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Abstract: Treedepth is a well-established width measure which has recently seen a resurgence of
interest. Since graphs of bounded treedepth are more restricted than graphs of bounded tree-
or pathwidth, we are interested in the algorithmic utility of this additional structure. On the
negative side, we show with a novel approach that the space consumption of any (single-pass)
dynamic programming algorithm on treedepth decompositions of depth d cannot be bounded by
(2− ε)d · logO(1)n for VERTEX COVER, (3− ε)d · logO(1)n for 3-COLORING and (3− ε)d · logO(1)n for
DOMINATING SET for any ε > 0. This formalizes the common intuition that dynamic programming
algorithms on graph decompositions necessarily consume a lot of space and complements known
results of the time-complexity of problems restricted to low-treewidth classes. We then show that
treedepth lends itself to the design of branching algorithms. Specifically, we design two novel
algorithms for DOMINATING SET on graphs of treedepth d: A pure branching algorithm that
runs in time dO(d2) · n and uses space O(d3 log d + d log n) and a hybrid of branching and dynamic
programming that achieves a running time of O(3d log d · n) while using O(2dd log d + d log n) space.
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1. Introduction

The notion of treedepth has been introduced several times in the literature under several different
names. It was arguably first formalized under the name of elimination (tree) height in the context of
Cholesky factorization [1–6]. The notion has also been studied under the names of 1-partition tree [7],
separation game [8], vertex ranking/ordered colorings [9,10]. Recently, Ossona de Mendez and Nešetřil
brought the same concept to the limelight in the guise of treedepth in their book Sparsity [11]. Here we
use a definition of treedepth that we consider easiest to exploit algorithmically: The treedepth td(G)

of a graph G is the minimal height of a rooted forest F such that G is a subgraph of the closure of F.
The closure of a forest is the graph resulting from adding edges between every node and its ancestors,
i.e., making every path from root to leaf into a clique. A treedepth decomposition is a forest witnessing
this fact.

Algorithmically, treedepth is interesting since it is structurally more restrictive than pathwidth.
Treedepth bounds the pathwidth and treewidth of a graph, i.e., tw(G) ≤ pw(G) ≤ td(G) − 1 ≤
tw(G) · log n, where tw(G) and pw(G) are the treewidth and pathwidth of an n-vertex graph
G respectively. Furthermore, a path decomposition can be easily computed from a treedepth
decomposition. There are problems that are W[1]-hard or remain NP-hard when parameterized
by treewidth or pathwidth, but become fixed parameter tractable (fpt) when parameterized by
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treedepth [12–15]; low treedepth can also be exploited to count the number of appearances of different
substructures, such as matchings and small subgraphs, much more efficiently [16,17].

Lokshtanov, Marx and Saurabh showed—assuming the Strong Exponential Time Hypothesis
(SETH)—that for 3-COLORING, VERTEX COVER and DOMINATING SET algorithms on a tree
decomposition of width w with running time O(3w · n), O(2w · n) and O(3ww2 · n), respectively,
are basically optimal [18]. Their stated intent (as reflected in the title of the paper) was to substantiate
the common belief that known dynamic programming algorithms (DP algorithms) that solve these
problems where optimal. This is why we feel that a restriction to a certain type of algorithm is not
necessarily inferior to a complexity-based approach. Indeed, most algorithms leveraging treewidth
are dynamic programming algorithms or can be equivalently expressed as such [19–24]. Even before
dynamic programming on tree-decompositions became an important subject in algorithm design,
similar concepts were already used implicitly [25,26]. The sentiment that the table size is the crucial
factor in the complexity of dynamic programming algorithms is certainly not new (see e.g., [27]), so it
seems natural to provide lower bounds to formalize this intuition. Our tool of choice will be a family
of boundaried graphs that are distinct under Myhill–Nerode equivalence. The perspective of viewing
graph decompositions as an “algebraic” expression of boundaried graphs that allow such equivalences
is well-established [21,23].

It can be noted that there have been previous formalizations of common algorithmic paradigms in
an attempt to investigate what different kinds of algorithms can and cannot achieve, including dynamic
programming [28–31]. This allowed to prove lower bounds for the number of operations required for
certain specific problems when a certain algorithmic paradigm was applied. Other research shows that
for certain problems such as STEINER TREE and SET COVER an improvement over the “naive” dynamic
programming algorithm implies improving exhaustive k-SAT, which would have implications related
to SETH [32,33].

To formalize the notion of a dynamic programming algorithm on tree, path and treedepth
decompositions, we consider algorithms that take as input a tree-, path- or treedepth decomposition of
width/depth s and size n and satisfy the following constraints:

1. They pass a single time over the decomposition in a bottom-up fashion;
2. they use O( f (s) · logO(1) n) space; and
3. they do not modify the decomposition, including re-arranging it.

While these three constraints might look stringent, they include pretty much all dynamic
programming algorithm for hard optimization problems on tree or path decompositions. For that
reason, we will refer to this type of algorithms simply as DP algorithms in the following.

To show the aforementioned space lower bounds, we introduce a simple machine model
that models DP algorithms on treedepth decompositions and construct superexponentially large
Myhill–Nerode families that imply lower bounds for DOMINATING SET, VERTEX COVER/INDEPENDENT

SET and 3-COLORABILITY in this algorithmic model. These lower bounds hold as well for tree and path
decompositions and align nicely with the space complexity of known DP algorithms: for every ε > 0,
no DP algorithm on such decomposition of width/depth d can use space bounded by (3− ε)d · logO(1)n
for 3-COLORING or DOMINATING SET nor (2− ε)d · logO(1)n for VERTEX COVER/INDEPENDENT SET.
While probably not surprising, we consider a formal proof for what previously were just widely held
assumptions valuable. The provided framework should easily extend to other problems.

Consequently, any algorithmic benefit of treedepth over pathwidth and treewidth must be
obtained by non-DP means. We demonstrate that treedepth allows the design of branching
algorithms whose space consumption grows only polynomially in the treedepth and logarithmic
in the input size. Such space-efficient algorithms are quite easy to obtain for 3-COLORING and
VERTEX COVER/INDEPENDENT SET with running time O(3d · n) and O(2d · n), respectively, and space
complexity O(d + log n) and O(d · log n). Our main contribution on the positive side here are two
linear-fpt algorithms for DOMINATING SET which use more involved branching rules on treedepth
decompositions. The first one runs in time dO(d2) · n and uses space O(d3 log d + d · log n). Compared
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to simple dynamic programming, the space consumption is improved considerably, albeit at the cost of
a much higher running time. For this reason, we design a second algorithm that uses a hybrid approach
of branching and dynamic programming, resulting in a competitive running time of O(3d log d · n) and
space consumption O(2dd log d + d log n). Both algorithms are amenable to heuristic improvements.

While applying branching to treedepth seems natural, it is unclear whether it could be applied to
treewidth or pathwidth. Recent work by Drucker, Nederlof and Santhanam suggests that, relative to a
collapse of the polynomial hierarchy, INDEPENDENT SET restricted to low-pathwidth graphs cannot be
solved by a branching algorithm in fpt time [34].

The idea of using treedepth to improve space consumption is not novel. Fürer and Yu
demonstrated that it is possible to count matchings using polynomial space in the size of the input [17]
and a parameter closely related to the treedepth of the input. Their algorithm achieves a small
memory footprint by using the algebraization framework developed by Loksthanov and Nederlof [35].
This technique was also used by Pilipczuk and Wrochna to develop an algorithm for DOMINATING

SET which runs in time 3d · poly(n) (non-linear) and uses space O(d · log n) [36]. Based on this last
algorithm they showed that computations on treedepth decompositions correspond to a model of
non-deterministic machines that work in polynomial time and logarithmic space, with access to an
auxiliary stack of maximum height equal to the decomposition’s depth.

In our opinion, algorithms based on algebraization have two disadvantages: On the theoretical
side, the dependency of the running and space consumption on the input size is often at least Ω(n).
On the practical side, using the Discrete Fourier Transform makes it hard to apply common algorithm
engineering techniques, like branch and bound, which are available for branching algorithms.

2. Preliminaries

We write NG[x] to denote the closed neighbourhood of x in G and extends this notation to vertex
sets via NG[S] :=

⋃
x∈S NG[x]. Otherwise we use standard graph-theoretic notation (see [37] for any

undefined terminology). All our graphs are finite and simple and logarithms use base two. For sets
A, B, C we write A ] B = C to express that A, B partition C.

Definition 1 (Treedepth). A treedepth decomposition of a graph G is a forest F with vertex set V(G), such
that if uv ∈ E(G) then either u is an ancestor of v in F or vice versa. The treedepth td(G) of a graph G is the
minimum height of any treedepth decomposition of G.

We assume that the input graphs are connected, which allows us to presume that the treedepth
decomposition is always a tree. Furthermore, let x be a node in some treedepth decomposition
T. We denote by Tx the complete subtree rooted at x and by Px the set of ancestors of x in T (not
including x). A subtree of x refers to a subtree rooted at some child of x. The treedepth of a graph
G bounds its treewidth tw(G) and pathwidth pw(G), i.e., tw(G) ≤ pw(G) ≤ td(G)− 1 [11]. For a
definition of treewidth and pathwidth see e.g., Bodlaender [19].

An s-boundaried graph ◦G is a graph G with a set bd(◦G) ⊆ V(G) of s distinguished vertices
labeled 1 through s, called the boundary of ◦G. We will call vertices that are not in bd(◦G) internal. By ◦Gs

we denote the class of all s-boundaried graphs. For s-boundaried graphs ◦G1 and ◦G2, we let the gluing
operation ◦G1 ⊕ ◦G2 denote the s-boundaried graph obtained by first taking the disjoint union of G1

and G2 and then unifying the boundary vertices that share the same label. In the literature the result
of gluing is often an unboundaried graph. Our definition of gluing will be more convenient in the
following.

3. Myhill–Nerode Families

In this section, we introduce the basic machinery to formalize the notion of dynamic programming
algorithms and how we prove lower bounds based on this notion.
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First of all, we need to establish what we mean by dynamic programming (DP). DP algorithms on
graph decompositions work by visiting the bags/nodes of the decomposition in a bottom-up fashion
(a post-order depth-first traversal), maintaining tables to compute a solution. For decision problems,
these algorithms only need to keep at most log n tables in memory at any given moment (achieved
in the case of treewidth by always descending first into the part of the tree decomposition with the
greatest number of leaves). We propose a machine model with a read-only tape for the input that
can only be traversed once, which only accepts as input decompositions presented in a valid order.
This model suffices to capture known dynamic programming algorithms on path, tree and treedepth
decompositions. More specifically, given a decision problem on graphs Π and some well-formed
instance (G, ξ) of Π (where ξ encodes the non-graph part of the input), let T be a tree, path or
treedepth decomposition of G of width/depth d. We fix an encoding T̂ of T that lists the separators
provided by the decomposition in the order they are normally visited in a dynamic programming
algorithm (post-order depth-first traversal of the bag/nodes of a tree/path/treedepth decomposition)
and additionally encodes the edges of G contained in a separator using O(d log d) bits per bag or path.
Then (d, T̂, ξ) is a well-formed instance of the DP decision problem ΠDP. Pairing DP decision problems
with the following machine model provides us with a way to model DP computation over graph
decompositions.

Definition 2 (Dynamic programming TM). A DPTM M is a Turing machine with an input read-only tape,
whose head moves only in one direction and a separate working tape. It accepts as inputs only well-formed
instances of some DP decision problem.

Any single-pass dynamic programming algorithm that solves a DP decision problem on tree, path
or treedepth decompositions of width/depth d using tables of size f (d) that does not re-arrange the
decomposition can be translated into a DPTM with a working tape of size O( f (d) · log n). This model
does not suffice to rule out algebraic techniques, since this technique, like branching, requires to visit
every part of the decomposition many times [17]; or algorithms that preprocess the decomposition
first to find a suitable traversal strategy.

The theorem of Myhill and Nerode is best known from formal language theory where it is used
to show that a language is not regular, but is more general in its original form. For example, if we
look at the language L consisting of all words anban we define the equivalence relation ≡ by defining
u ≡ v if uw ∈ L iff vw ∈ L for all w ∈ {a, b}∗. Then an 6≡ am if n 6= m. This means that ≡ has infinitely
many equivalence classes which shows that L is not regular. To show that an automaton would need
infinitely many states is only the first step and we can furthermore investigate how much space we
need when reading a word of length n. In the case of L you would need Θ(n) states which translates
in about log n bits of space. This is a typical use of the Myhill–Nerode theorem to show a space lower
bound, but our goal is different: Let us assume we have a path decomposition of a graph which is read
from left to right by dynamic programming. This is very similar to reading a word where the bags play
the role of the characters. We want to show a lower bound in term of the size of the bags. Roughly,
the size of a bag is related to the logarithm of the alphabet size because there are exponentially many
graphs in the number of vertices. Our goal is to show a lower bound that is logarithmic in the length of
the input times a double exponential function of the size of the bags. For this we need a family of graphs
that simultaneously has several properties: (1) Each pair ◦G1 6= ◦G2 from the family are not equivalent
in the sense of a Myhill–Nerode equivalence, i.e., there must be a graph ◦H such that ◦G1 ⊕ ◦H and
◦G2 ⊕ ◦H give different results, e.g., one is three colorable and the other is not. (2) The family has to
be very big because its size is a lower bound on the index of the Myhill–Nerode relation. To show
that we need at least ckg(n) space, the size has to be at least 2ck g(n). If, for example, we want to show

that (3− ε)k logO(1)(n) space is not sufficient, the family has to have size at least 2(3−ε)k logO(1)(n) < 23k
.

(3) All graphs in the family and H have to be small. Otherwise 2(3−ε)k logO(1)(n) could be bigger than
23k

. The size n is the size of a graph from the family glued to H.
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The following notion of a Myhill–Nerode family will provide us with the machinery to prove
space lower-bounds for DPTMs where the input instance is an unlabeled graph and hence for
common dynamic programming algorithms on such instances. Recall that ◦Gs denotes the class
of all s-boundaried graphs.

Definition 3 (Myhill–Nerode family). A setH ⊆ ◦Gs ×N is an s-Myhill–Nerode family for a DP-decision
problem ΠDP if the following holds:

1. For every (◦H, q) ∈ H it holds that |◦H| = |H| · logO(1)|H| and q = 2|H|·logO(1) |H|.
2. For every subset I ⊆ H there exists an s-boundaried graph ◦GI ∈ ◦Gs with |◦GI | = |H| · logO(1)|H| and

an integer pI such that for every (◦H, q) ∈ H it holds that

(◦GI ⊕ ◦H, pI + q) 6∈ ΠDP ⇐⇒ (◦H, q) ∈ I .

Let ◦td(◦G) be the minimal depth over all treedepth decompositions of ◦G ∈ Gs where the
boundary appears as a path starting at the root. We define the size of a Myhill–Nerode familyH as |H|,
its treedepth as

td(H) = max
(
◦H,·)∈H,I⊆H

◦td(◦GI ⊕ ◦H)

and its treewidth and pathwidth as the maximum tree/path decomposition of lowest width of any
(◦H, ·) ∈ H where the boundary is contained in every bag.

The following lemma still holds if we replace “treedepth” by “pathwidth” or “treewidth”.

Lemma 1. Let ε > 0, c > 1 and Π be a DP decision problem such that for every s there exists an
s-Myhill–Nerode family H for Π of size cs/ f (s) where f (s) = sO(1) and depth td(H) = s + o(s). Then no
DPTM can decide Π using space O((c− ε)k · logO(1) n), where n is the size of the input instance and k the
depth of the treedepth decomposition given as input.

Before proving Lemma 1 let us look at a simple example. The DP decision problem consists of
graphs that have components of size s and there are not two components that are isomorphic. LetH
be a set of cs different (◦G, 1) where ◦G is a graph of size s with an empty boundary. Then H is an
s-Myhill–Nerode family: The size constraints are fulfilled because |H| = cs and |◦H| = s. For I ⊆ H let
◦GI be the graph whose components are exactly I and the boundary is empty. Obviously (◦GI ⊕ ◦H, 1)
is a no-instance iff ◦H ∈ I and the treedepth is always bounded by s. Intuitively it is clear that a DPTM
that reads a graph fromH has to remember which components were read and which not and so it has
to use cs space. That is exactly what Lemma 1 is saying.

Proof. (of Lemma 1) Assume, on the contrary, that such a DPTM M exists. Fix s = k and consider any
subset I ⊆ H of the s-Myhill–Nerode familyH of Π. By definition, all graphs inH and the graph ◦GI
have size at most

|H| · logO(1)|H| = cs · sO(1).

By definition, for every s-boundaried graph ◦H contained in H, there exist treedepth
decompositions for ◦GI ⊕ ◦H of depth at most s + o(s) such that the boundary vertices of ◦GI appear
on a path of length s starting at the root of the decomposition. Hence, we can fix a treedepth
decomposition TI of GI with exactly these properties and choose a treedepth decomposition T
of ◦GI ⊕ ◦H such that TI is a subgraph. Moreover, we choose an encoding of T that lists the separators
of TI first.

Notice that M only uses (c− ε)s+o(s) · sO(1) space. There are 2|H| = 2cs/ f (s) choices for I . For there
to be a different content on the working tape of M for every choice of I we need at least cs/ f (s)
bits. We rewrite this as (c− ε)s · αs/ f (s), where α = c/(c− ε). Since α > 1 it follows that αs/ f (s)
grows exponentially faster than (c− ε)o(s) · sO(1) and thus cs/ f (s) ∈ ω((c− ε)s+o(s) · sO(1)). By the
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pigeonhole principle it follows that there exist graphs ◦GI , ◦GJ for sets I 6= J ⊆ H for sufficiently
large s for which M is in the same state and has the same working tape content after reading the
separators of the respective decompositions TI and TJ . Choose (◦H, q) ∈ I 4J . By definition

(◦GI ⊕ ◦H, pI + q) 6∈ Π ⇐⇒ (◦GJ ⊕ ◦H, pJ + q) ∈ Π

but M will either reject or accept both inputs. Contradiction.

4. Space Lower Bounds for Dynamic Programming

In this section we prove space lower bounds for dynamic programming algorithms as defined
in Section 3 for 3-COLORING, VERTEX COVER and DOMINATING SET. These space lower bounds all
follow the same basic construction. We define a problem-specific “state” for the vertices of a boundary
set X and construct two boundaried graphs for it: one graph that enforces this state in any (optimal)
solution of the respective problem and one graph that “tests” for this state by either rendering the
instance unsolvable or increasing the costs of an optimal solution. We begin by proving a lower bound
for 3-COLORING.

Theorem 1. For every ε > 0, no DPTM solves 3-COLORING on a tree, path or treedepth decomposition of
width/depth k with space bounded by O((3− ε)k · logO(1)n).

Proof. For any s we construct an s-Myhill–Nerode familyH. Let X be the s vertices in the boundary
of all the boundaried graphs in the following. Then for every three-partition X = {R, G, B} of X we
add a boundaried graph ◦HX to the familyH by taking a single triangle vR, vG, vB and connecting the
vertices vC to all vertices in X \ C for C ∈ {R, G, B}. Notice that any 3-coloring of ◦HX induces the
partition X on the nodes X. Since instances of three-coloring do not need any additional parameter,
we ignore this part of the construction of H and implicitly assume that every graph in H is paired
with zero.

To construct the graphs GI for I ⊂ H, we will employ the circuit gadget v1, v2, u highlighted in
Figure 1. Please note that if v1, v2 receive the same color, then u must be necessarily colored the same.
In every other case, the color of u is arbitrary. Now for every three-partition X = {R, G, B} of X we
construct a testing gadget ◦ΓX as follows: For every C ∈ {R, G, B} we arbitrarily pair the vertices in C
and connect them via the circuit gadget (as v1, v2). If |C| is odd, we pair some vertex of C with itself.
We then repeat the construction with all the u-vertices of those gadgets, resulting in a hierarchical
structure of depth ∼ log |X| (c.f., Figure 1 for an example construction). Finally, we add a single
vertex a and connect it to the top vertex of the three circuits. Please note that by the properties of the
circuit gadget, the graph ◦ΓX is three-colorable iff the coloring of X does not induce the partition X . In
particular, the graph ◦ΓX ⊕ ◦HX ′ is three-colorable iff X 6= X ′.

Now for every subset I ⊆ H of graphs from the family, we define the graph ◦GI =
⊕
◦HX∈I

◦ΓX .
By our previous observation, it follows that for every ◦HX ∈ H the graph ◦GI ⊕ ◦HX is three-colorable
iff ◦HX 6∈ I . Furthermore, every composite graph has treedepth at most s + 3dlog se+ 1 as witnessed
by a decomposition whose top s vertices are the boundary X and the rest has the structure of the
graph itself after every triangle is made into a path. The graphs ◦GI for every I ⊆ H have size at
most 3s · 6s. We conclude thatH is an s-Myhill–Nerode family of size 3s/6 (the factor 1/6 accounts for
the 3! permutations of the partitions) and the claim follows from Lemma 1.

Surprisingly, the construction to prove a lower bound for VERTEX COVER is very similar to the
one for 3-COLORING.
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Figure 1. The gadget ◦ΓX for X = {R, G, B}.

Theorem 2. For every ε > 0, no DPTM solves VERTEX COVER on a tree, path or treedepth decomposition of
width/depth k with space bounded by O((2− ε)k · logO(1)n).

Proof. For every s we construct an s-Myhill–Nerode familyH. Let X be the s vertices in the boundary
of all the boundaried graphs in the following. Assume for now that s is even. For every subset A ⊆ X
such that |A| = |X|/2 we construct a graph ◦HA which consists of the boundary as an independent set
and a matching to A and add (◦HA, s/2) to H. Please note that any optimal vertex cover of any ◦HA
has size s/2 and that A is such a vertex cover.

Consider I ⊆ H. We will again use the circuit gadget highlighted in Figure 1 to construct ◦GI .
Please note that if either v1 or v2 is in the vertex cover we can cover the rest of gadget with two vertices,
one of them being the top vertex u. Otherwise, u cannot be included in a vertex cover of size two.
We still need two vertices, even if both v1 and v2 are already in the vertex cover. For a set A ⊆ X
such that |A| = |X|/2 we construct the testing gadget ◦ΓA by starting with the boundary X as an
independent set, connecting the vertices of X \ A pairwise via the circuit gadget (using an arbitrary
pairing and potentially pairing a leftover vertex with itself). As in the proof of Theorem 1, we repeat
this construction on the respective u-vertices of the circuits just added and iterate until we have added
a single circuit at the very top. Let us denote the topmost u-vertex in this construction by u′. Let λ

be the number of circuits added in this fashion. Any optimal vertex of ◦ΓA has size 2λ and does not
include u′. Please note that if a node of X \ A is in the vertex cover, we can cover the rest of the gadget
with 2λ many vertices, such that u′ is part of the vertex cover.

We construct ◦GI by taking ⊕◦HA∈I
◦ΓA and adding a single vertex a that connects to all u′-vertices

of the gadgets {◦ΓA}◦HA∈I . Notice that, by the same reason u′ was not part of an optimal vertex cover
of any gadget ◦ΓA, the node a must be part of any optimal vertex cover of ◦GI for |I| > 1. For |I| = 1
either the only u′ or a must be contained besides the other vertices, but we will assume w.l.o.g. that it
is a. Let ` be the biggest optimal vertex cover for any such ◦GI . Let `I be the size of an optimal vertex
cover for a specific ◦GI . For simplicity, we pad ◦GI with `− `I isolated K2 subgraphs to ensure that
the size of an optimal vertex cover is `.

We claim that ◦GI ⊕ ◦HA has a vertex cover of size `+ s/2− 1 iff ◦HA 6∈ I . If HA 6∈ I , then for every
gadget ◦ΓA′ that comprises ◦GI it holds that A′ 6= A. Since |A′| = |A| it follows that (X \ A′) ∩ A 6= ∅.
Since ◦GI ⊕ ◦HA has s/2 vertices of degree one whose neighborhood is A, we can assume that an
optimal vertex cover contains A. From the previous arguments about the possible vertex covers for
the ◦ΓA′ gadgets it follows that the solution still needs two nodes for every circuit gadget of ◦ΓA′ , but
now this part of the vertex cover can include u′. Since this is true for every ◦ΓA′ it follows that a
does not need to be part of the vertex cover. Thus, the size of an optimal vertex cover is precisely
`+ s/2− 1. If ◦HA ∈ I then the gadget ◦ΓA that has no vertex cover using two nodes per circuit gadget
that contains its node u′. It follows that any optimal vertex cover of ◦GI ⊕ ◦HA must contain either a or
its u′. Thus the size of the solution is at least `+ s/2. We thus set pI to be `− 1.
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The size of the familyH is, using Stirling’s approximation, bounded from below by(
s

s/2

)
≥ 2s−1
√

s/2

and is smaller than 2s. All numbers involved describe subsets of graphs and thus must be smaller
than the sizes of those graphs. All graphs in the family have size s. The graphs ◦GI as described,
are constructed by adding a polylogarithmic number of nodes to the boundary per gadget ◦ΓA and
thus their size is bounded by |H| · logO(1)|H|. For odd s we take s′ = s− 1 and use the s′-family as
the s-family. The treedepth is td(H) = s + o(s) by the same argument as for the construction for
Theorem 1. We conclude thatH is an s-Myhill–Nerode family of size 2s/ f (s) for f (s) = sO(1) ∩Ω(1)
and depth td(H) = s + o(s) and thus by Lemma 1 the theorem follows.

Theorem 3. For every ε > 0, no DPTM solves DOMINATING SET on a tree, path or treedepth decomposition
of width/depth k with space bounded by O

(
(3− ε)k · logO(1)n

)
.

Proof. For any s divisible by three we construct an s-Myhill–Nerode familyH as follows. Let X be the
s boundary vertices of all the boundaried graphs in the following. Then for every three-partition X =

(B, D, W) of X into sets of size s/3, we construct a graph HX by connecting two new pendant vertices
(with degree one) to every vertex in B, connecting every vertex in D to a vertex which itself is connected
to two pendant vertices and leaving W untouched and thus isolated. Intuitively, we want the vertices
of B to be in any minimal dominating set, the vertices in D to be dominated from a vertex in HX not in
the boundary and the vertices in W to be dominated from elsewhere. We add every pair (HX , 2s/3)
toH. Notice that the size of an optimal dominating set of HX [B∪D] is 2s/3 and there is only one such
optimal dominating set, namely B ∪ N(D).

For a subset I ⊆ H let DW = {D | H(X\(D∪W),D,W) ∈ I} be a set defined for every W ⊂ X.
We construct the graph ◦GI using the circuit gadget with nodes v1, v2, u highlighted in Figure 2: Please
note that if v1, v2 need to be dominated, then there is no dominating set of the gadget of size two that
contains u. If one of v1, v2 does not need to be dominated (but is not in the dominating set) then a
dominating set of size two of the circuit gadget containing u exists. For every W ⊂ X with |W| = s/3
construct a testing gadget ◦ΓW as follows. Assume first that DW is non-empty. For every set D ∈ DW
we construct the gadget ◦ΛD by arbitrarily pairing the vertices in D and connecting them via the
circuit gadget as exemplified in Figure 2. This closely parallels the constructions we have seen
in the proofs for Theorem 1 and 2: If |D| is odd, we pair some vertex of D with itself. We then
repeat the construction with all the u-vertices of those gadgets, resulting in a hierarchical structure of
depth ∼ log |D|. To finalize the construction of ◦ΛD we take the u-vertex of the last layer and connect
it to a new vertex u′. This concludes the construction of ◦ΛD. Let in the following λ be the number
of circuits we used to construct such a ◦ΛD gadget (this quantity only depends on s and is the same
for any ◦ΛD). If DW is empty, then ◦ΓW is the boundary and a K2 with one of its vertices connected
to all vertices in W plus (2s/3

s/3 )2λ isolated padding-vertices. Otherwise we obtain ◦ΓW by taking the
graph

⊕
D∈D

◦ΛD and adding two additional vertices a, b as well as
(
(2s/3

s/3 )− |DW |
)
2λ isolated vertices

for padding. The vertex a is connected to all u′ vertices of all the gadgets {◦ΛD}D∈DW and the vertex b
is connected to {a} ∪W (c.f., again Figure 2 for an example). Finally we define for every I ⊆ H the
graph ◦GI =

⊕
W⊂X,|W|=s/3

◦ΓW .

Let α = (2s/3
s/3 )2λ + 1. Consider some ◦ΓW , for a W such that DW 6= ∅. Assume we start with a

dominating set S such that S ∩ D = ∅ for at least one D ∈ DW . We want to show that extending S
to dominate V((◦ΓW) \ X) ∪W requires at least α + 1 many vertices. We can assume that b must be
added to the dominating set. All

(
(2s/3

s/3 )− |DW |
)
2λ padding vertices must also be added. Since we

need at least two vertices per circuit gadget, at least 2λ vertices will always be necessary to dominate
each ◦ΛD subgraph of ◦ΓW (of which there are |DW |many). For ◦ΛD where S ∩ D = ∅ no dominating
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set of the circuit gadgets of size 2λ can also dominate u′. Thus we also need to take a or u′ into the
dominating set and we need at least α + 1 many vertices.

Now assume that we start with a dominating set S that contains at least one node of every
D ∈ DW 6= ∅. In this case we can dominate all the circuit gadgets and u′ with 2λ many nodes in every
◦ΛD. Thus, there is a set in ◦ΓW that dominates V((◦ΓW) \ X) ∪W of size α, since neither a nor any u′

needs to be in the dominating set.
Let us now show that our boundaried graphs work as intended and calculate the appropriate

parameters pI . Consider any graph ◦H(B0,D0,W0)
∈ H and the graph ◦GI for any I ⊆ H. We show

that ◦H(B0,D0,W0)
⊕ GI has an optimal dominating set of size at most ( s

s/3)α + 2s/3 iff ◦H(B0,D0,W0)
6∈ I .

We need to include the s/3 vertices of B0 and the s/3 vertices of N(D) ∩ V(◦H(B0,D0,W0)
). We use

the sets DW as defined previously. First, assume that DW0 = ∅, that is, for every set B′, D′ we have
that H(B′ ,D′ ,W0)

6∈ I and in particular H(B0,D0,W0)
6∈ I . It is easy to see that the simple version of the

gadget ◦ΓW0 for the case where DW0 = ∅ can dominate its non-boundary nodes and W0 with α nodes.
All other gadgets ◦ΓW ′ for W ′ 6= W0 do not need to dominate their respective W ′-sets and can therefore
include their a-vertices and not include their b-vertices. Accordingly, they can all dominate their
internal vertices with α many nodes. This all adds up to a dominating set of size ( s

s/3)α + 2s/3. Next,
assume that DW0 6= ∅ and D0 6∈ DW0 , i.e., again H(B0,D0,W0)

6∈ I . Therefore, for every set D′ ∈ DW0 we
have that D′ ∩ B0 6= ∅. Since we can assume B0 is part of our dominating set, we only need to add α

vertices to the dominating from ◦ΓW0 to dominate V((◦ΓW0) \ X) ∪W0. All gadgets ◦ΓW ′ , W ′ 6= W0 also
need α vertices, as observed above. We obtain in total a dominating set of size ( s

s/3)α + 2s/3. Finally,
consider the case that D0 ∈ DW0 , i.e., H(B0,D0,W0)

∈ I . Since B0 ∩ D0 = ∅ the gadget ◦ΛD0 needs α + 1
vertices to dominate V((◦ΓW0) \ X) ∪W0. Dominating W0 with nodes different from the b-vertex of
◦ΓW0 does not help. Thus, we need at least ( s

s/3)α + 2s/3 + 1 vertices to dominate ◦H(B0,D0,W0)
⊕ GI .

Choosing pI = ( s
s/3)α completes the construction of (◦GI , pI ). The size of all these graphs is

bounded by O(( s
s/3)(

2s/3
s/3 ) log s) = O(3s log s). We conclude that H is an s-Myhill–Nerode family

of size ( s
s/3)(

2s/3
s/3 ) which is Ω(3s/s) and O(3s). For s indivisible by three we take the next smaller

integer s′ divisible by three and use s′-family as the s-family. It is easy to confirm that the treedepth
ofH is td(H) = s + o(s) and the theorem follows from Lemma 1.

Figure 2. The gadget ◦ΓW for DW = {D1, D2, D3}. Padding-vertices are not included.

5. DOMINATING SET Using O(d3 log d + d log n) Space

That branching might be a viable algorithmic design strategy for low-treedepth graphs can easily
be demonstrated for problems like 3-COLORING and VERTEX COVER: We simply branch on the
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topmost vertex of the decomposition and recur into (annotated) subinstances. For q-COLORING, this
leads to an algorithm with running time O(qd · n) and space complexity O(d log n). Since it is possible
to perform a depth-first traversal of a given tree using only O(log n) space [38], the space consumption
of this algorithm can be easily improved to O(d + log n). Similarly, branching solves VERTEX COVER

in time O(2d · n) and space O(d log n).
The task of designing a similar algorithm for DOMINATING SET is much more involved. Imagine

branching on the topmost vertex of the decomposition: while the branch that includes the vertex
into the dominating set produces a straightforward recurrence into annotated instances, the branch
that excludes it from the dominating set needs to decide how that vertex should be dominated.
The algorithm we present here proceeds as follows: We first guess whether the current node x is in the
dominating set or not. Recall that Px denotes the nodes of the decomposition that lie on the unique
path from x to the root of the decomposition (and x 6∈ Px). We iterate over every possible partition
S1 ] · · · ] S` = Px ∪ {x} into ` ≤ d sets of Px ∪ {x}. The semantic of a block Si is that we want every
element Si to be dominated exclusively by nodes from a specific subtree of x. A recursive call on a
child y of x, together with an element of the partition Si, will return the size of a dominating set which
dominates V(Ty) ∪ Si. The remaining issue is how these specific solutions for the subtrees of x can
be combined into a solution in a space-efficient manner. To that end, we first compute the size of a
dominating set for Ty itself and use this as baseline cost for a subtree Ty. For a block Si of a partition
of Px, we can now compare the cost of dominating V(Ty) ∪ Si against this baseline to obtain overhead
cost of dominating Si using vertices from Ty. Collecting these overhead costs in a table for subtrees
of x and the current partition, we are able to apply certain reduction rules on these tables to reduce
their size to at most d2 entries. Recursively choosing the best partition then yields the solution size
using only polynomial space in d and logarithmic in n. Formally, we prove the following:

Theorem 4. Given a graph G and a treedepth decomposition T of G, Algorithm 1 finds the size of a minimum
dominating set of G in time dO(d2) · n using O(d3 log d + d log n) bits.

We split the proof of Theorem 4 into lemmas for correctness, running time and used space.

Lemma 2. Algorithm 1 called on a graph G, a treedepth decomposition T of G, the root r of T and P = D = ∅
returns the size of a minimum dominating set of G.

Proof. If we look at a minimal dominating set S of G we can charge every node in V(G) \ S to a node
from S that dominates it. We are thus allowed to treat any node in G as if it was dominated by a single
node of S. We will prove this lemma by induction, the inductive hypothesis being that a call on a node
x with arguments D = S ∩ Px and P ⊆ Px being the set of nodes dominated from nodes in Tx by S
returns |S ∩V(Tx)|.

It is clear that the algorithm will call itself until a leaf is reached. Let x be a leaf of T on which the
function was called. We first check the condition at line 2, which is true if either x is not dominated by
a node in D or if some node in P is not yet dominated. In this case we have no choice but to add x to
the dominating set. Three things can happen: P is not fully dominated, which means that it was not
possible under these conditions to dominate P, in which case we correctly return ∞, signifying that
there is no valid solution. Otherwise we can assume P is dominated and we return 1 if we had to take
x and 0 if we did not need to do so. Thus, the leaf case is correct.

We assume now x is not a leaf and thus we reach line 7. We first add x to P, since it can only be
dominated either from a node in D or a node in Tx. Nodes in Tx can only be dominated by nodes
from V(Tx) ∪ Px. We assume by induction that D = S ∩ Px and that P only contains nodes which
are either in S or dominated from nodes in Tx. Algorithm 1 executes the same computations for D
and D ∪ {x}, representing not taking and taking x into the dominating set respectively. We must
show that the set P for the recursive calls is correct. There exists a partition of the nodes of P not
dominated by D (respectively D ∪ {x}) such that the nodes of every element of the partition are
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dominated from a single subtree Ty where y is a child of x. The algorithm will eventually find this
partition on line 9. The baseline value, i.e., the size of a dominating set of Ty given that the nodes in D
(respectively D ∪ {x}) are in the dominating set, gives a lower bound for any solution. In the lists in L
and L′ we keep the extra cost incurred by a subtree Ty if it has to dominate an element of the partition.
We only need to keep the best d values for every Si: Assume that it is optimal to dominate Si from
Ty and there are d + 1 subtrees induced on children y′ 6= y of x whose extra cost over the baseline to
dominate Si is strictly smaller than the extra cost for Ty. At least one of these subtrees Ty′ is not being
used to dominate an element of the partition. This means we could improve the solution by letting
Ty dominate itself and taking the solution of Ty′ that also dominates Si. Keeping d values for every
element in the partition suffices to find a minimal solution, which is what find_min_solution(L) does
as follows: Create a bipartite graph G = (A ] B, E) such that A contains a node for every Si and B
contains a node for every y for which there is an entry (·, y) in L. For every node a representing Si
we add an edge with weight d− c to a node b representing y if (c, y) ∈ L[i]. Notice that the minimal
number of nodes above the baseline needed to dominate an element of the partition is always less than
d. A maximal matching in this bipartite graph tells us how many nodes above the baseline are required
to dominate the elements of the partition from subtrees rooted at children of x. Since L contains at
most d2 entries this can be computed in polynomial time in d. Since with lines 27 and 28 we take
the minimum over all possible partitions and taking x into the dominating set or not, we get that by
inductive assumption the algorithm returns the correct value. The lemma follows since the first call to
the algorithm with D = P = ∅ is obviously correct.

Lemma 3. Algorithm 1 runs in time dO(d2) · n.

Proof. The running time when x is a leaf is bounded by O(d2), since all operations exclusively involve
some subset of the d nodes in Px ∪ {x}. Since |P| ≤ d the number of partitions of P is bounded by dd.
When x is not a leaf the only time spent on computations which are not recursive calls of the algorithm
are all trivially bounded by O(d), except the time spent on find_min_solution, which can be solved
via a matching problem in polynomial time in d (see proof of Lemma 2). The number of recursive calls
that a single call on a node x makes on a child y is O(d · dd) which bounds the total number of calls on
a single node by dO(d2). This proves the claim.

Lemma 4. Algorithm 1 uses O(d3 log d + d log n) bits of space.

Proof. There are at most d recursive calls on the stack at any point. We will show that the space used
by one is bounded by O(d2 log d + log n). Each call uses O(d) sets, all of which have size at most d.
The elements contained in these sets can be represented by their position in the path to the root of T,
thus they use at most O(d2 log d) space. The arrays of ordered lists L, L′ contain at most d2 elements
and all entries are ≤d or ∞: If the additional cost (compared to the baseline cost) of dominating a
block Si of the current partition from some subtree Ty exceeds d, we disregard this possibility—it would
be cheaper to just take all vertices in Si, a possibility explored in a different branch. To find a minimal
solution from the table we need to avoid using the same subtree to dominate more than one element of
the partition; however, at any given moment we only need to distinguish at most d2 subtrees. Thus,
the size of the arrays L and L′ is bounded by O(d2 log d). The only other space consumption is caused
by a constant number of variables (result, baseline, baseline′, b, b′ and x) all of them ≤ n. Thus, the space
consumption of a single call is bounded by O(d2 log d + log n) and the lemma follows.
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Algorithm 1: Computing dominating sets with very little space.
Input: A graph G, a treedepth decomposition T of G, a node x of T and sets P, D ⊆ V(G).
Output: The size of a minimum Dominating Set.

1 if x is a leaf in T then
2 if x /∈ NG[D] or P 6⊆ NG[D] then D := D ∪ {x} ;
3 if P 6⊆ NG[D] then return ∞ ;
4 else if x ∈ D then return 1 ;
5 else return 0 ;
6 end
7 result := ∞;
8 P := P ∪ {x};
9 foreach partition S1 ] · · · ] S` of P do

10 L := |P|-element array of ordered lists;
11 L′ := |P|-element array of ordered lists;
12 baseline := 0;
13 baseline′ := 0;
14 foreach child y of x in T do
15 b := domset(G, T, y,∅, D);
16 baseline := baseline + b;
17 b′ := domset(G, T, y,∅, D ∪ {x});
18 baseline′ := baseline + b′;
19 for Si ∈ {S1, . . . , S`} do
20 c := domset(G, T, y, Si, D)− b;
21 c′ := domset(G, T, y, Si, D ∪ {x})− b′;
22 Insert (c, y) into ordered list L[i] and keep only smallest ` elements;
23 Insert (c′, y) into ordered list L′[i] and keep only smallest ` elements;
24 end
25 end
26 /* Find minimal cost of dominating {S1, . . . , S`} from L and L′ by solving

appropriate matching problems (see proof of Lemma 2 for details). */
27 result := min(result, find_min_solution(L) + baseline);
28 result := min(result, find_min_solution(L′) + baseline′ + 1);
29 end
30 return result;

6. Fast DOMINATING SET Using O(2dd log d + d log n) Space

We have seen that it is possible to solve DOMINATING SET on low-treedepth graphs in
a space-efficient manner. However, we traded space exponential in the treedepth against
superexponential running time in the treedepth and it is natural to ask whether there is some middle
ground. We present Algorithm 2 to answer this question: its running time O(3d log d · n) is competitive
with the default dynamic programming but its space complexity O(2d log d + d log n) is exponentially
better. The basic idea is to again branch from the top deciding if the current node x is in the dominating
set or not. Intertwined in this branching we compute a function which for a subtree Tx and a set
S ⊆ Px gives the cost of dominating V(Tx) ∪ S from Tx. For each recursive call on a node we only need
this function for subsets of Px which are not dominated. If d′ is the number of nodes of Px that are
currently contained in D, the function only needs to be computed for 2d−d′ sets. This allows us to keep
the running time of O∗(3d), since ∑d

i=0 (
d
i) · 2d−i = 3d, while only creating tables with at most O(2d)
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entries. By representing all values in these tables as ≤ d offsets from a base value, the space bound
O(2dd log d + d log n) follows. Part of the algorithm will be convolution operations.

Definition 4 (Convolution). For two functions M1, M2 with domain 2U for some ground-set U we use the
notation M1 ∗M2 to denote the convolution (M1 ∗M2)[X] := minA]B=X M1[A] + M2[B], for all X ⊆ U.

Algorithm 2: Computing dominating sets with O∗(2d) space.
Input: A graph G, a treedepth decomposition T of G, a node x of T and a set D ⊆ V(G).
Output: The size of a minimum Dominating Set if x is the root of T and D = ∅.

1 M, M1, M2 := are empty associative arrays. If a set is not in the array its value is ∞;
2 if x is a leaf in T then
3 foreach S ⊆ (Px ∩ NG[X]) \ D do M[S] := 1;
4 if x ∈ NG[D] then M[∅] := 0 ;
5 return M;
6 end
7 /* Assume the children of x are {y1, . . . , y`}. */
8 for i ∈ {1, . . . , `} do
9 M′ := domset(G, T, yi, D);

10 M1 := M1 ∗M′;
11 end
12 /* x is not in the dominating set. Discard entries where x is undominated. */
13 if x /∈ NG[D] then delete all entries S from M1 where x /∈ S ;
14 for i ∈ {1, . . . , `} do
15 M′ := domset(G, T, yi, D ∪ {x});
16 M2 := M2 ∗M′;
17 end
18 foreach S ∈ M2 do M2[S] := M2[S] + 1 ;
19 foreach S ⊆ Px do M[S] := min{M1[S], M2[S]};
20 /* Forget x. */
21 foreach S ∈ M where x /∈ S do M[S] := min(M[S], M[S ∪ {x}]) ;
22 Delete all entries S from M where x ∈ S;
23 if x is the root of T then return M[∅] ;
24 else return M ;

Theorem 5. For a graph G with treedepth decomposition T, Algorithm 2 finds the size of a minimum dominating
set in time O(3d log d · n) using O(2dd log d + d log n) bits of space.

We divide the proof into lemmas as before.

Lemma 5. Algorithm 2 called on G, T, r, ∅, where T is a treedepth decomposition of G with root r, returns the
size of a minimum dominating set of G.

Proof. Notice that the associative array M represents a function which maps subsets of Px \ D to
integers and ∞. At the end of any recursive call, M[S] for S ⊆ Px \ D should be the size of a minimal
dominating set in Tx which dominates Tx and S assuming that the nodes in D are part of the dominating
set. We will prove this inductively.

Assume x is a leaf. We can always take x into the dominating set at cost one. In case x is already
dominated we have the option of not taking it, dominating nothing at zero cost. This is exactly what is
computed in lines 2–5.
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Assume now that x is an internal, non-root node of T. First, in lines 8–13 we assume that x is
not in the dominating set. By inductive assumption calling domset on a child y of x returns a table
which contains the cost of dominating Ty and some set S ⊆ Py \ D. By convoluting them all together
M1 represents a function which gives the cost of dominating some set S ⊆ (Px ∪ {x}) \ D and all
subtrees rooted at children of x. We just need to take care that x is dominated. If x is not dominated by
a node in D, then it must be dominated from one of the subtrees. Thus, we are only allowed to retain
solutions which dominate x from the subtrees. We take care of this on line 13. After this M1 represents a
function which gives the cost of dominating some set S ⊆ (Px ∪{x}) \D and Tx assuming x is not in the
dominating set. Then we compute a solution assuming x is in the dominating set in lines 14–18. We first
merge the results on calls to the children of x via convolution. Since we took x into the dominating
set we increase the cost of all entries by one. After this M2 represents the function which gives the cost
of dominating some set S ⊆ Px \ D and Tx assuming x is in the dominating set. We finally merge M1

and M2 by taking the minimums. Since we have taken care that all solutions represented by entries in
M dominate x we can remove all information about x. We do this in lines 21–22. Finally, M represents
the desired function and we return it. When x is the root, instead of returning the table we return the
value for the only entry in M, which is precisely the size of a minimum dominating set of G.

To prove the running time of Algorithm 2 we will need the values M to be all smaller or equal to
the depth of T. Thus, we first prove the space upper bound. In the following we treat the associative
arrays M, M1 and M2 as if the entries where values between 0 and n. We will show that we can
represent all values as an offset ≤ d of a single single value between 0 and n.

Lemma 6. Algorithm 2 uses O(2dd log d + d log n) bits of space.

Proof. Let d be the depth of the provided treedepth decomposition. It is clear that the depth of the
recursion is at most d. Any call to the function keeps a constant number of associative arrays and nodes
of the graph in memory. By construction these associative arrays have at most 2d entries. For any of the
computed arrays M the value of M[∅] and M[S] for any S 6= ∅ can only differ by at most d. We can thus
represent every entry for such a set S as an offset from M[∅] and use O(2d log d + log n) space for the
tables. This together with the bound on the recursion depth gives the bound O(2dd log d + d log n).

Lemma 7. Algorithm 2 runs in time O(3d log d · n).

Proof. On a call on which d′ nodes of Px are in the dominating set the associative arrays have at most
2s entries for s = d− d′. As shown above the entries in the arrays are ≤ s (except one). Hence, we
can use fast subset convolution to merge the arrays in time O(2s log s) [39]. It follows that the total
running time is bounded by

O
(
n ·

d

∑
i=0

(
d
i

)
· 2d−i log(d− i)

)
= O(3d log d · n)

and thus the lemma follows.

7. Conclusions and Future Work

We have shown that single-pass dynamic programming algorithms on treedepth, tree or path
decompositions without preprocessing of the input must use space exponential in the width/depth,
confirming a common suspicion and proving it rigorously for the first time. This complements
previous SETH-based arguments about the running time of arbitrary algorithms on low treewidth
graphs. We further demonstrate that treedepth allows non-DP linear-time algorithms that only use
polynomial space in the depth of the provided decomposition. Both our lower bounds and the
provided algorithm for DOMINATING SET appear as if they could be special cases of a general theory
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to be developed in future work and we further ask whether our result can be extended to less stringent
definitions of “dynamic programming algorithms”.

It would be great to be able to characterize exactly which problems can be solved in linear-fpt
time using poly(d) · log n space. Tobias Oelschlägel proved as part of his master thesis [40] that
the ideas presented here can be extended to the framework of Telle and Proskurowski for graph
partitioning problems [41]. Mimicking the development for treewidth would point to extending this
result to MSO. Sadly, a proven double exponential dependency on the run-time of model-checking
MSO parameterized by the size of a vertex cover implies that no such result is possible [42]. Is there a
characterization that better captures for which problems this is possible? Previous research that might
be relevant to this endeavor has investigated the height of the tower in the running time for MSO
model-checking on graphs of bounded treedepth [43].

Despite the less-than-ideal theoretical bounds of the presented DOMINATING SET algorithms,
the opportunities for heuristic improvements are not to be slighted. Take the pure branching algorithm
presented in Section 5. During the branching procedure, we generate all partitions from the root-path
starting at the current vertex. However, we actually only have to partition those vertices that are
not dominated yet (by virtue of being themselves in the dominating set or being dominated by
another vertex on the root-path). A sensible heuristic as to which branch—including the current
vertex in the dominating set or not—to explore first, together with a branch and bound routine should
keep us from generating partitions of very large sets. A similar logic applies to the mixed dynamic
programming/branching algorithm since the tables only have to contain information about sets that
are not yet dominated. It might thus be possible to keep the tables a lot smaller than their theoretical
bounds indicate.

Furthermore, it seems reasonable that in practical settings, the nodes near the root of treedepth
decompositions are more likely to be part of a minimal dominating set. If this is true, computing a
treedepth decomposition would serve as a form of smart preprocessing for the branching, a rough
“plan of attack”, if you will. How much such a guided branching improves upon known branching
algorithms in practice is an interesting avenue for further research.

It is still an open question, proposed by Michał Pilipczuk during GROW 2015, whether
DOMINATING SET can be solved in time (3− ε)d ·poly(n) when parameterized by treedepth. Our lower
bound result implies that if such an algorithm exists, it cannot be a straightforward dynamic
programming algorithm.
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