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Abstract: Classical fractional order controller tuning techniques usually consider the frequency
domain specifications (phase margin, gain crossover frequency, iso-damping) and are based on
knowledge of a process model, as well as solving a system of nonlinear equations to determine the
controller parameters. In this paper, a novel auto-tuning method is used to tune a fractional order PI
controller. The advantages of the proposed auto-tuning method are two-fold: There is no need for a
process model, neither to solve the system of nonlinear equations. The tuning is based on defining
a forbidden region in the Nyquist plane using the phase margin requirement and determining the
parameters of the fractional order controller such that the loop frequency response remains out
of the forbidden region. Additionally, the final controller parameters are those that minimize the
difference between the slope of the loop frequency response and the slope of the forbidden region
border, to ensure the iso-damping property. To validate the proposed method, a case study has
been used consisting of a pick and place movement of an UR10 robot. The experimental results,
considering two different robot configurations, demonstrate that the designed fractional order PI
controller is indeed robust.

Keywords: fractional order control; auto-tuning method; robustness; experimental validation; robot

1. Introduction

Auto-tuning methods are among the most suitable and popular controller design methods for
the industry. The reason lies in the elimination of the need for a process model in the tuning of
the controller parameters. For PID controllers, several auto-tuning methods have been developed
throughout the years. However, this is not the case of fractional order PID controllers.

Fractional calculus represents an emerging field of research that has gained increased interest
in control applications [1]. The fractional order PID controller is a generalization of the classical
one, with the integral and derivative terms modified to accommodate fractional orders. To tune
these types of controllers, a couple of methods exist; however, most of these require a process model.
The auto-tuning methods for fractional order controllers are in their early stages. Such a method
is the so-called phase shaper [2,3]. This is in fact a traditional PID controller with a twist: It has a
fractional order integrator or differentiator sα, with α∈(−1, 1). The aim of this phase shaper is to
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achieve closed loop robustness to gain variations. A different approach to auto-tuning of fractional
order PIDs is based on a two-step design that first produces a fractional order PI (FO-PI) controller,
and then a fractional order PD controller with a filter. A relay test is used in this regard [4]. The design
is intended to achieve a certain gain crossover frequency and phase margin, while ensuring the
iso-damping property. The procedure is lengthy and is based on maximizing the robustness to plant
gain variations. Other auto-tuning methods based on the relay test have been proposed, such as for
the design of a FO-PI controller for real-time steam temperature control ([5] new). The relay test is
also used in Reference ([6] new) for the auto-tuning of two types of fractional order PI controllers
with an iso-damping property for a class of unknown, stable and minimum phase plants. The FO-PI
controllers designed by the two methods ensure that the phase Bode plot is flat at a given frequency
called the tangential frequency. An iterative procedure is used in this case, since several relay feedback
tests are used to identify the plant gain and phase at the tangential frequency. Only simulation results
are presented. An iterative procedure combined with the relay test is also used for designing fractional
order lead-lag compensators ([7] new). The same relay test has been proposed in Reference ([8] new)
for the auto-tuning of a fractional order PID controller for second order plus dead time plants. In this
design, firstly, the process dynamics of overdamped, underdamped, and critically damped plants are
modelled by using an offline relay-based method, where a maximum of four unknown parameters
are determined in the simplest possible way. Although this is a clear limitation of the method, a great
variety of plants can be modeled using four parameters only, such as the second order plus dead
time processes. A relay with hysteresis is used to obtain the describing function. As performance
specifications, the gain margin and phase margin, as well as the iso-damping property are used to tune
the five parameters of the controller. A significant advantage of the proposed tuning method is that a
priori information of the system’s gain and phase crossover frequencies is not required while tuning
the controller. The proposed method is validated through simulation studies in a class of process
models, and also verified experimentally on a coupled tank system.

In Reference ([9] new), experimental validations of an auto-tuning method for fractional order PID
controllers, and its implementation on hardware in the loop simulator for real-time control of unknown
plants are presented. The application of the auto-tuning procedure is limited to systems with delay
and an order greater than one, while the performance specifications refer to the crossover frequency,
phase margin and the iso-damping property. The auto-tuning procedure consists of two phases:
The first one is dedicated to the identification of the process at the desired crossover frequency and
the second one to determine all the parameters of the fractional order PID controllers. Experimental
validations are also presented in Reference ([10] new), where a model-free tuning method of an FO-PI
controller and its application for the speed regulation of a permanent magnet synchronous motor
(PMSM) is described. Here, virtual reference feedback tuning is used to determine the parameters of
the FO-PI controller. Under the lack of accurate models, the proposed model-free method depends
only on the measured input–output data of the closed-loop PMSM servo system. Also, Bode’s ideal
transfer function is incorporated into the virtual reference feedback tuning with consideration of
the systematic fractional dynamics. Optimal performance constraints are taken into consideration
by the proposed method, such as stability requirements, sensitivity criteria, frequency-domain and
time-domain characteristics. Based on these, a comprehensive optimization problem is derived and
solved, such that the robustness and disturbance rejection ability of the resulting FO-PI controller
are enhanced to achieve optimal performance. In Reference ([11] new), the problem of fractional
modeling and the control of an industrial selective compliant assembly robot arm (SCARA) is presented.
Induction motors are used to drive each joint of the robot manipulator and for each motor a fractional
model is formulated. For comparison purposes, both integer order and fractional order controllers are
designed. The tuning procedure is based on a Particle swarm optimization algorithm, with the ITAE
index used as a cost function to be minimized. Only numerical simulations are included to show the
effectiveness of the fractional order controllers.



Algorithms 2018, 11, 95 3 of 13

The same performance specification set (phase margin, gain crossover frequency and iso-damping)
is considered in the design of fractional order controllers based on a combination of the Ziegler-Nichols
tuning procedure and the Åström-Hägglund method [12]. First, the proportional and integral gains of
the fractional order controller are computed based on the Ziegler-Nichols approach, then the derivative
gain is obtained using the Åström-Hägglund method [13,14]. An optimization procedure is required
to solve the resulting nonlinear equations. The core idea is that, in case of a better step response
of the closed loop system, an optimization model is used, with the previously computed controller
parameters taken as initial values. The result of the optimization consists in new values for the
controller parameters, considered to be optimal.

The same three frequency domain specifications are considered also in Reference [15].
The auto-tuning method can be used to determine either fractional order PI or PD controllers. In this
case, a simple sine test is used to determine the required process information for the tuning of the
fractional order controller, then, much like in most of the fractional order controller design methods,
either a graphical approach or an optimization routine is required to solve the resulting system of
nonlinear equations.

A novel auto-tuning approach for fractional order PI controllers, the FO-KC method, is presented
in this paper. The idea comes as an extension of a previously designed autotuning method for integer
order PID controllers, namely the KC autotuner [16]. The tuning of fractional order PI controllers using
the FO-KC auto-tuning method is similar to the classical tuning methods in the sense that it determines
the three controller parameters using three performance specifications: the gain crossover frequency
ωc, the phase margin PM and the iso-damping property. These three performance specifications are
quite frequently used as design specifications and lead to a system of nonlinear equations that need
to be solved to estimate the FO-PI parameters. However, this can be time consuming. The FO-KC
autotuning method eliminates this drawback. The design is based on using the iso-damping property
and the phase margin PM requirement to define a forbidden region in the Nyquist plane that the loop
frequency response should avoid. Moreover, to ensure the iso-damping property, the optimal FO-PI
controller is determined such that the difference between the slope of the loop frequency response
and the slope of the forbidden region border is minimum. The FO-KC auto-tuning method has been
presented before [17], however, it has only been tested under simulations. The main contribution of
the present paper is to offer an experimental validation of the method and this represents the original
element of the present work.

The paper is structured as follows. Section 2 details the auto-tuning principle behind the FO-KC
method. Section 3 presents the case study considered for the experimental validation of the method.
The last section concludes the paper.

2. The Proposed Fractional Order Auto-Tuning Method

The FO-KC auto-tuning method is used in this paper to determine the parameters of a FO-PI
controller with the transfer function as indicated next:

CPI(s) = kp

(
1 + kis−λ

)
(1)

where kp and ki represent the proportional and integral gains and λ is the fractional order, with λmin <
λ < 2. The minimum value of the fractional order can be easily computed using Reference [18].
The basic idea of the FO-KC auto-tuning method resides in determining the three parameters in (1)
using three performance specifications: the gain crossover frequency ωc, the phase margin PM and
the iso-damping property. As mentioned in the Introduction section, the design is based on using
the iso-damping property and the phase margin PM requirement to define a forbidden region in
the Nyquist plane. Moreover, to ensure the iso-damping property, the optimal FO-PI controller is
determined such that the difference between the slope of the loop frequency response and the slope of
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the forbidden region border is minimum. Figure 1 shows the forbidden region, where the center, C,
and its radius, R, are determined using trigonometric relations based on the PM value:

C =
1

cos(PM)
, R =

√
C2 − 1 (2)
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The first step in designing the FO-PI controller using the proposed auto-tuning method consists in
determining the forbidden region using (2). As it has been previously mentioned, the key point in the
design consists in evaluating for the imposed gain crossover frequency, the difference between the
slope of the forbidden region border and that of the loop frequency response:∣∣∣∣∣

∣∣∣∣∣dIm
dRe

− d=L
d<L

∣∣∣∣
ωc

∣∣∣∣∣
∣∣∣∣∣ (3)

where dIm
dRe stands for the slope of the forbidden region border and d=L

d<L

∣∣∣
ω=ωc

is the slope of the loop

frequency response.
The second step in the design consists in the computation of the slope of the forbidden region

border, based on trigonometric relations in Figure 1:

dIm
dRe

= −Re(α) + C
Im(α)

=
cos(α)
sin(α)

(4)

where α = 90o − PM. The slope of the loop frequency response can be computed according to the
following two equations:

dL(jω)

dω

∣∣∣∣
ω=ωc

= P(jωc)
dC(jω)

dω

∣∣∣∣
ω=ωc

+ C(jωc)
dP(jω)

dω

∣∣∣∣
ω=ωc

(5)

dL(jω)

dω

∣∣∣∣
ω=ωc

=
d<L
dω

∣∣∣∣
ω=ωc

+ j
d=L
dω

∣∣∣∣
ω=ωc

(6)

where L(jω) = P(jω)C(jω) is the loop frequency response, P(jωc) is the process frequency response
at the gain crossover frequency, dP(jω)

dω

∣∣∣
ω=ωc

is the derivative of the process frequency response,

C(jωc) and dC(jω)
dω

∣∣∣
ω=ωc

are the controller frequency response and its derivative at the gain crossover
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frequency. To determine the real d<L
dω

∣∣∣
ω=ωc

and imaginary d=L
dω

∣∣∣
ω=ωc

parts in (6), all terms in the right

hand side of (5) have to be computed.
The third step in the design consists in a simple sine test performed on the process, with the

frequency equal to the gain crossover frequency. Based on this, the process frequency response and
its slope can be easily determined [19]. Other techniques can also be used to determine the process
frequency response and its corresponding slope at the gain crossover frequency.

The controller frequency response can be computed considering the following relation:

C(jωc) =
L(jωc)

P(jωc)
= a + jb (7)

where L(jωc) = MLejϕL , with the modulus ML = 1, at the gain crossover frequency, and the phase
ϕL = −180◦ + PM. Replacing (1) in (7), leads to the following results:

ki = −
b

ω−λx
and kp =

1
sin λπ

2 x
(8)

with x = a sin λπ
2 + b cos λπ

2 . Once a and b are determined as in (7), the controller parameters in (8)

depend solely on λ. The derivative of the controller frequency response dC(jω)
dω

∣∣∣
ω=ωc

can be computed

numerically once the parameters of the FO-PI controller are determined.
The last step of the FO-KC auto-tuning method consists in taking small increments for the

fractional order λ in the range λmin < λ < 2 and computing the parameters in (8) as well as C(jωc) and
dC(jω)

dω

∣∣∣
ω=ωc

. Then, evaluation of (5) leads to the real and imaginary parts in (6) required to compute

the slope of the frequency response at the gain crossover frequency. For each λ in the range λmin < λ <
2, it is then possible to evaluate the difference in (3) and select the minimum value. This then results in
the optimal FO-PI controller.

3. Experimental Validation: FO-PI Design for a UR10 Robot

Manipulator robots, Figure 2, represent one of the biggest class of robots which are used in the
factory environment. The relationship between the actuation and the contact forces, which are acting
on the robot, is given by the dynamic equation of motion.

The kinematic model of a manipulated robot can be expressed as a series of rigid bodies connected
by joints [20]. The dynamics of the robot can be defined using spatial vector notation or canonical
equations (which are also used in this study). There are two canonical forms used to describe the
equation of motion, the joint space formulation:

Q = M(q)
..
q + C(q,

.
q)

.
q + G(q) (9)

and the operational space formulation:

F = Λ(x)
.
v + Y(x, v) + Φ(x) (10)

where q,
.
q,

..
q ∈ <n represent the joint variables (the generalized joint coordinates, the velocity and the

acceleration), M(q)∈ <nxn is the inertia matrix, C(q,
.
q) is the n × 1 vector of the Coriolis and centrifugal

forces, G(q) is the gravity force. The parameters x, v and F represent the operational space coordinates,
the velocity of the end-effector and the force exerted on the end-effector, while Λ is the operational
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space inertia matrix, Y is the vector of the velocity product and Φ is the vector of gravity term. The two
canonical forms are related and thus the following relation can be given:

v = J
.
q

Q = JT F
Y = Λ(JM−1C

.
q−

.
J

.
q)

(11)

where J is the Jacobian matrix of the manipulated robot.
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In most of the robotics applications, one needs to control the pose of the end-effector, which can
be done through the direct kinematics formulation. The direct kinematics can be calculated via the
Denavit-Hartenberg (D-H) formulation [21]. In this research study, a 6-degrees of freedom manipulator
robot is considered, thus the direct kinematic equation is given as:

0T6(q) = 0 A1(q1)
1 A2(q2) . . . 5 A6(q6) (12)

where i−1 Ai(qi), i = 1, 6 represents the homogeneous transformation matrices defined as:

i−1 Ai = Rotz,θi Transz,di
Transx,ai Rotx,αi =


cos θi − sin θi cos αi sin θi sin αi
sin θi cos θi cos αi − cos θi sin αi

0 sin αi cos αi
0 0 0

 (13)

where the parameters θi, ai, di, αi represent the D-H parameters related to joint i. These parameters
associated to the UR10 robot considered in this study are given in Table 1.
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Table 1. D-H parameters for UR10 robot.

Joint θ d a α

1 θ1 0.12 0 π/2
2 θ2 0 −0.61 0
3 θ3 0 −0.57 0
4 θ4 0.16 0 π/2
5 θ5 0.11 0 −π/2
6 θ6 0.09 0 0

Nowadays, a large number of the industrial robots are driven by brushless servo motors.
Several studies in the area of control of manipulator robots consider Cartesian coordinates as control
variables. However, in order to obtain the desired Cartesian trajectory for the end-effector attached
to the robot, each joint axis must follow a specific trajectory. The common approach to control the
robot joints is based on the decentralized techniques, which consider an independent controller for
each joint. In this study, the manipulated variable was considered as being the applied voltage Va,
while the controlled variable is the position θ(t). In the case of speed control, the controlled variable is
the angular velocity ω(t). The dynamics of a motor attached to a joint j can be defined as:

Jm
.

ω + Bω + τc(ω) = KmKaVa (14)

with τc the Coulomb’s law of friction, B the viscous friction, Km is the motor torque, Ka is the
transconductance of the amplifier and Jm the total inertia seen by the motor for joint j. For simplification
reasons, if the Coulomb friction from Equation (14) is ignored, the equivalent Laplace transform of (14)
is given by:

sJmΩ(s) + BΩ(s) = KmKaVa(s) (15)

where Ω(s) and Va(s) are the Laplace transform of their corresponding signal from time domain ω and
Va. Thus, the transfer function of a motor drivetrain attached to a robot joint can be written as:

Ω(s)
Va(s)

=
KmKa

Jms + B
(16)

However, for the purpose of designing the fractional order PI controller using the FO-KC
auto-tuning principle, there is no need to determine the parameters of the actual model in (16),
but only its frequency response at a selected gain crossover frequency, as well as the corresponding
frequency response slope. The gain crossover frequency selected for the UR10 robot is ωc = 15.7 rad/s.
A sine signal is applied on the robot reference as indicated next and shown in Figure 3:

w(t) = 5 sin(ωct) (17)

It is important to note that an open loop response is impossible to obtain, therefore a closed loop
test is performed with a simple P controller, with a proportional gain kp = 15. Using this information,
along with some filtering techniques [19,22], it is possible to obtain the required robot frequency
response and its corresponding frequency response slope:

P(jωc) = −0.001143− 0.02714j (18)

dP(jω)

dω

∣∣∣∣
ω=ωc

= −0.0006172− 0.001826j (19)



Algorithms 2018, 11, 95 8 of 13

The imposed phase margin to design the FO-PI controller in (1) is selected as PM = 60◦.
The forbidden region center C, and its radius, R, are determined using (2):

C = 1/cos(PM) = 2, R =
√

C2 − 1 = 1.73 (20)

The slope of the forbidden region border is next computed according to (6):

dIm
dRe

= −Re(α) + C
Im(α)

=
cos(α)
sin(α)

= 1.73 (21)

where α = 90
◦ − PM = 30

◦
.

The controller frequency response can be computed considering (5):

C(jωc) =
L(jωc)

P(jωc)
= a + jb = 32.62− 17.05j (22)

where the loop frequency response is L(jωc) = MLejϕL = −0.5− 0.866j.
Performing now the last step of the FO-KC auto-tuning method implies taking small increments

for the fractional order λ and computing the parameters of the FO-PI, as well as the slope of the loop
frequency response. Then, for each fractional order λ, it is possible to evaluate the difference in (3) and
select the minimum value. This then results in the optimal FO-PI controller:

CPI(s) = 28.71
(

1 + 6.44s−0.85
)

(23)

To implement the controller in (23), a novel direct discretization method is used [23].
The approximation of the FO-PI controller to a discrete-time equivalent of order 4 is done using
a sampling period of 0.1 s. The frequency response of the FO-PI controller in (23) and its discrete-time
approximation is given in Figure 4.

The performance of the fractional order controller in (23), designed using the FO-KC auto-tuning
method, has been evaluated in a real time application using a UR10 robot considering a pick and place
movement. Since joints 2 and 3 have larger variation in comparison with other joints, the designed
controller was implemented and applied to these joints. Multiple experiments were conducted in order
to validate and test the robustness of the controller. For the pick and place task, the first experiment
was conducted using the next configuration [−60, −25, −50, −30, 170, 260] and the obtained results
are given in Figures 5 and 6.
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The second experiment provided in this paper made use of the following configuration [120,
−70, −125, 65, −30, 90] and the results are illustrated in Figures 7 and 8. It can be easily noticed that
compared to the default PID controller running on the robot, the FO-PI controller in (23) produces
improved closed loop results: The settling time is fast, similar to the default controller; however,
there is no overshoot. A further conclusion by comparing the closed loop result in Figures 5–8 shows
that the FO-PI controller is also robust, since the new robot configuration does not lead to an increase
in the overshoot, as in the case of the default controller.Algorithms 2018, 11, x FOR PEER REVIEW  10 of 12 
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4. Conclusions

The paper presents an experimental validation of a novel auto-tuning method for robust fractional
order controllers. The auto-tuning method extensively simplifies the classical tuning techniques for
fractional order controllers that imply the use of a process model, as well as the need to solve a system
of nonlinear equations. The advantage of the proposed auto-tuning method resides in the fast and
simple extraction of all process information required for the tuning, as well as in producing controllers
robust to gain uncertainties.

The tuning of the fractional order controllers using the FO-KC auto-tuning method is based
on determining a forbidden region in the Nyquist plane using the phase margin requirement and
computing the parameters of the fractional order controller such that the loop frequency response
avoids entering the forbidden region. Moreover, to ensure the iso-damping property, the optimal
FO-PI controller is selected as the one that minimizes the difference between the slope of the loop
frequency response and the slope of the forbidden region border.

To validate the proposed method, a case study has been used consisting of a pick and place
movement of an UR10 robot. The experimental results, considering two different robot configurations,
demonstrate that the designed fractional order PI controller is indeed robust.
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Further work includes comparisons with other auto-tuning methods to demonstrate the benefits
of using the proposed algorithm. Also, a detailed analysis regarding the computational cost and a
comparison in terms of accuracy and computational cost with other methods existing in the literature
can be considered, as well as a theoretical analysis to demonstrate the convergence of the proposed
method and to support the experimental results.
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