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Abstract: With advances in information technology, people face the problem of dealing with
tremendous amounts of information and need ways to save time and effort by summarizing the most
important and relevant information. Thus, automatic text summarization has become necessary to
reduce the information overload. This article proposes a novel extractive graph-based approach to
solve the multi-document summarization (MDS) problem. To optimize the coverage of information in
the output summary, the problem is formulated as an orienteering problem and heuristically solved
by an ant colony system algorithm. The performance of the implemented system (MDS-OP) was
evaluated on DUC 2004 (Task 2) and MultiLing 2015 (MMS task) benchmark corpora using several
ROUGE metrics, as well as other methods. Its comparison with the performances of 26 systems
shows that MDS-OP achieved the best F-measure scores on both tasks in terms of ROUGE-1 and
ROUGE-L (DUC 2004), ROUGE-SU4, and three other evaluation methods (MultiLing 2015). Overall,
MDS-OP ranked among the best 3 systems.

Keywords: multi-document summarization; orienteering problem; ant colony system; graph-based

1. Introduction

Despite the availability of information today, users need tools that enable them to reach their
desired content by automatically summarizing the important and relevant parts and discarding those
that are similar. Text summarization, specifically multi-document text summarization (MDS), which
creates a summary from a set of related documents, is a useful solution to the exponential growth
of information on the Internet [1]. In more than half a century, several approaches have been used
to automatically generate summaries, such as statistical and graph-based approaches. In addition,
some summarization studies have followed a global selection approach of summary sentences whereby
they are selected in a way that optimizes the overall score of the resulting summary. Studies in both
global selection and graph-based approaches have achieved promising results (for more details,
see Sections 2.4 and 2.6.)

Motivated by the promising results of those studies, this paper proposes a novel graph-based
MDS approach to produce extractive generic summaries that optimize information coverage objective.
The summarization problem is reduced to an orienteering problem (OP), a variant of the traveling
salesman problem (TSP) [2]. Different problems were modeled as an OP and many heuristics were
proposed to approximate their solution [3,4]. Reducing the MDS problem into OP enables obtaining
the benefits from all these studies. The proposed approach is based on a swarm intelligence (SI)
meta-heuristic—more specifically, an ant colony system (ACS) [5]—to find an approximate solution
to MDS. ACS is a variant of ant colony optimization (ACO) algorithms which are considered among
the best SI algorithms applied to TSP [5]. ACS was applied for single text summarization and short
document summarization; however, to the best of our knowledge, it has not been studied for MDS.
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An MDS system, called MDS-OP, was implemented around the proposed solution. It was
evaluated and tested on two benchmark corpora of DUC 2004 (Task 2) and multilingual
multi-document summarization (MMS) task at MultiLing 2015, referred to as MultiLing 2015
(MMS task). Several performance evaluation metrics were used including ROUGE metrics [6],
and AutoSummENG [7], MeMoG [8], and NPowER [9] methods. When compared to 26 rival systems,
MDS-OP achieved the best F-measure scores on both corpora in terms of ROUGE-1, ROUGE-L (DUC
2004), and ROUGE-SU4 (MuliLing 2015).

The remainder of this paper is arranged as follows. Section 2 briefly presents some related studies.
Sections 3 and 4 describe OP and ACS, respectively. Section 5 describes the main steps of the proposed
solution. Section 6 presents the experimental results. Finally, Section 7 concludes this study and
outlines some future research directions.

2. Related Work

For more than half a century, several approaches have been used to automatically generate
summaries. Different ways of classifying these approaches have been presented in the literature.
Based on linguistic space levels, Mani [10] divided the summarization approaches into shallow
approaches, deeper approaches, and hybrid approaches. The shallow approaches commonly generate
extractive summaries, and their representation level is, at most, at the syntactic level. The deeper
approaches produce abstractive summaries, and their representation level is, at least, at the semantic
level. The hybrid approaches combine the two aforementioned approaches. In addition, based on the
dominant techniques used in the summarization process, Lloret and Palomar [11] differentiated among
five kinds of approaches: statistical-based, topic-based, graph-based, discourse-based, and machine
learning-based systems. This section presents seven approaches for text summarization, including
those based on SI meta-heuristics.

2.1. Statistical Approaches

This approach has been followed since the first development of the field [12,13]. An example
of a statistical feature that has been used frequently in the summarization studies is word frequency.
Litkowski [14] proposed a frequency-based method for sentence ranking , whereby the summary is
generated by extracting the top ranked ones while checking and eliminating complete duplicates.
Lacatusu et al. [15] proposed a summarization system which exploits the highest ranked terms, called
topic signature terms. Each term is given a weight based on its relative frequency in a relevant cluster
of documents. In more detail, the system scores sentences based on these terms. Then, to deal with
the redundancies, it chooses a sentence to be part of the summary if the number of overlapped topic
signature terms between this sentence and the already selected ones is below a predefined threshold.
Another statistical feature used in summarization is term frequency times inverse document frequency
(TF-IDF), which is an information-retrieval word importance measure that is also used to calculate
sentence scores. Nobata and Sekine [16] used this feature along with other features to give a score
to each sentence. Nevertheless, to improve the performance, the position feature is only used with
document clusters in which the key sentences occur at the beginning of each document. Finally,
the redundancy problem is handled by computing the similarity between sentences.

Conroy et al. [17] examined the effects of four different term weighting approaches, including
term frequency and nonnegative matrix factorization, as well as different sentence segmentation and
tokenization methods on the performance of multi-lingual single document and multi document
summarizers. In the sentence extraction phase, they used OCCAMS [18] algorithm. Balikas and
Amini [19] proposed an MDS approach in which enhanced text representations are produced by
a neural network and used to extract summary sentences based on the cosine similarity measure.
Each sentence is compared to the most frequent terms and to the title of the document to which
it belongs. A text mining algorithm was also used. Hirao et al. [20] scored sentences based on a
sequential pattern (n-grams and gappy n-grams), which is extracted using a text mining algorithm [20].
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Wan et al. [21] examined the hierarchical Latent Dirichlet Allocation (hLDA) model for text summarization.
A hierarchical topic tree is built for each set of documents. Each node represents a latent topic and
each sentence is assigned to a path which starts at the root and ends at a leaf. Summary sentences
are extracted in a way that maximizes the coverage of the important sub topics and ensures that the
redundancy rate among these sentences is less than 0.5.

2.2. Machine Learning Approaches

Machine learning algorithms have been used in text summarization systems for different purposes,
such as to select summary sentences or to assign weights to text terms. The CLASSY model [22] uses a
hidden Markov model (HMM) along with the pivoted QR algorithm [23] to score and select summary
sentences. The classifier was trained using the DUC 2003 corpus. In addition, CLASSY uses only
one feature; the number of signature tokens, which are the tokens that are more likely to be found
in the document to be summarized than in the corpus. Genetic algorithms (GAs) have been used in
summarization. Litvak et al. [24] proposed a multilingual text summarization tool, called MUSEEC.
This tool is an extension of the MUSE [25] summarization algorithm that gives a score for each sentence
calculated based on a weighted linear combination of different language independent statistical
features. MUSE follows a supervised learning approach that uses GA to find the best weights of these
features. MUSEEC expands MUSE by adding a list of features based on Part-of-Speech tagging. Finally,
deep learning has been recently introduced to text summarization. Zhong et al. [26] and Yousefi-Azar
and Hamey [27] used different deep learning models with query-oriented single document and
multi-document summarization, respectively.

2.3. Clustering Approaches

Clustering has been used in text summarization to identify the topics in a set of documents.
Blair-Goldensohn et al. [28] proposed a system that divides the sentences into clusters and identifies
one representative sentence for each cluster. Then, the proposed system ranks these representative
sentences based on the size of the cluster they belong to. Finally, it creates a summary by selecting the
top-ranked representative sentences. Aries et al. [29] proposed a method that uses a fuzzy clustering
algorithm to cluster the input text into topics. The summary sentences are scored based on their
coverage of these topics.

The centroid of the document cluster has been included in the solution of many text summarizers,
such as in the summarization approach proposed by Saggion and Gaizauskas [30]. It ranks the
sentences based on three features: the similarity to the cluster centroid, the similarity to the lead part
of the document, and the sentence position. In addition to identifying text topics, Angheluta et al. [31]
used a clustering to eliminate the redundancy in the summary sentences. In addition, the important
sentences were chosen based on the number of keywords they contained, and keywords were detected
using the authors’ topic segmentation module.

2.4. Graph-Based Approaches

Representing texts as graphs has become a widely used approach in the application of text
processing [32]. In the field of text summarization, many studies have followed the graph-based
approach and used different graph representations. For example, graph nodes can represent different
types of textual units, such as sentences [33] or words [34]. Moreover, the edges between the nodes can
be represented using different types of relationships, such as using the cosine similarity measure [33].
Furthermore, different kinds of graphs have been used, such as the bipartite graph between documents
terms and sentences [35]. Several graph-based algorithms, such as random walk [36] and spreading
activation [34], have been used to give a score for each node.

Vanderwende et al. [37] proposed a system that creates a semantic graph by connecting the nodes
of the logical forms of text sentences with bidirectional edges that represent the semantic relationships
and produces the summary by extracting and merging part of the logical forms. Wan et al. [38]
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proposed an iterative reinforcement solution that combines ideas similar to PageRank [39] and the
HITS [40] graph-ranking algorithms. Erkan and Radev [33] proposed a new sentence centrality
measure, LexPageRank, based on the concept of prestige or centrality in the social network field. This
measure is similar to the PageRank [39] method, except that the edges in the sentence similarity graph
are undirected edges that are added based on a predefined threshold.

Remus and Bordag [41] proposed an algorithm that starts by a clustering step where the input
documents are ordered chronologically based on time references extracted from the text and then
grouped based on their position on the time line. Then, it ranks the sentences in each cluster
separately using FairTextRank algorithm, which is an iterative extension of the PageRank [39]
algorithm. The summary is constructed by selecting sentences from each cluster. Overall, graph-based
summarization approaches have been shown competitive with the other state-of-the-art approaches.
For example, the graph-based summarization approach proposed by Wan et al. [42] outperformed the
best three participating systems in DUC 2003 and DUC 2004 competitions.

2.5. Semantic Approaches

Lexical and co-reference chains have been investigated for text summarization. Chali and Kolla [43]
extracted lexical chains from the text to give a score for each sentence, segment, and cluster (the
documents to be summarized are divided into clusters). Then, summary sentences are selected by
extracting the best sentences from the best segment of the best cluster. Bergler et al. [44] proposed a
solution that consists in ranking the noun phrases (NPs) based on the NP cross-document co-reference
chains and generating the summary by extracting the sentences with the top-ranked NPs.

2.6. Optimization-Based Approaches

Several summarization studies propose to solve the text summarization as an optimization
problem. The selection of summary sentences has been reduced to different optimization problems.
The summary sentences are selected according to one of the following approaches: (1) the greedy
selection approach, in which the best textual units are selected one item at a time, and (2) the global
optimal selection approach that searches for the best summary rather than the best sentences. The first
approach rarely produces the best summaries [45] and, thus, most of the summarization studies are
based on the second one. In the literature, several objectives have been studied and optimized
using different optimization methods. Rautray and Balabantaray [46] described some of these
objectives, including text coherence, which is the relatedness of summary contents (e.g., sentences)
and significance, which is how relevant the summary content is to the documents to be summarized
and to the user’s needs (e.g., user query). Nevertheless, in all these formulations, searching for the
optimal summary is an NP-hard problem [47], and it is therefore essential to approximate the solution
to MDS. Meta-heuristics can be used to find approximate solutions to NP-hard problems, such as
GA [48] and a population-based method [49]. For example, Vanetik and Litvak [50] proposed a linear
programming-based global optimization method to extract summary sentences.

Promising results have been produced from the global optimal selection approach. For example,
the evaluation results of summaries produced by Shen and Li’s summarization framework [47]
are not far from the results of the best methods in various DUC competitions. In addition,
all the state-of-the-art methods on corpora from DUC 2004 through DUC 2007 in both generic and
query-driven summarization were outperformed by the proposed solution of Lin and Bilmes [51],
a monotone, non-decreasing submodular function for summarizing documents. Finally, in addition to
the fact that obtaining approximate solutions are much faster than obtaining the exact one, some studies
have shown that the results of both solutions are comparable [52]. Nevertheless, these experiments
have been conducted on a limited size problem.
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2.7. Swarm-Intelligence-Based Approaches

SI has been introduced to text summarization during the last decade. It produced promising
results in several studies on different NLP problems, including text summarization [53–57].
The majority of SI-based summarization studies used particle swarm optimization (PSO). In these
studies, PSO algorithms were used to select summary sentences [53,58] or set the weight of each
feature extracted from the text to be summarized [54]. Alguliev et al. [53] proposed an optimization
model to solve the summarization problem. This model uses a discrete PSO algorithm to generate
multi-document summaries by maximizing their coverage and diversity. Using DUC 2001 and 2002
corpora, the model showed promising evaluation results. Binwahlan et al. [54] used a PSO algorithm
as a machine learning technique and ROUGE-1 as a fitness function to investigate the best features’
weights. Asgari et al. [58] proposed an extractive single-document summarization method based on a
multi-agent PSO.

Other SI meta-heuristics have also been used with text summarization, including artificial bee
colony (ABC) [55,56], ACO [57,59], and cuckoo search (CS) [60]. Peyrard and Eckle-Kohler [55]
proposed a general optimization framework to summarize a set of input documents using the ABC
algorithm. Sanchez-Gomez et al. [56] also proposed an ABC based summarizer by formulating the
summarization problem as a multi-objective one. ACO has also been used for single document [61]
and short text [57,59] summarization problems. Finally, Rautray and Balabantaray [60] proposed a
multi-document summarizer using CS meta-heuristic.

3. Orienteering Problem

The orienteering problem (OP) is an NP-hard problem which was introduced in 1987 by
Golden et al. [62]. Its name came from the orienteering sport [63], which is the game where the
competitors must find a path by visiting some of the control points within a limited amount of time.
Each control point has a score or profit. Each competitor should start at a certain control point and
return to another one. The competitors try to maximize the total collected profit gained from the
visited control points without exceeding the time budget constraint. OP belongs to the family of
problems called traveling salesman problems (TSPs) with profits [64]. These problems are variants of
the TSP where each vertex has a profit and the solution can include a subset of the existing vertices.
The objective function of OP is to maximize the collected scores while the travel cost (e.g., time) is a
constraint to satisfy (e.g., time to not exceed) [3]. In other words, the OP asks to find a path starting
from the first vertex and ending at the last one that maximizes the total collected scores while the total
traveling time does not exceed a predefined time budget.

More formally, OP can be described as follows [3]. Given a graph GpV, Aqwhere A is the set of
the graph arcs, and V “ tv1, . . . , vNu is the set of the N graph vertices (i.e., the set of all control points
in the problem). Each vertex vi has a profit pi. Each arc aij has a traveled time tij. A binary variable xij
represents a traversed arc aij from vertex vi to vertex vj. OP asks to maximize the objective:

Maxp
N´1
ÿ

i“2

N
ÿ

j“2

pixijq (1)

subject to the following constraints:
N´1
ÿ

i“1

N
ÿ

j“2

tijxij ď Tmax (2)

N
ÿ

i“2

x1j “

N´1
ÿ

j“1

xiN “ 1 (3)
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N´1
ÿ

i“1

xik “

N
ÿ

j“2

xkj ď 1;@k “ 2, . . . , N ´ 1 (4)

2 ď ui ď N;@i “ 2, . . . , N (5)

ui ´ uj ` 1 ď pN ´ 1qp1´ xijq;@i, j “ 2, . . . , N. (6)

The aforementioned objective function maximizes the total profit of the selected vertices.
Equation (2) represents the time constraint by ensuring that the total traveled time does not exceed a
pre-defined time budget Tmax. Equation (3) guarantees that the vertices v1 and vN are selected as the
first and the last vertices of the solution path, respectively. Equation (4) ensures the connectivity of the
solution path and the uniqueness of its vertices. Equations (5) and (6) guarantee that the solution path
does not contain sub-tours where ui stands for the position of the vertex vi in the path.

4. Ant Colony Optimization

ACO is an SI meta-heuristic inspired from the collective behavior of real ant colonies. Ants use
pheromone traces to communicate with each other to find the shortest path between their nest and
food. There are several ACO algorithm variants for approximating solutions to optimization problems,
such as the ant system (AS) and ACS [5].

ACS was proposed by Dorigo and Gambardella [5] as an improvement of the AS algorithm for
solving large instances of the TSP. ACS modifies the three updating rules of AS: the state transition rule,
the global updating rule, and the local updating rule. An ant k chooses to move from city r to city s by
using the following rule:

s “

#

arg maxuPJkprqtrτpr, uqs.rηpr, uqsβu i f q ď q0 pexploitationq

S i f q ą q0 pbiased explorationq
(7)

where Jkprq is the set of all cities that can be visited by the ant k, τ represents the desirability measure
(the pheromone), η stands for the heuristic value, q is a random number q uniformly distributed over
r0, 1s, and q0 is a parameter with a value between 0 and 1 (inclusive) to control the relative importance
of exploration versus exploitation. The parameter β has a value greater than zero and controls the
relative weight of the pheromone with respect to the heuristic. S is a randomly selected city chosen
according to the following probability distribution:

Pkpr, sq “

$

&

%

rτpr,sqs.rηpr,sqsβ
ř

uPJkprqrτpr,uqs.rηpr,uqsβ
i f s P Jkprq

0 otherwise
. (8)

The state transition rule of ACS, formulated by Equations (7) and (8), is called pseudo-random
proportional. The global updating rule is applied once all the ants complete their tours. In ACS, only the
ant that produces the best tour, so far, is allowed to add an amount of pheromone according to the
following equation:

τpr, sq Ð p1´ αq.τpr, sq ` α.∆τpr, sq (9)

where

∆τpr, sq “

#

pLgbq
´1 i f pr, sq P global best tour

0 otherwise
.

α is the pheromone decay parameter whose values range between 0 and 1, and Lgb is the cost
of the best solution generated from the beginning of the trial. The local updating rule is applied
during the construction of the solutions. The amounts of pheromone of the visited edges are updated
as follows:

τpr, sq Ð p1´ ρq.τpr, sq ` ρ.∆τpr, sq (10)
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where the value of the parameter ρ is between 0 and 1 (exclusive). A possible value for ∆τpr, sq is the
initial pheromone value τ0.

5. The Proposed Solution

The contribution of this work consists of reducing an MDS instance into an OP instance and
then optimizing the information coverage by using an ACS algorithm. Figure 1 illustrates the main
components of the implemented system MDS-OP.

• Formulate the problem as
OP to maximize the
coverage objective.

• Approximate the solution 
using ACS.

Compute the word scores
based on an iterative
reinforcement approach.

• Sentence segmentation
• Tokenization
• Stop word removal
• Stemming

• Represent the text as a
graph.

• Vertices and arcs
represent the sentences
and their lengths,
respectively.

Preprocessing Building intermediate 
representation

Computing the 
content scores

Selecting summary 
sentences

Input: 
Cluster of related documents

Output: 
Summary

Docs

DocSentence 1: underneath, 
rubbl, …
Sentence 2: Venezuela, 
tremor, …
Sentence 3: fall, street, …
… Sentences WordsSentences

Figure 1. The main architecture of multi-document text summarization–orienteering problem (MDS-OP).

5.1. Preprocessing

Four preprocessing steps are applied including text segmentation, tokenization, stemming,
and stop word removal. Text segmentation and tokenization divide the text into sentences and words,
respectively, by using the Stanford CoreNLP tools [65]. Stop words are removed to filter out common
words with low semantic weight [66]. Examples of these words are “and” “the” and “to”. An English
stop word list (http://jmlr.csail.mit.edu/papersvolume5/lewis04a/a11-smart-stop-list/english.stop)
from the SMART information retrieval system is used. Word stemming is performed by using Porter
stemmer (https://tartarus.org/martin/PorterStemmer/). This step enables an equal treatment of the
different variants of terms.

5.2. Building an Intermediate Representation

In this stage, the graph representation is built. The texts to be summarized are represented as a
connected directed graph. Each sentence is added to the graph as a vertex with a weight representing
its content score (i.e., its saliency). Regarding the graph arcs, two arcs in opposite directions are added
between each pair of vertices (i.e., sentences). The weights of each vertex is calculated in the third stage
(see Section 5.3) and used to optimize the information coverage of the output summaries. The weight
of each arc stands for the length of the original sentence (i.e., before the preprocessing stage) that
is represented by the vertex at the end of the arc. In other words, the weight of a graph arc from
vertex vi to vertex vj is the length of the sentence sj. See Figure 2 for an example of input text with
four sentences.

http://jmlr.csail.mit.edu/papers volume5/lewis04a/a11-smart-stop-list/english.stop
https://tartarus.org/martin/PorterStemmer/
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s1 s2

s3 s4

l2

l3

l4

l1

l3

l4l1

l2

l4

l1

l2

l3

1

Figure 2. An example of the intermediate representation of an input text with four sentences. The length
of Sentence 1 (s1), Sentence 2 (s2), Sentence 3 (s3), and Sentence 4 (s4) are l1, l2, l3, and l4, respectively.

5.3. Computing the Content Scores

In this stage, the score of each word in the text is computed to get the content scores of the
sentences. The content score for each sentence is based on the scores of the words it contains.
The proposed algorithm to compute the scores of the words follows the iterative reinforcement
approach proposed by Wan et al. [38]. It combines ideas similar to PageRank [39] and the HITS [40]
graph-ranking algorithms. First, three graphs are built: (1) a sentence-to sentence graph to represent
the relationship among the sentences, (2) a word-to-word graph to represent the relationship among
the words, and (3) a sentence-to-word bipartite graph that connects each sentence with the words it
contains. To compute the scores of the words, the algorithm applies a PageRank-based method to the
sentence-to-sentence and word-to-word graphs, and an HITS-based method to the sentence-to-word
graph, where hubs represent the sentences, and authorities represent the words.

The proposed algorithm computes the arcs weights of the sentence-to-sentence and the
sentence-to-word graphs based on the TF-ISF scores and cosine similarity measure. For the
word-to-word graph, the arc weights are equal to the longest common substring between the two
connected words. The weights of the arcs in sentence-to-sentence, sentence-to-word, and word-to-word
graphs are represented by three matrices: U, W, and V, respectively. The scores of the words
(represented by matrix V) and sentences (represented by matrix U) are computed by applying the
following two equations, which are calculated repeatedly until a convergence state is reached.

Upnq “ α rUTUpn´1q ` β pWTVpn´1q (11)

Vpnq “ α rVTVpn´1q ` β rWTUpn´1q (12)

where rU, rW, and rV are the normalized version of the matrices U, W, and V, respectively.
The normalized transposed of the matrix W is pW. The values of the vector upnq and vector upn´1q

represent the values of the vector U at the iterations n and n´ 1, respectively. Similarly, the values
of the vector vpnq and vector vpn´1q represent the values of the vector V at the iterations n and n´ 1,
respectively. After each calculation of upnq and vpnq, the two vectors are normalized. In addition,
to emphasize the importance of the first sentences, the proposed algorithm gives more weight to the
words of these sentences.
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Several differences exist between the reinforcement approach of Wan et al. [38] and the proposed
algorithm. The proposed algorithm generates multi-document summaries instead of single-document
summaries. It uses the scores of the words to maximize the overall information coverage score of the
resulting summary, whereas the reinforcement approach uses the scores of the sentences to generate
the summaries. Moreover, it computes the similarities among the words in the word-to-word graph
based on the longest common substring to keep the proposed solution language independent, instead
of using knowledge-based or corpus-based measures.

5.4. Selecting Summary Sentences

In this stage, the MDS is formulated as an OP to maximize the content coverage of the produced
summaries. ACS is then used to approximate a solution to OP. Consider an MDS instance. In this study,
the textual unit chosen is the sentence. Therefore, each document is split into sentences. Let D be a set
of related documents to summarize. D “ ts1, . . . , s|D|u, where sk represents sentence k (1 ď k ď |D|)
and |D| is the total number of sentences in D. The MDS problem asks to create a sequence summary S
of a maximum length L by extracting part of sentences from D such that the overall content coverage
of S is maximized. More formally, it asks to optimize the following objective:

S “ maxp
ÿ

skPD

pcovk.zkqq (13)

s.t.
ř

skPDplk.zkq ď L

where covk is the content coverage score of sentence sk, and zk is a binary variable which equals 1 if sk
is a summary sentence and 0 otherwise. The length of sentence sk is lk.

In this study, the content coverage score of each sentence is expressed by the total weight of its
words that have not been covered by other sentences already in S. In other words, regardless of the
number of occurrences of a wordj covered by S, its weight wj is added only once to the total content
coverage score. Therefore, instead of using the scores of sentences, the content coverage score of S is
expressed by the total weight of words it covers as follows:

ÿ

skPD

pcovk.zkq “
ÿ

j

pbj.wjq (14)

where bj is a binary variable defined as follows:

bj “

#

1 i f
ř

skPDpdkj.zkq ě 1

0 otherwise
. (15)

The constant dkj equals 1 if the sentence sk contains the wordj and 0 otherwise.

5.4.1. Encoding of an MDS Instance into an OP Instance

Algorithm 1 outlines the main steps to encode an MDS instance into an OP instance.
The computational complexity of Algorithm 1 can be estimated as follows. The number of

iterations of the first loop is |D|. The number of iterations of the second loop is |D` 2ˆ pp|D| ` 2q ´ 1q,
which is the number of the arcs in the graph that can be created by using the sentences as the vertices
where two arcs are added between each pair of these vertices. Thus, Algorithm 1 runs in Op|D|2q in
the worst case.
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Algorithm 1 Encoding of an MDS instance into an OP instance.

1: Input: MDSpD, Lq: MDS instance
2: D: the set of related documents to be summarized
3: L: maximum summary length
4: Output: OPpTmax, V, Aq: OP instance
5: Tmax: the time budget
6: V: the set of graph vertices (N “ |V|)
7: A: the set of graph arcs
8: Tmax Ð L
9: V Ð ∅

10: A Ð ∅
11: Create s0 Ź Create an empty sentence s0 to be represented by v1
12: cov0 Ð 0
13: l0 Ð 0
14: Create s|D|`1 Ź Create an empty sentence s|D|`1 to be represented by vN
15: l|D|`1 Ð 0
16: cove|D|`1 Ð 0
17: i Ð 0 Ź Adding the sentences as vertices
18: while i ď |D| ` 1 do
19: Create vertex vi`1
20: pi`1 Ð covi
21: V Ð V Y vi`1
22: i Ð i` 1
23: end while
24: for each pair of vertices pvr, vkq in V do Ź Adding the arcs (vr “ vk)
25: Create an arc ark from vertex vr to vertex vk
26: trk Ð lk´1
27: A Ð AY ark
28: Create an arc akr from vertex vk to vertex vr
29: tkr Ð lr´1
30: A Ð AY akr
31: end for
32: return OPpTmax, V, Aq

5.4.2. Decoding a Solution to OP into a Solution to MDS

Algorithm 2 presents the main steps to decode a solution to an instance of OP into a solution to an
instance of MDS. In other words, this algorithm decodes a path of an OP instance into a summary of
an MDS instance. The while loop in Algorithm 2 iterates at most |N| ´ 2, or in other words, |D| times.
Therefore, in the worst case, the algorithm runs in Op|D|q time.

Algorithm 2 Decoding of a solution to OP into a solution to MDS.

1: Input: Path P: a sequence of vertices (starts at vertex v1 and ends at vertex vN)
2: Output: Summary S: a sequence of sentences
3: i Ð nextp1q Ź Get the number of the second vertex in P
4: while i ‰ N do
5: S Ð S` si´1 Ź Get the sentence and append it to the end of S
6: i Ð nextpiq Ź Get the number of the next vertex in P
7: end while
8: return S
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5.4.3. Correctness of the Reduction

The correctness of the reduction of an MDS instance into an OP instance is presented and proved
as follows.

Theorem 1. Let MDSpD, Lq be an MDS instance where D is a set of related documents to be summarized and
L is the maximum summary length. Let OPpTmax, V, Aq be an OP instance where Tmax represents its time
budget, and V and A be the sets of vertices and arcs, respectively. An MDS instance has a solution summary S
with a length up to L and its content coverage is maximized if and only if its corresponding OP instance given
by Algorithm 1 has a solution path P that maximizes the total gained profit, while the total traveled time is less
than or equal to Tmax.

Proof of Theorem 1. Suppose that an MDS instance has a solution summary S, which is a
sequence of sentences xss1, . . . , ssqy where ssk is a kth sentence at S and q is the number summary
sentences. The corresponding OP instance given by Algorithm 1 has a solution path p “

xv1, vps1q`1, . . . , vpsqq`1, vNy. Additionally, vpskq`1 in P represents the kth summary sentence (i.e., ssk)
of the corresponding MDS instance. Based on Algorithm 1, the profit of vpskq`1 in P represents the
coverage score of ssk in S. Moreover, the weight of the arc from, for example, vertex vsr to vertex vsk in
P, represents the added length by including spskq´1 in S. Furthermore, time budget Tmax represents
summary length L. Thus, the following can be concluded:

• The length of S is less than or equal to L, so the total traveled time of P is less than or equal to Tmax:
ř

siPS li ď L ñ
ř

viPP
ř

vjPP tijxij ď Tmax (time budget constraint).
• Maximizing the overall content coverage score of S will maximize the total gained profit of P:

maxp
ř

siPS coviq ñ maxp
ř

viPP piq (maximize the profit).

Conversely, suppose that the OP instance has a solution path P, which is a sequence of
vertices xv1, vp2, . . . , vpy, vNy, where pk represents the kth vertex at P and y` 1 is the total number
of visited vertices. Therefore, based on Algorithm 2, the corresponding MDS solution summary
S “ xspp2q´1, . . . , sppyq´1y is created by appending a sequence of sentences that are represented by the
visited vertices in P starting from the second vertex until reaching the vertex located before the last
one (i.e., ignoring the starting and the ending vertices). In other words, the kth vertex in P represents
the sentence sppkq´1 in S. As a result,

• If the traveled time of P is less than or equal to Tmax, then the total length of S is less than or equal
to L:

ř

viPP
ř

vjPP tijxij ď Tmax ñ
ř

siPS li ď L (summary length).
• Maximizing the gained profit of P will maximize the score of the overall content coverage of S:

maxp
ř

viPP piq ñ maxp
ř

siPS coviq (maximize the coverage).

5.4.4. ACS for OP

An ACS algorithm is proposed to approximate a solution to an OP instance. The original ACS
algorithm was proposed by Dorigo and Gambardella [5] for the TSP. The main steps of the proposed
ACS algorithm for the OP are outlined by Algorithm 3. Specifically, due to the time constraint, each ant
could terminate its path and become inactive at different times based on the vertices (i.e., sentences)
it includes in its solution (i.e., path). A set, called active_set, is used to keep track of the active ants,
which are the ants whose own traveled time does not reach the time budget (i.e., max summary length),
and thus can move further to another vertex and complete its solution. In addition, to maximize the
coverage objective, the content score of each sentence (i.e., the profit of each vertex) is dynamic. This
means that the coverage objective is updated at each cycle based on the last vertex that joins the path.
Therefore, each ant has its own graph to keep track of the current profits values of the graph vertices.
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To satisfy the time constraint by ants, each antk has its own time Tk. The path of antk is stored in the
path Pk. Moreover, each antk keeps track of the set of vertices Jk that have not yet been visited.

Algorithm 3 Approximating an OP solution using ACS.

1: Input: OPpTmax, V, Aq: an OP instance
2: Tmax: the time budget
3: V: the set of graph vertices (N “ |V|)
4: A: the set of arcs between vertex pairs
5: I: the number of iterations
6: τ0: The initial pheromone level
7: Output: Pbest: a solution (i.e., path) to the input OP instance.
8: Lbest_so_ f ar Ð 0 Ź Initialize the content score of the best path found so far
9: Pbest_so_ f ar Ð ∅ Ź Initialize the best path found so far

10: while I “ 0 do
11: I Ð I ´ 1
12: Ź Starting the initialization step
13: for each arc aij in A do
14: τij Ð τ0 Ź Set the initial pheromone level of arc aij
15: end for
16: active_ant Ð ∅
17: for each antk do Ź Initialize each ant
18: Pk Ð ∅
19: Tk Ð Tmax
20: if pt1pk`1q ` tpk`1qNq ď Tmax then Ź Check the time budget constraint
21: active_ant Ð active_ant` antk
22: Pk Ð Pk ` vr1 Ź Append the first vertex to the path
23: rk1 Ð k` 1 Ź rk1 is the second vertex for antk
24: Pk Ð Pk ` vrk1

25: Tk Ð Tk ´ t1rk

26: rk Ð rk1 Ź The vertex rk is current location of antk
27: Jkprk1q Ð t1, . . . , nu ´ rk1 ´ 1´ N Ź Jkprk1q is the set of vertices that can be visited by

antk at vertex rk1 in addition to vN
28: end if
29: end for
30: Ź Building the paths of ants
31: while active_ant “ ∅ do
32: for each antk in active_ant do
33: Choose the next vertex vdk

for antk according to Equation (7) and Equation (8)
34: if vdk

is not exist then Ź Can’t add any vertex and satisfy the time constraint Tk or antk

passed through all the vertices
35: active_ant Ð active_ant´ antk
36: else
37: Jkpdkq Ð Jkprkq ´ dk
38: Pk Ð Pk ` vdk
39: Tk Ð Tk ´ trkdk

Ź Subtract the traveled time to reach vdk
40: end if
41: end for
42: Ź Pheromone local updating using Equation (10)
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Algorithm 3 (Cont.)

43: for each antk in active_ant do
44: τrkdk

Ð p1´ ρq τrkdk
` ρ τ0 Ź arkdk

is the arc from rk to dk
45: rk Ð dk Ź dk is the current vertex of antk
46: end for
47: end while
48: for each antk do
49: Pk Ð Pk ` vN Ź Add the last vertex
50: end for
51: for each antk do
52: Compute Lk Ź Lk is the total profit of Pk
53: end for
54: Find Lbest Ź The highest Lk
55: Ź Pheromone global updating using Equation (9)
56: for each aij included in Pbest do
57: τij Ð p1´ αq τij ` α .Lbest
58: end for
59: Ź Check if the best current path Pbest is better than all the paths that have been discovered so

far
60: if pLbest ą Lbest_so_ f arq then
61: Lbest_so_ f ar Ð Lbest
62: Pbest_so_ f ar Ð Pbest
63: end if
64: end while
65: return Pbest_so_ f ar

At the beginning, the first and last vertices are both removed from Jk. Then, after adding the first
vertex v1, each ant is moved to a different vertex. The number of ants is equal to the number of vertices
minus 2 (representing the first and the last vertices.) The heuristic value used by each ant to move
from its current location to a new vertex is based on the profit gained from the current vertex. For the
ACS parameters, the same values recommended by Dorigo and Gambardella [5] were used, except the
number of ants, which was set to the number of sentences in the input text (see Table 1.)

Table 1. ACS parameter settings.

Parameter Value

Number of ants (m) Number of sentences in the text to be summarized.

Initial pheromone value (τ0) n´1.Lnn, Lnn is the overall coverage (i.e., total profit) of the summary
generated by following the nearest neighbor heuristic, and n is the
number of sentences in this summary.

Pheromone decay parameters (α and ρ ) 0.1

Heuristic exponent (β) 2

6. Experiments

Several experiments were conducted on a PC equipped with an Intel(R) Core(TM) i7-6500U
CPU, a 2.5 Ghz processor, and 12 GB of RAM. MDS-OP was implemented by using the Java
programming language.
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6.1. Corpora

Since 1998, a number of conferences and workshops have been organized to address automatic
summarization problems. In this study, two corpora were selected to evaluate the performance of
MDS-OP. The first one is DUC 2004 (Task 2). DUCs (http://www.nlpir.nist.gov/projects/duc/index.
html) were an important series of conferences that addressed issues of automatic summarization. They
were held yearly between 2001 and 2007. Competitions were organized to compare summarization
systems on different corpora related to different tasks. The corpus of Task 2 from DUC 2004 consists of
50 English clusters where each one of them contains around 10 documents, and the main task is to
create a short summary with a length up to 665 bytes for each cluster. The published results include
the scores of eight human summarizers, a baseline, and 16 participating systems (see Table 2).

Table 2. Systems that participated at DUC 2004 (Task 2).

System ID Research Group (Participant) Reference

CCSNSA04 NSA [22]
MEDLAB_Fudan Fudan University *
CL CL Research [14]
LARIS.2004 Laris Labs [48]
ULeth2004 University of Lethbridge [43]
columbia1 Columbia University [28]
CLaCDUCTape2 Concordia University [44]
webcl2004 ISI *
kul.2004 KU Leuven [31]
lcc.duc04 LCC [15]
uofo University of Ottawa *
msr-nlp.duc2004 Microsoft [37]
crl_nyu.duc04 CRL/NYU [16]
nttcslab.duc2004 NTT [20]
shef2004.saggion University of Sheffield [30]
UofM-MEAD University of Michigan [33]

* The official DUC website does not contain any details on these participants.

The second corpus used to evaluate the algorithm is the corpus of the MMS task at MultiLing 2015
(http://multiling.iit.demokritos.gr/pagesview/1516/multiling-2015) [67], which is a special session at
SIGdial 2015 (http://www.sigdial.org/workshops/conference16/). It was built upon the corpus of the
MultiLing 2013 (http://www.nist.gov/tac/2011/Summarization/index.html) workshop at ACL 2013,
which in turn is based on the TAC 2011 MultiLing Pilot (http://multiling.iit.demokritos.gr/pages/
view/662/multiling-2013) corpus. This corpus contains sets of documents written in 10 languages.
MDS-OP was evaluated on the English version which consists of 15 sets, each including 10 documents.
The participants were asked to provide partially or fully language-independent multi-document
summarizers, which produce at most 250 words summaries. Each summarizer was applied to at least
two different languages. Ten teams participated to MMS task in MultiLing 2015 (see Table 3).

http://www.nlpir.nist.gov/projects/duc/index.html
http://www.nlpir.nist.gov/projects/duc/index.html
http://multiling.iit.demokritos.gr/pages view/1516/multiling-2015
http://www.sigdial.org/workshops/conference16/
http://www.nist.gov/tac/2011/Summarization/index.html
http://multiling.iit.demokritos.gr/pages/view/662/multiling-2013
http://multiling.iit.demokritos.gr/pages/view/662/multiling-2013
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Table 3. Systems that participated at MultiLing 2015 (MMS task).

System ID Participant Reference

MMS1 UJF-Grenoble [19]
MMS2 UWB *
MMS3 ExB [41]
MMS5 ESI-AllSummarizer [29]
MMS8 IDA-OCCAMS [17]
MMS9 GiauUngVan *

MMS11 SCE-Poly [50]
MMS12 BUPT-CIST [21]
MMS13 BGU-MUSE [24]
MMS15 NCSR/SCIFY-NewSumRerank *

* The official MultiLing 2015 website does not contain any details on these participants.

6.2. Evaluation Metrics

This study used ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [6] to evaluate the
performance of MDS-OP. ROUGE is a set of metrics used to automatically evaluate summarization
systems by counting the overlapping units (e.g., n-gram) between the automatically produced summary
(i.e., the peer) and one or a set of human created summaries (i.e., references). ROUGE has been adapted
by DUC since DUC 2004 [68] and it comprises different metrics, including ROUGE-N (N-gram
Co-Occurrence Statistics), ROUGE-L (Longest Common Subsequence), ROUGE-S (Skip-Bigram
Co-Occurrence Statistics), and ROUGE-W (Weighted Longest Common Subsequence). The recall
version of ROUGE-N measure, for example, evaluates a given summary by calculating the n-gram
recall between the summary obtained and a set of reference (i.e., model) summaries as follows:

ř

SPtRe f erenceSummariesu
ř

gramnPS Countmatchpgramnq
ř

SPtRe f erenceSummariesu
ř

gramnPS Countpgramnq

where Countmatch is the maximum number of the shared n-grams between the summary to be evaluated
and reference ones, Count is the sum of the number of n-grams in the reference summaries, and n is the
n-gram length. ROUGE-L evaluates the summary based on the shared longest common subsequence
(LCS). ROUGE-W is similar to ROUGE-L except it gives more weight to consecutive matches. Finally,
ROUGE-S and ROUGE-SU evaluate the summary based on the shared skip-bigrams with and without
the addition of unigram as counting unit, respectively.

The recent version of ROUGE software package (i.e., ROUGE 1.5.5) calculates the recall, precision,
and F-measure scores. In this paper, for the DUC 2004 corpus, all the results of the baseline, humans,
and rival systems were re-evaluated using this version so all the the comparison results are based on
this version. The same values of ROUGE parameters provided at the competition were used. Different
ROUGE metrics, similar to those used at the competition, were also used in this study. Specifically,
ROUGE-1, ROUGE-2, ROUGE-3, ROUGE-4, ROUGE-L, and ROUGE-W were used. Similar evaluation
process was applied to MultiLing 2015 corpus. The evaluation results are based on using the same
ROUGE metrics (ROUGE-1, ROUGE-2, and ROUGE-SU4) and parameters used at the TAC 2011
MultiLing Pilot. The performance results of MDS-OP are reported in terms of the average F-measure
scores of five runs.

In addition to ROUGE metrics, three official evaluation methods at MultiLing 2015 were used.
The first one is AutoSummENG (AUTOmatic SUMMary Evaluation based on N-gram Graphs) [7],
which is a language-independence method that creates an n-gram graph for each reference and peer
summaries. It calculates the performance of a summary by averaging the similarities between this
summary and each reference summaries. The second method is MeMoG (Merged Model Graph) [8],
which is a variation of AutoSummENG where one merged graph represents all reference summaries.
Finally, NPowER (N-gram graph Powered Evaluation via Regression) [9] is the third method, which is
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a machine-learning-based method where the features are the evaluation methods and the target is the
human evaluation grade. It uses liner regressions to combine the previous two evaluation methods.

6.3. Evaluation Results

Teams that participated to DUC 2004 were allowed up to three runs (i.e., three variants of each
system). In the comparison results depicted in Table 4 and Figures 3–8, only the best results among
the runs of these systems are presented. Similarly, several teams at MultiLing 2015 participated with
several variants, so only the best variants are included in the evaluation. Moreover, three sets of
documents (M001, M002, and M003) were not included in the evaluation since they were provided to
the participants as a training set (see Tables 5 and 6, and Figures 9–14).

The F-measure scores achieved by MDS-OP and those of the 16 participated systems on DUC
2004 (Task 2) are presented in Table 4 in terms of ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-3 (R-3),
ROUGE-4 (R-4), ROUGE-L (R-L), and ROUGE-W (R-W). The relative improvement of MDS-OP over a
system X is calculated as follows:

Relative Improvementp%q “
scorepMDS-OPq ´ scorepXq

scorepXq
ˆ 100. (16)

MDS-OP achieved the best ROUGE-1 and ROUGE-L scores in comparison to the 16 participated
systems and a baseline system (Figures 3 and 7). It obtained the second best ROUGE-2 and
ROUGE-W-1.2 scores (Figures 4 and 8), and the third best ROUGE-3 and ROUGE-4 scores
(Figures 5 and 6). Figures 4–6 show that CCSNSA04 is the top ranked system based on ROUGE-2,
ROUGE-3, and ROUGE-4 metrics. Figure 8 show that MEDLAB_Fudan is the top ranked system
in regard to ROUGE-W. The relative improvements of MDS-OP over the systems CCSNSA04
and MEDLAB_Fudan are 1.78% (ROUGE-1) and 0.14% (ROUGE-L), respectively. The average
improvements of MDS-OP over all the other systems are 14.06% (ROUGE-1) and 13.56% (ROUGE-L).
An ANOVA test (p-value = 0.5) was performed on MDS-OP and the other participated systems,
and MDS-OP significantly outperformed eight systems in terms of ROUGE-1, five systems in terms
of ROUGE-2, five systems in terms of ROUGE-3, three systems in terms of ROUGE-4, nine systems
in terms of ROUGE-L, and eight systems in terms of ROUGE-W. Finally, although MDS-OP was
outperformed by CCSNSA04 (ROUGE-2, ROUGE-3, and ROUGE-4), MEDLAB_Fudan (ROUGE-W),
and crl_nyu.duc04 (ROUGE-3 and ROUGE-4), there were no statistically significant differences between
these systems and MDS-OP.

The F-measure scores achieved by MDS-OP and those of the 10 participated systems on
MultiLing 2015 (MMS task) are presented in Table 5 in terms of ROUGE-1 (R-1), ROUGE-2 (R-2),
and ROUGE-SU4 (R-SU4), and in Table 6 in terms of the evaluation methods AutoSummENG, MeMoG,
and NPowER. MDS-OP produced the best ROUGE-SU4 scores (Figure 11), and the second best
ROUGE-1 and ROUGE-2 scores (Figures 9 and 10). The systems MMS8 and MMS2 are the top ranked
in regard to ROUGE-1 and ROUGE-2, respectively. The relative improvements of MDS-OP over
MMS2 and MMS8 in terms of ROUGE-SU4 are 0.3% and 2.22%, respectively . Moreover, MDS-OP
outperformed all the other systems based on the evaluation methods AutoSummENG (Figure 12),
MeMoG (Figure 13), and NPowER (Figure 14). It outperformed MMS8 (an improvement of 12.05%
in terms of AutoSummENG) and MMS2 (an improvement of 13.56% in terms of MeMoG and an
improvement of 4.66% in terms of NPowER). The average improvements of MDS-OP over all the other
systems are 12.83% (ROUGE-SU4), 26.32% (AutoSummENG), 31.79% (MeMoG), and 9.07% (NPowER).
ANOVA test was also conducted on the ROUGE results for this corpora, and it showed that MDS-OP
significantly outperformed the systems MMS11 and MMS12 in terms of ROUGE-1 and the systems
MMS1, MMS11, and MMS12 in terms of ROUGE-2 and ROUGE-SU4. Finally, in regard to the overall
performance of MDS-OP on both corpora, the average ROUGE-1 and ROUGE-2 results are 0.42721 and
0.13084, respectively.
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Figure 3. ROUGE-1 scores (F-measure) on DUC 2004 (Task 2).

D H C E B

C
C
SN
SA
04 A F

M
D
S-
O
P

cr
l n
yu
.d
uc
04 G

lc
c.
du
c0
4

M
ED

LA
B
Fu
da
n

sh
ef
20
04
.sa
gg
io
n

LA
R
IS
.2
00
4

w
eb
cl
20
04

ku
l.2
00
4

co
lu
m
bi
a1 C

L

U
of
M
-M
EA

D

C
La
C
D
U
C
Ta
pe
2

B
as
el
in
e

m
sr
-n
lp
.d
uc
20
04

nt
tc
sla
b.
du
c2
00
4

U
Le
th
20
04

uo
fo

0

5 · 10−2

0.1

0.15

System

R
O
U
G
E
-2

(F
-m

ea
su
re
)

Rival systems Proposed system Human summarizers Baseline

Figure 4. ROUGE-2 scores (F-measure) on DUC 2004 (Task 2).
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Figure 5. ROUGE-3 scores (F-measure) on DUC 2004 (Task 2).
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Figure 6. ROUGE-4 scores (F-measure) on DUC 2004 (Task 2).
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Figure 7. ROUGE-L scores (F-measure) on DUC 2004 (Task 2).
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Figure 8. ROUGE-W-1.2 scores (F-measure) on DUC 2004 (Task 2).
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Table 4. F-measure scores of ROUGE-1, ROUGE-2, and ROUGE-3, ROUGE-4, ROUGE-L, and ROUGE-W-1.2 metrics of MDS-OP, the baseline, and the participating
systems at DUC 2004 (Task 2). The highest values are written in bold. The highest and the lowest improvements (%) of MDS-OP are indicated by ‹ and ˚, respectively.

System ID R-1 R-2 R-3 R-4 R-L R-W
Relative Improvement of

MDS-OP (%)

R-1 R-2 R-3 R-4 R-L R-W

MDS-OP 0.386142 0.08799 0.031144 0.013086 0.33438 0.15 - - - - - -
2 (baseline) 0.3212 0.06402 0.02011 0.00694 0.2847 0.12639 +20.22 +37.44 +54.87 +88.56 +17.45 +17.39
CCSNSA04 0.37938 0.09215 0.03589 0.01689 0.32803 0.14707 +1.78 ˚ ´4.51 ˚ ´13.22 ˚ ´22.52 ˚ +1.94 +0.88
MEDLAB_Fudan 0.37584 0.0839 0.02675 0.01068 0.3339 0.14853 +2.74 +4.87 +16.43 +22.53 +0.14 ˚ ´0.11 ˚

CL 0.3319 0.07652 0.02762 0.01278 0.28452 0.12568 +16.34 + 14.99 +12.76 +2.39 +17.52 +18.05
LARIS.2004 0.37422 0.08033 0.02555 0.01013 0.32356 0.14308 +3.19 +9.54 +21.89 +29.18 +3.34 +3.69
ULeth2004 0.31238 0.0513 0.01364 0.00469 0.26949 0.11886 +23.61 +71.52 +128.33 +179.02 +24.08 +24.82
columbia1 0.36282 0.07763 0.02637 0.01232 0.32299 0.14339 +6.43 +13.35 +18.10 +6.22 +3.53 +3.47
CLaCDUCTape2 0.35387 0.07028 0.02047 0.00856 0.30801 0.13787 +9.12 +25.2 +52.14 +52.87 +8.56 +7.61
webcl2004 0.3643 0.07987 0.02743 0.01253 0.31921 0.14298 +6 +10.17 +13.54 +4.44 +4.75 +3.77
kul.2004 0.34142 0.07812 0.02599 0.01094 0.29622 0.13193 +13.1 +12.63 +19.83 +19.62 +12.88 +12.46
lcc.duc04 0.37155 0.08528 0.02713 0.01073 0.32281 0.1441 +3.93 +3.18 +14.8 +21.96 + 3.58 +2.96
uofo 0.23412 0.01806 0.00265 0.00074 0.21411 0.09549 +64.93 ‹ +387.21 ‹ +1075.25 ‹ +1668.38 ‹ +56.17 ‹ +55.37 ‹

msr-nlp.duc2004 0.33918 0.05853 0.01338 0.00377 0.30147 0.13339 +13.85 +50.338 +132.77 +247.11 +10.92 +11.23
crl_nyu.duc04 0.34644 0.08608 0.03442 0.01635 0.29838 0.13124 +11.46 +2.22 ´9.52 ´19.96 +12.07 +13.05
nttcslab.duc2004 0.31263 0.05376 0.014 0.00547 0.27008 0.11745 +23.51 +63.67 +122.46 +139.23 +23.81 +26.32
shef2004.saggion 0.36763 0.08255 0.02843 0.01212 0.31964 0.14306 +5.04 +6.59 +9.55 +7.97 +4.61 +3.71
UofM-MEAD 0.33962 0.07135 0.02342 0.01019 0.26726 0.12144 +13.7 +23.32 +32.98 +28.42 +25.11 +22.17
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Table 5. F-measure scores of ROUGE-1, ROUGE-2, and ROUGE-SU4 MDS-OP and the participating
systems on MultiLing 2015 (MMS task). The highest values are written in bold. The highest and the
lowest improvements (%) of MDS-OP are indicated by ‹ and ˚, respectively.

System ID R-1 R-2 R-SU4 Relative Improvement of MDS-OP (%)

R-1 R-2 R-SU4

MDS-OP 0.468276 0.173698 0.204328 - - -

MMS1 0.42463 0.12593 0.16892 +10.28 +37.93 +20.96
MMS2 0.45302 0.17452 0.20371 +3.37 ´0.47 ˚ +0.30 ˚

MMS3 0.43478 0.15572 0.19 +7.7 +11.55 +7.54
MMS5 0.43857 0.1576 0.18962 +6.77 +10.21 +7.76
MMS8 0.47035 0.1673 0.19989 ´0.44 ˚ +3.82 +2.22
MMS9 0.4281 0.14296 0.1844 +9.38 +21.50 +10.81
MMS11 0.41515 0.12438 0.1665 +12.8 +39.65 +22.72
MMS12 0.39243 0.10205 0.14846 +19.33 ‹ +70.21 ‹ +37.63 ‹

MMS13 0.43376 0.15885 0.1914 +7.96 +9.35 +6.75
MMS15 0.42514 0.15414 0.18308 +10.15 +12.69 +11.61

Table 6. Scores of MDS-OP and the participating systems on MultiLing 2015 (MMS task) obtained with
evaluation methods AutoSummENG, MeMoG, and NPowER. The highest values are written in bold.
The highest and the lowest improvements (%) of MDS-OP are indicated by ‹ and ˚, respectively.

System ID AutoSummENG MeMoG NPowER Relative Improvement of MDS-OP (%)

AutoSummENG MeMoG NPowER

MDS-OP 0.2157 0.2521 1.9942 - - -

MMS1 0.1751 0.1988 1.8441 +23.19 +26.81 +8.14
MMS2 0.1909 0.222 1.9054 +12.99 +13.56 ˚ +4.66 ˚

MMS3 0.164 0.1848 1.8039 +31.52 +36.42 +10.55
MMS5 0.1778 0.1944 1.8436 +21.32 +29.68 +8.17
MMS8 0.1925 0.2185 1.9046 +12.05 ˚ +15.38 +4.7
MMS9 0.1657 0.1797 1.8013 +30.18 +40.29 +10.71

MMS11 0.1688 0.1836 1.8125 +27.78 +37.31 +10.02
MMS12 0.1475 0.1651 1.7453 +46.24 ‹ +52.7 ‹ +14.26 ‹

MMS13 0.1607 0.1801 1.7911 +34.23 +39.98 +11.34
MMS15 0.1744 0.2004 1.8446 +23.68 +25.8 +8.11
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Figure 9. ROUGE-1 scores (F-measure) on MultiLing 2015 (MMS task).
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Figure 10. ROUGE-2 scores (F-measure) on MultiLing 2015 (MMS task).
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Figure 11. ROUGE-SU4 scores (F-measure) on MultiLing 2015 (MMS task).
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Figure 12. AutoSummENG scores on MultiLing 2015 (MMS task).
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Figure 13. MeMoG scores on MultiLing 2015 (MMS task).
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Figure 14. NPowER scores on MultiLing 2015 (MMS task).

7. Conclusions

In this paper, we proposed to solve the extractive MDS problem by encoding it as an OP,
and approximate its solution by an ACS meta-heuristic. The implemented system MDS-OP was
evaluated on two benchmark corpora including DUC 2004 (Task 2) and MultiLing 2015 (MMS task)
using several ROUGE metrics and the three official evaluation methods adopted at MultiLing 2015
(AutoSummENG, MeMoG, and NPowER). Its performance was compared to those of 26 systems,
which participated in DUC 2004 and MultiLing 2015 competitions. The F-measure scores show that
MDS-OP outperformed the 16 systems that participated at DUC 2004 (Task 2) in terms of ROUGE-1
and ROUGE-L. It also outperformed the 10 systems which participated at MultiLing 2015 (MMS task)
in terms of ROUGE-SU4, AutoSummENG, MeMoG, and NPowER. The performance of MDS-OP in
terms of other ROUGE metrics (ROUGE-2, ROUGE-3, ROUGE-4, and ROUGE-W) ranked it among
the best three systems. These results demonstrate the effectiveness of the proposed approach for MDS.

MDS-OP does not need a training phase as required by machine-learning based systems. It relies
on only statistical and graph-based features. However, the robustness of its performance depends on
the tuning of the parameters of ACS.

In a future work, we plan to study other semantic features and their impact on the performance of
MDS-OP, as well as other SI metaheuritics which were examined for solving OP. In addition, to improve
the readability of a summary, the text coherency can be included as a second objective, which would
motivate a bi-objective formulation and solving of the MDS problem. This would be performed by
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adding the coherence scores between pairs of sentences in the OP graph and optimizing the order of
summary sentences. Different methods would be examined to calculate the local coherence scores
between sentences pairs.
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Abbreviations

The following abbreviations are used in this manuscript:

ACO Ant colony optimization
ACS Ant colony system
ABC Artificial bee colony
AS Ant system
AutoSummENG AUTOmatic SUMMary Evaluation based on N-gram Graphs
CS Cuckoo search
DUC Document understanding conference

GA Genetic Algorithm
hLDA Hierarchical Latent Dirichlet Allocation
HMM Hidden Markov model
LCS Longest common subsequence
MDS Multi-document summarization
MeMoG Merged Model Graph
MMS Multilingual multi-document summarization
NP Noun phrase
NPowER N-gram graph Powered Evaluation via Regression
OP Orienteering problem
PSO Particle swarm optimization
ROUGE Recall-Oriented Understudy for Gisting Evaluation
SI Swarm intelligence
TAC Text analysis conference
TSP Traveling salesman problem
TF-IDF Term frequency times inverse document frequency
TF-ISF Term frequency times inverse sentence frequency
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