ti}N0

i=1, so the output matrix of hidden layer H0 and the initial
target matrix of T0 are

H0 =

 g(w1, b1, x1) · · · g(wL, bL, x1)
...

. . .
...

g(w1, b1, xN0) · · · g(wL, bL, xN0)


N0×L

and T0 =


tT

1
...

tT
N0


N0×m

(21)

The initial output weight of ELM β(0) is

β(0) = K−1
0 HT

0 T0 (22)

where K0 = I
C + HT H and T0 =

[
t1, t2, · · · , tN0

]T . After (k + 1)th data block coming into sliding

window, the data block is Bk+1 = {xi, ti}
∑k+1

j=0 Nj

i=∑k
j=0 Nj+1

. The output matrix of hidden layer Hk+1 is

Hk+1 =


g(w1, b1, x∑k

j=0 Nj+1) · · · g(wL, bL, x∑k
j=0 Nj+1)

...
. . .

...
g(w1, b1, x∑k+1

j=0 Nj
) · · · g(wL, bL, x∑k+1

j=0 Nj
)


Nk+1×L

(23)

Tk+1 =

[
tT

1+∑k
j=0 Nj

, · · · , tT
∑k+1

j=0 Nj

]T

Nk+1×m
(24)

The Kk+1 and β(k+1) are updated as

Kk+1 = Kk + HT
k+1Hk+1 (25)

β(k+1) = β(k) + K−1
k+1HT

k+1(Tk+1 − Hk+1β(k)) (26)

when calculating the output weight matrix β , it needs to perform a matrix inversion, but the calculated
amount of the pseudo inverse is very large, so Woodbury formula is often used to diminish the
computation [37] and the formula is as

K−1
k+1 = (Kk + HT

k+1Hk+1)
−1

= K−1
k − K−1

k HT
k+1(I + Hk+1K−1

k HT
k+1)

−1Hk+1K−1
k

(27)



Algorithms 2018, 11, 107 8 of 16

By the online sequential learning mechanism, when the change of concept in data stream is small,
CELM can update classifiers to adapt to the change of concept which is also effective for gradual
concept drift.

If pi + si ≥ pmin + 2smin or pi ≥ ε, it indicates that the change of data stream is too large or the
performance of classifiers is in low level. The classification model is not fit for the current data stream,
so all classifiers must be deleted and retrain a series of classifiers. The steps of CELM are summarized
in Algorithm 3.

Algorithm 3 CELM.

Input: Data stream S, the size of data block Bi: winsize, k and d, ε, K classifiers;
Output: An ensemble classifiers system.

while S 6= NULL do
Get a data Bi from sliding window;
Use Algorithm 2 to descend dimension for Bi;
if pi + si < pmin + 2smin&&pi < ε then

The data stream is stable and directly uses classifier to finish classification task;
else if pi + si ≥ pmin + 2smin&&pi < ε then

Uses online learning mechanism to update classifiers as Equations (21)–(27);
else if pi + si ≥ pmin + 2smin||pi ≥ ε then

Concept drift has happened;
Delete all classifiers and retrain each classifier as Algorithm 1;

From the steps of CELM, it is known that, when the change of data stream is small, CELM uses
online sequential learning mechanism to update classifiers which ensures the classifiers can utilize
the last model and do not need to be retrained again and again; in other words, the method also
gives a way to handle gradual concept drift. In addition, the dimension-reduction algorithm which
preprocesses data blocks and the advantages of ELM makes CELM keep a good performance and have
a fast speed.

4. Experiments and Data Analysis

In the section, experiments and data analysis are executed to test the performance of CELM.
OS-ELM [30], SEA [46], AE [47] and M_ID4 [48] are used as comparison algorithms. All algorithms
were executed on MATLAB 2017a platform, windows 7 OS, Intel quad-core 3.30 GHz CPU and 8 G
memory. There are 10 artificial and real datasets for experimental datasets. The base classifier of SEA,
AE and M_ID4 is decision tree and the number of sub-classifiers is set to 5. For CELM, the parameter
C = 1000, the neighbourhood k = 5 and the threshold ε = 0.3. For M_ID4, the threshold θ = 0.01 and
the decay factor b = 0.5. The activation function of CELM and OS-ELM is sigmoid.

4.1. Datasets

At first, we will give a brief introduction about datasets. All artificial datasets are generated from
MOA platform [49]. In artificial datasets, we only give a explain about hyperplane dataset, the other
description of datasets can be see from UCI website (http://archive.ics.uci.edu/ml/datasets.html)
and help handbook. The basic information of datasets are shown in Table 1.

hyperplane is a gradual concept drift dataset. In a d-dimensional space, a hyperplane is defined as
∑d

i=1 wixi = w0, where xi ∈ [0, 1], wi ∈ [−10, 10] and w0 = 1
2 ∑d

i=1 wi. If ∑d
i=1 wixi ≥ w0, the point is

remarked as positive; if ∑d
i=1 wixi < w0, the point is remarked as negative.

http://archive.ics.uci.edu/ml/datasets.html
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Table 1. The information of the experimental datasets.

Dataset Size Attributes Classes Types

voice 7614 385 12 Numeric
waveform 50,000 21 3 Numeric

bank 45,211 16 2 Mixed
adult 32,561 13 2 Mixed
letter 20,000 16 26 Categorical

hyperplane 50,000 40 2 Numeric
occupancy 8143 5 2 Numeric

hill 1212 100 2 Numeric
Protein 1080 80 8 Mixed
Ozone 2534 72 2 Numeric

4.2. The Comparison Results of CELM and Comparison Algorithms on the Test Datasets

To test the performance of CELM and comparison algorithms, the algorithms are executed on
10 datasets. The test results are shown in Tables 2 and 3.

Table 2. The test accuracies of the algorithms on the experimental datasets.

Dataset CELM SEA AE OS-ELM M_ID4 winsize d L

voice 0.6511 ± 0.1786 0.3357 ± 0.0651 0.4155 ± 0.0737 0.2808 ± 0.0429 0.6029 ± 0.1033 100 5 20
waveform 0.6619 ± 0.0119 0.6329 ± 0.0136 0.6374 ± 0.0204 0.6856 ± 0.0134 0.6205 ± 0.0195 1000 200 200

bank 0.8863 ± 0.0094 0.8841 ± 0.0088 0.8843 ± 0.0084 0.8812 ± 0.0087 0.8269 ± 0.0196 1200 13 5
adult 0.7596 ± 0.0135 0.8119 ± 0.0168 0.8156 ± 0.0117 0.7569 ± 0.0177 0.7501 ± 0.0235 1000 5 5
letter 0.4930 ± 0.0581 0.0361 ± 0.0096 0.3617 ± 0.0597 0.0418 ± 0.0046 0.6818 ± 0.1368 1000 13 2000

hyperplane 0.5812 ± 0.0205 0.5761 ± 0.0164 0.5758 ± 0.0182 0.5796 ± 0.0306 0.5385 ± 0.0199 1000 30 2000
occupancy 0.9670 ± 0.0294 0.9882 ± 0.0111 0.9788 ± 0.0191 0.7835 ± 0.0291 0.9640 ± 0.0182 100 5 10

hill 0.5517 ± 0.0659 0.5643 ± 0.0813 0.4833 ± 0.0491 0.4900 ± 0.0344 0.5283 ± 0.0369 60 80 100
Protein 0.6354 ± 0.0599 0.5750 ± 0.1578 0.6583 ± 0.1532 0.1354 ± 0.0348 0.5854 ± 0.1125 80 50 1000
Ozone 0.9408 ± 0.0107 0.9396 ± 0.0251 0.9392 ± 0.0131 0.9408 ± 0.0107 0.7692 ± 0.1018 120 30 200

Average 0.7128 ± 0.0297 0.6344 ± 0.0406 0.6750 ± 0.0424 0.5576 ± 0.0227 0.6868 ± 0.0592 – – –

Table 3. The time consumption of the algorithms on the experimental datasets.

Dataset CELM SEA AE OS-ELM M_ID4

voice 2.0433 2401.3555 291.9706 0.1160 5234.9994
waveform 82.9626 1523.1448 172.0207 0.1480 >20,000

bank 10.8994 573.6019 63.8236 0.1100 2392.9633
adult 6.1201 279.0587 37.7094 0.0566 2830.5794
letter 70.0543 248.7848 29.8872 0.0865 3638.3141

hyperplane 27.5537 1558.7989 160.4245 0.2402 3486.1807
occupancy 1.2085 15.4485 2.3894 0.0632 75.3053

hill 0.5319 59.4144 8.9018 0.0548 75.0302
Protein 4.2500 40.2288 6.3598 0.0426 14.2372
Ozone 0.4528 64.5923 6.0510 0.0739 32.7597

Tables 2 and 3 show that CELM gets best results on four datasets; SEA, AE and OS-ELM get the
best results on two datasets; and M_ID4 gets only one best result. In addition, the average accuracy
of CELM is also the best of all. For time consumption, OS-ELM is the least of all and CELM the
second least, but the accuracies of CELM are much higher than OS-ELM. Thus, it can be concluded
that the performance of CELM is better than the other algorithm in most conditions. On Ozone dataset,
CELM and OS-ELM get the same highest accuracy because Ozone has no abrupt concept drift and
CELM degenerates into OS-ELM; in other words, there will be no difference between CELM and
OS-ELM when dataset has no abrupt concept drift.
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4.3. The Effect of Sliding Window on the Performance of CELM

To test the effect of sliding window on the performance of CELM, this paper chooses different
winsize values, and executes CELM and OS-ELM on the experimental datasets. The number of hidden
nodes is 20 and d = 5. The test results are shown in Figure 2a–j.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Cont.



Algorithms 2018, 11, 107 11 of 16

(g) (h)

(i) (j)

Figure 2. The test result of CELM and OS-ELM with different winsize values.

In Figure 2a–j, the accuracies of CELM and OS-ELM are changing with different winsize values.
On the voice, waveform, letter, occupancy and protein datasets, CELM is much better than OS-ELM;
the classification performance of OS-ELM is at a low level because there are many abrupt concept
drifts in those datasets. It suggests that OS-ELM is not fit for dealing with data stream with abrupt
concept drift and CELM has an obvious advantage in handling data stream with abrupt concept drift.
On the other datasets, the test results of OS-ELM is better than that of CELM. If analyzing the change
of the curve, it is known that there is no big difference between OS-ELM and CELM in accuracy and
both get good results because the change of concepts in those dataset is small. Therefore, it can be
concluded that CELM can cope with gradual concept drift and abrupt concept drift, but OS-ELM can
only face gradual concept drift; thus, CELM is better than OS-ELM.

4.4. The Effect of the Values of d on the Performance of CELM

To test the effect of d on the performance of CELM, this paper executes CELM with different
values of k which is a parameter of Algorithm 2. The activation function of CELM is sigmoid; the size of
sliding window is 90; and the number of hidden nodes is 30.

Table 4 is the dimension decrement of the datasets testing on CELM. From the result analysis of
Table 2, it can be known that the performance of CELM is the best. CELM reduces the dimensions of
most datasets. In other words, the dimensionality reduction methods of manifold learning in CELM
is effective. Figure 3 presents the result of CELM testing on the experimental datasets with different
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d values. d is an important parameter for the dimension reduction algorithm which is presented as
Algorithm 2. Data will lose more information if d is a small value and data will have many redundant
features if d is a larger value. It is known that the performance of CELM will change when d value
changes. The accuracy of CELM has a large fluctuation on voice, waveform, adult, letter, occupancy,
hill and protein datasets and the accuracy of CELM has less fluctuation on the other datasets, as shown
in Figure 2 and Table 5. It manifests d values can affect the effect of dimensionality reduction algorithm.
In addition, it is obvious that the performance of CELM will be affected if the value of d is too large or
too small, therefore the user needs to select a appropriate value for the manifold learning algorithm.

Table 4. The dimension reduction result of CELM testing in Table 2.

Dataset The Number of Original Features After Dimension Reduction Decrement Reduction Rate

voice 385 5 380 0.9870
adult 13 5 7 0.5384
letter 16 13 3 0.1875

hyperplane 40 30 10 0.2500
occupancy 5 5 0 0.0000

hill 100 80 20 0.2000
Protein 80 50 30 0.3750
Ozone 72 30 42 0.5833

(a) (b)

(c) (d)

Figure 3. Cont.
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(e) (f)

(g) (h)

(i) (j)

Figure 3. The test result CELM with different d values: (a) voice dataset; (b) waveform dataset; (c) bank
dataset; (d) adult dataset; (e) letter dataset; (f) hyperplane dataset; (g) occupancy dataset; (h) hill
dataset; (i) protein dataset; and (j) ozone dataset.

Table 5. The accuracy standard deviation of CELM testing in Figure 3.

Dataset Voice Waveform Bank Adult Letter Hyperplane Occupancy Hill Protein Ozone

Standard deviation 0.1971 0.0409 0.0109 0.0193 0.0816 0.0112 0.0373 0.0222 0.1992 0.0045
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5. Conclusions

Data stream classification is a hot research topic in recent years. How to deal with the data stream
with concept drift has a high value of practical application. A new ensemble extreme learning machine
with concept drift detection (CELM) is presented in this paper. CELM applies manifold learning
method to reduce the dimensions of data blocks and divides the changes of concepts in data stream
into three types: stable, warning and concept drift. The algorithm can detect both gradual concept
drift and abrupt concept drift by online sequential learning and concept drift detection mechanisms
which expands the application scope of ELM. The experimental results also prove that the proposed
algorithm is effective for data stream classification.

It is obvious that this algorithm still has some problems to be solved. The number of hidden
nodes L and the parameter of the manifold learning algorithm d have a great impact on CELM. How to
select appropriate values for those parameters will be a research direction for future works.
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