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Abstract: For Massive multiple-input multiple output (MIMO) systems, many algorithms have
been proposed for detecting spatially multiplexed signals, such as reactive tabu search (RTS),
minimum mean square error (MMSE), etc. As a heuristic neighborhood search algorithm, RTS is
particularly suitable for signal detection in systems with large number of antennas. In this paper,
we propose a strategy to reduce the neighborhood searching space of the traditional RTS algorithms.
For this, we introduce a constellation constraints (CC) structure to determine whether including
a candidate vector into the RTS searching neighborhood. By setting a pre-defined threshold on
the symbol constellation, the Euclidean distance between the estimated signal and its nearest
constellation points are calculated, and the threshold and distance are compared to separate the
reliable estimated signal from unreliable ones. With this structure, the proposed CC-RTS algorithm
may ignore a significant number of unnecessary candidates in the RTS neighborhood searching space
and greatly reduce the computational complexity of the traditional RTS algorithm. Simulation results
show that the BER performance of the proposed CC-RTS algorithm is very close to that of the
traditional RTS algorithm, and with about 50% complexity reduction with the same signal-to-noise
(SNR) ratio.
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1. Introduction

The utilization of spatial multiplexed multiple-input multiple-output (MIMO) technology could
linearly increase the link capacity of the communication systems without sacrificing spectrum and
time resource [1,2]. A recent highlight for MIMO technologies is to consider massive number of
receiving antennas at base stations and user equipments. In massive MIMO systems, the total number
of antenna elements at user terminals are relatively small. This ensures satisfactory performance
with simpler signal detection techniques. Massive MIMO is regarded as a core technology for the
next generation mobile communication systems [1]. Harnessing such benefits of large-dimensions in
practice, however, is challenging. In particular, with the increasing number of concurrent user data
streams, detection complexity could become infeasible [3,4].

Several detection algorithms have been proposed in the literature to address the problem
of detecting massive MIMO signal. It is well known that maximum likelihood (ML) [5] is the
optimal algorithm for MIMO detection. The core of the ML algorithm is to calculate the respective
ML cost for all trasmission combination candidates, and then find the one with the minimum
cost. Theoretically, the algorithm provides optimal performance; however, with the increased
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number of antennas and modulation level, the computational complexity of the algorithm increases
exponentially. For practical applications, the minimum mean square error algorithm [6] is usually low
in computational complexity, but it may not obtain full diversity gain and has a performance worse
than an ML detector. Sphere decoding (SD) [7] is an algorithm for searching a space of a multiple
dimensional sphere which has a soft complexity may raise exponentially with the increased number
of antennas. In addition, tabu search (TS) is a heuristic algorithm which is originally developed to
obtain approximate solutions to combinatorial optimization problems [8]. Recently TS is increasingly
being applied to communication problem [9–12]. In [9], a reactive tabu search to seek approximate
ML solutions in large dimension is presented. In traditional RTS algorithm, the number of candidates
involved in the calculation determines the complexity and the performance of the detection algorithm.
However, in this work, we believe not all the candidates are required to perform the ML cost calculation,
and many of the candidates can be excluded from the detection procedure and their performance
impact on the detection results can be neglected.

The detection complexity of the RTS algorithm is associated with the number of candidates
involved in calculating the ML cost for each candidate. A larger number of RTS candidates usually
correspond to a higher complexity [13] for detection. Therefore, in this paper, inspired by [14,15],
we propose a new scheme which may reducing the RTS complexity by decreasing the searching space
of candidates with the help of their estimated reliability. A brief introduction of the proposed algorithm
is summarised as follows: First, an initial solution vector is given, and the vector is usually given by an
MMSE or ZF filter. Then, with the initial solutions, we separate the reliable decision candidates from
the unreliable ones according to the proposed CC structure. Finally, we use the modified RTS algorithm
for updating the unreliable candidates with the reliable decisions. The simulation results show that
the proposed CC-RTS detection algorithm has a complexity about 50% lower than the traditional RTS
with the same target SNR value.

With the help of reliability checking of the proposed CC structure, the RTS candidates with high
reliability will be excluded from the neighborhood, and the number of candidates participating the
following RTS procedures for evaluating the ML cost will be significantly reduced. Therefore the
complexity of the overall detection algorithm is significantly reduced. The contribution of this paper is
given as follows:

1. We propose a scheme, namely Constellation Constraints (CC) algorithm for determining the
reliability of the initial vector.

2. With the proposed CC structure, the algorithm separate the reliable symbol estimates in the initial
vector from unreliable symbols.

3. A algorithm is developed for generating a new candidate set and neighborhood searching space
and their implementation with RTS detection.

4. The simulation results of the proposed scheme are given to verify that similar BER performance
can be achieved with significant lower computational complexity.

The rest of this paper is organized as follows. The system model is introduced in Section 2,
while the proposed algorithm in the massive MIMO configuration is described in Section 3. In Section 4,
the attainable performance of our scheme is verified. Finally, the conclusion is given in Section 5.

2. System Model

The system model we considered in this paper can be expressed as the following

r = Hs + n, (1)

where r = [r1, r2, . . . , rNr ]
T is an Nr × 1 received signal vector, and rj represents the received signal at

the jth received antenna. Vector s = [s1, s2, . . . , sNt ]
T is the Nt × 1 transmitted signal vector, and si ∈ A

represents the transmitted signal at the ith transmitting antenna. The signal is modulated by quadrature
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phase shift keying (QPSK) modulation, and A can be expressed as a constellation set of A = 1√
2
{−1−

j,−1 + j, 1− j, 1 + j}. Noise n is a Nt × 1 vector that obeys Gaussian distribution with the mean value
of 0 and variance σ2. In addition, the matrix H is with the size of Nr × Nt and its elements follow
Rayleigh distribution.

3. CC-RTS Algorithm

Maximum Likelihood (ML): Maximum likelihood detection algorithm calculates the Euclidean
distance between the received signal vector and the product of all possible transmitted signal vectors
multiplied by channel H and searching for the one with the minimum distance. Let A denote the
whole ML search space with a number of combination candidates which increases exponentially with
a raising number of spatial multiplexed transmit antennas modulation level. ML algorithm determines
the estimated transmitted signal vector ŝ as:

ŝML = arg min
ŝ∈ANt

||r−Hŝ||2 (2)

where ||r−Hŝ||2 corresponds to the ML metric of the candidate ŝ.
Traditional RTS Algorithm: The implementation of RTS algorithm in massive MIMO [10–12]

is introduced in the following. With sufficient number of receiving antennas, the RTS algorithm
has a performance closes to the ML algorithm, but with significant lower detection complexity.
This algorithm use the MMSE output as the initial solution vector, and find the neighborhood
candidates of the initial solution vector; Then, the algorithm computes the respective ML cost with these
candidates and searching for the one with the minimum cost. If it is the case that the selected candidate
does not appear in the tabu list (Tabu list is used to hold the initial solution of the next iterative process.
The elements in the list follow first in first out FIFO rules. The tabu length indicates that the element will
not be used again as the initial solution vector in the next few iterations. The length of tabu is divided
into variable and immutable. If the tabu length is fixed, then the algorithm is called fixed tabu search.
If the length is a variable, then the algorithm is termed reactive tabu search), the selected candidate
is used as the initial value for the next iteration of searching, meanwhile the algorithm includes this
selected candidate into the tabu list; On the other hand, if the candidate is already included in the tabu
list, a suboptimal solution outside the tabu list is selected as the initial value for the next iteration of
searching, and the suboptimal solution is added to the tabu list. After several iterations, the candidate
with the minimum ML cost can be selected as the final output of the RTS algorithm.

RTS neighborhood: The selection criteria of neighborhood candidates in [9] is the metric of
Euclidean distance, that is, to find the nearest constellation candidates from a given point. For example:
If we use ŝ to indicate a transmitting signal symbol, and Neb(ŝ) denotes the neighborhood candidates
of ŝ. For QPSK modulation, if we consider a 2× 2 MIMO model and the initial value is considered
to be ŝi =

1√
2
{−1− j}, the number of candidates for ŝi is 2, by finding the nearest two candidates,

we have Neb(ŝi) =
1√
2
{−1 + j, 1− j}.

For the RTS algorithm, the most expensive step is to find the nearest constellation candidates
by measuring Euclidean distance and calculate their respective ML costs [14–17]. Table 1 shows the
number of nearest candidates in different modulation modes. With the increased number of antennas,
the number of candidates for the RTS algorithm is raising. The main contribution of the proposed
algorithm is to reduce the computational complexity of the conventional RTS by shorten the candidates
list. In below, we will introduce in detail of the proposed CC algorithm, and how the CC algorithm
can be used for reducing the number of candidates in each iteration of searching.
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Table 1. The number of nearest neighbors for different modulation modes: BSPK, QPSK, 16-QAM,
64-QAM.

Modulation Mode BPSK QPSK 16-QAM 64-QAM

Neighbors Nt 2Nt 4Nt 4Nt

CC-RTS: The inspiration to use a CC device to improve traditional RTS algorithm in this paper
comes from our previous work [14–17]. With the analysis of MMSE filter, theoretical research shows
that the estimated symbols gradually converge with an increasing value of signal-to-noise ratio.
For each transmission, the distance between an estimated symbol and its nearest constellation point
can be regarded as an measurement of the reliability of the estimates. For the RTS algorithm, in this
work, the proposed CC algorithm [17] is used to reduce the computational complexity for traditional
reactive tabu search and the algorithm may prevent the search space from growing exponentially
with the increased number of transimitting antennas. In [14–17], an estimation reliability measuring
and refining strategy (CC algorithm) is used to detect MIMO signal with nonlinear decision feedback
systems. Inspired by its principle of determining reliability, in this paper, we have modified the CC
algorithm to improve heuristic neighborhood search algorithms, such as traditional RTS algorithm.
A simplification of the proposed CC structure is shown in Figure 1. The parameters marked in the
figure are given as follows, σs refers to the signal power, and the threshold dth represents the device
radius which can control the shaded area. It can be designed as a constant, or a joint function of the
signal power σs and the noise power σn. The value d represents the distance between the detection
signal and its nearest constellation point. The following equation is given to determine the nearest
constellation point for a given signal ŝi.

ai = arg min
ac∈A

|̂si − ac| (3)

where ac represents the selected element of the constellation.

a1 a2

a3 a4

dth

a[i] R

I

d

σs=
p

2 � d th

Figure 1. Constellation constraints structure. ai is the coordinate point on the constellation.
Shaded areas is unreliable area, and bright areas is reliable area. Value dth is the CC radius and
d denotes the distance between the estimated symbol and its nearest constellation.
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From Figure 1, we can see that the constellation space is divided into shaded areas and bright
areas, we stipulate that if the candidate falls in the shaded area, we determine that this candidate is
unreliable. The signal falling in the shadow area to meet the following condition.

|={ŝi}| ≤
σs

2
− dth, when |<{ŝi}| ≥

σs

2
(4)

d ≥ dth, |={ŝi}| ≤
σs

2
, when

σs

2
− dth ≤ |<{ŝi}| ≤

σs

2
(5)

|={ŝi}| ∈ R, when |<{ŝi}| ≤
σs

2
− dth (6)

If the signal to be detected satisfies the above conditions, the algorithm considers the candidate as
unreliable. On the other hand, if the detection signal does not satisfy above conditions, the algorithm
considers the candidate as reliable. If it is the case that the proposed CC structure considers the
candidate as unreliable, it introduces more candidates as the output for test; While CC structure
considers the candidate is reliable, the quantization of the candidate is performed at the output.
The detected signals can be MMSE soft output or Zero Force soft output.

• Reliable: The reliable condition is defined as that if the signal to be detected falls into the bright
area of the graph. For instance if ŝ is the initial value of RTS, and the soft output ŝi falls into
the bright area of graph, a hard decision is considered to determine the output ŝi of the nearest
constellation and, then we neither consider generating candidates nor conduct RTS algorithm for
this soft output. A quantization operation k( ) is then performed as

ŝi = k(ŝi) (7)

• Unreliable: The unreliable condition is that the detection signal falls into the shaded area of the
graph. If ŝ is the initial value of RTS, and the soft output ŝi falls into the shaded area of the graph,
we conduct hard decision for ŝi and generate candidates of k(ŝi) for the RTS algorithm. The CC
processing is invoked and a candidates set is generated as

Neb(ŝi) = [c1, c2, · · · , cm, · · · , cM]εA (8)

The generated candidates are constrained by the constellation map and the candidate set is a
selection of the M nearest constellation points to ŝi. The size of Neb(ŝi) can be either fixed or
adaptive with the channel condition which introduces a tradeoff between the performance and
the detection complexity with a selection algorithm.

The pseudo code of the proposed CC-RTS algorithm is given in Table 2. In Initialization, we not
only consider the hard output of MMSE but also include the soft output, generating the initial value of
RTS algorithm; In Constellation Constraints, we define a vector sit. Through the distribution of sit,
we divide the signals into reliable signals and unreliable signals. In CC-RTS, for the distribution of the
sit, we only look for candidates of the initial value of sit is 1, and then execute RTS algorithm for these
elements. This reduces the number of candidates in the traditional RTS algorithm, thereby reducing
the complexity of the traditional RTS algorithm.
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Table 2. The proposed CC-RTS algorithm.

Input: r, H, dth
Output: ŝbest
Initialization:
ŝso f t ← the output of MMSE
ŝ← corresponding hard decision of ŝso f t
sstemp ← ŝ
Item← Number of iterations
Best-so-far← ||r−Hsstemp||2
P← the length of tabulist
Constellation Constraints:
for i← 1 to Nt do

j← ith element of ŝso f t
if j is unreliable

siti ← 1
else

siti ← 0
end if

end for
CC-RTS:
it = 1
while it ≤ Item

cat-matrix← []
generate tabulist according to P
for k← 1 to Nt do

if sitk == 1
cat← the candidates of kth element of stemp
cat-matrix← [cat-matrix; cat]

end if
end for
Using simplified cat-matrix to perform traditional RTS algorithm
it = it+1

end while

4. Simulation Results

In this part, we will shown the advantages of CC-RTS algorithm in terms of computational
complexity and BER performance. The algorithm may approach the original RTS algorithm in terms
of BER performance with various MIMO configurations. Meanwhile the proposed algorithm may
significantly reduce the detection complexity of the traditional RTS algorithm for massive MIMO
systems. To evaluate the achievable performance of the proposed scheme, we present our results based
on MATLAB simulations. We set up a simulation model with the following parameters: the system
is a MIMO using QPSK modulation with 4× 4, 8× 8, 16× 16, 24× 24 MIMO antennas. We assume
that the transmitted signal encounters independent Rayleigh Fading in the propagation channels.
The transmitted ŝ are grouped into frames consisting of 100,000 symbol vectors, and 100,000 Monte
Carlo simulation is carried to produce the results. In addition, the following RTS parameters are
also used in the simulations: MMSE initial vector, initial tabu length is 3, and Iterations is 20.
These parameters are shown in Table 3.

Table 3. Simulation parameters.

Modulation Channels Symbol Vectors Initial Tabu Length Iterations

QPSK Rayleigh Fading Channel 100,000 3 20

Performance: In Figures 2 and 3, we present the simulated BER performance of the proposed
CC-RTS algorithm with various selection of dth with Rayleigh channel. Figure 2 shows that the
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variation of BER as a function of the dth, with Nt = Nr = 4, 8, 16, 24, respectively, and all the simulations
are with SNR = 8dB. It can be observed from Figure 2 that, depending on the choice of the value of
dth, BER and dth rendering correlation. Figure 3 shows the performances of the proposed CC-RTS and
reference RTS, with Nt = Nr = 4, 8, 16, 24, and dth =0.02. It can be seen that the proposed CC-RTS has a
performance close to the traditional RTS algorithm.
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Figure 2. Bit error rate performance of different dth for 4× 4, 8× 8, 16× 16, 24× 24 MIMO systems
with QPSK modulation. (The dashed line indicates the performance of the reference traditional RTS.)

0 2 4 6 8 10 12 14 16

SNR[dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R 4x4 RTS

8x8 RTS

16x16 RTS

24x24 RTS

4x4 CC-RTS

8x8 C-RTS

16x16 CC-RTS

24x24 CC-RTS

32x32 MMSE

Figure 3. Bit error rate performance of CC-RTS taking MMSE solution as the initial vector for 4× 4,
8× 8, 16× 16, 24× 24 MIMO system with Rayleigh channel , QPSK modulation, dth = 0.02.

Besides, in the case that the channel is time-varying, we also make a model simulation.
The channel model adopted is Doppler Frequency Shift, and the value of dth is 0.02. In this simulation
process, we used rayleighchan MATLAB build in function to generate channel with Doppler Frequency
Shift. The sampling frequency shift was 1/15,000 and the maximum Doppler Frequency Shift is 500.
The performance of the proposed CC-RTS and reference RTS with Channel with Doppler Frequency
Shift is shown in Figure 4. From Figure 4, we can get a conclusion that: With Doppler Frequency Shift,
CC-RTS algorithm also have the advantages of greatly reducing the computational complexity of RTS
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algorithm without affecting the performance of the traditional RTS algorithm, although the bit error
rate is slightly different.
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Figure 4. Bit error performance of CC-RTS taking MMSE solution as the initial vector for 4 × 4,
8× 8, 16× 16, 24× 24 MIMO system with Channel with Doppler Frequency Shift, QPSK modulation,
dth = 0.02.

Complexity: In order to further verify the proposed algorithm, we exam the complexity reduction
over the traditional RTS algorithm. The complexity analysis is based on the assumption that the radius
of the CC device is given by 0.02. We can see from Figure 5 that with the proposed scheme, more than
half number of the candidates are excluded under different antenna configurations compare to the
traditional RTS algorithm. For same number of antennas, with an increasing value of SNR, the number
of candidates is gradually reduced and the subsequently calculation of ML cost and overall detection
complexity can be saved. In addition, from Figure 6 and Table 4, we can see that for a given target
BER performance, such as 10−2, the per-symbol-complexity (PSC) of the CC-RTS algorithm is smaller
than that of the traditional RTS algorithm. The following is a detailed derivation of the mathematical
expression of PSC:

It is known that the most expensive part of the RTS algorithm is to calculate the Euclidean distance.
For the Nt ∗ Nr MIMO models, Nt ∗ Nr multiplication and Nt ∗ Nr addition are needed in this process.
If the number of iterations is Item, each symbol’s neighbor is M, then the computational complexity
of each symbol in the RTS algorithm is Item∗M∗Nt∗(2∗Nt∗Nr−1)

Nt
. As an improvement of RTS algorithm,

CC-RTS algorithm could significantly reduce the number of search candidates without reducing the
ML cost of each set of candidates. Therefore, the computational complexity of CC-RTS algorithm and
RTS algorithm on a vector is consistent, but the overall computational complexity of CC-RTS algorithm
is smaller than that of RTS algorithm.
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Figure 6. Per-symbol-complexity (PSC) in number of real operations and SNR required to achieve
10−2 BER in QPSK for 4× 4, 8× 8, 16× 16, 24× 24 MIMO system (Ref: Figure 5 ).

Table 4. Per-symbol-complexity (PSC) in number of real operations and SNR required to achieve
BER = 10−2 with QPSK for 4× 4, 8× 8, 16× 16, 24× 24 MIMO systems (Ref: Figure 5 ).

Algorithm

Per-Symbol-Complexity in Number of Real Operations
and SNR Required to Achieved 10−2 BER for QPSK The Computational

Complexity of
Each Symbol

4 × 4 8 × 8 16 × 16 24 × 24

PSC SNR PSC SNR PSC SNR PSC SNR

RTS 1320 8.3 2600 7.1 20,520 6 46120 5.8 O(M) + O(N2
t )

CC-RTS 573 8.2 1148 7.1 9168 6 20662 5.8 O(M) + O(N2
t )
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5. Conclusions

In this work, we propose an improved RTS algorithm based on constellation generated candidates
for massive MIMO systems. By using the Euclidean distance metric, the proposed algorithm separates
the unreliable estimates from the reliable ones and generate new tabu search lists. With this algorithm,
a significant number of candidates can be reduced and the detection complexity is further reduced.
The simulation results indicate that the proposed scheme has helped to achieve significant reduction
in detection complexity of traditional RTS algorithm.
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