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Abstract: We consider a sliding window W over a stream of characters from some alphabet of constant
size. We want to look up a pattern in the current sliding window content and obtain all positions of
the matches. We present an indexed version of the sliding window, based on a suffix tree. The data
structure of size Θ(|W|) has optimal time queries Θ(m + occ) and amortized constant time updates,
where m is the length of the query string and occ is its number of occurrences.
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1. Introduction and Related Work

Text indexing, pattern matching, and big data in general is a well studied field of computer science
and engineering. An especially intriguing area is (infinite) streams of data, which are too big to fit
onto disk and cannot be indexed in the traditional way, regardless of the data compression or succinct
representation used (e.g., [1–3]).

In practice, stream processing is usually done so that queries are defined in advance, and data
streams are processed by efficient, carefully engineered filters. One way of implementing string
matching including regular expressions is by using finite automata [4,5]. This approach is used by
the well-known grep command. Instead of matching the pattern characters with the text, we could
use a rolling hash and compare the pattern’s fingerprint with the fingerprint of the current sliding
window [6–8]. String matching is also used in digital forensics, where we typically match multiple
regular expressions on massive amounts of data, which involves multiple streams and parallelism
[9–11]. In intrusion detection systems, finite automata are replaced with neural networks, and by
unsupervised machine learning we can avoid hard-coding malicious patterns [12,13].

In our research, we consider a slightly different setup. There is an infinite stream of characters,
where the main memory holds the most recent characters in terms of a big sliding window. At any
moment, a user wants to find all positions of the given substring in the current window. The stream
processing filters described in the previous paragraph could easily solve this issue, if the queries were
known in advance. However, since the queries are provided on-the-fly, the filters would need to
re-scan the sliding window, which requires at least linear work in terms of the size of the window.
The only way to speed up the query for the order of magnitude is to index the sliding window.

Fiala and Greene [14] defined an indexed sliding window based on a suffix tree, and they based
their work on McCreight’s suffix tree construction algorithm [15]. Their primary application was data
compression, and the main contribution was the maintenance of the indexed sliding window. However,
the query operation was different from ours. For data compression, they wanted to determine the
length and the position of the longest prefix of the given pattern in the sliding window. Larsson revised
work of Fiala and Greene in his PhD thesis [16], and presented it in a new light using the primitives
from Ukkonen’s more recent suffix tree construction algorithm [17]. Larsson also provided a reference
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implementation of his data structure. Furthermore, Senft revisited both works by Fiala, Greene,
and Larsson and noticed a flaw in the window maintenance proof [18]. Fortunately, the underlying
data structure was designed correctly and he only needed to correct the proof.

Another approach for indexing the sliding window is by using the compact directed acyclic word
graph, also known as the suffix automaton [19]. The suffix automaton can be constructed on-line for
the whole text [20] or maintained as a sliding window [21]. Both approaches use Ukkonen’s suffix tree
construction algorithm as a base. Originally, the suffix automaton was developed to efficiently decide
whether the query string is included in the text. However, obtaining all positions of the query in the
text requires performing depth first traversals over the automaton and takes linear time in terms of the
size of the sliding window. For our application, we cannot afford this time.

Recently, a practical suffix array based a sliding window was proposed by Ferreira et al. [22,23],
with speed improvements by Salson et al. [24] . Their approach supports efficient substring query
operations, but updating the suffix array requires at least linear time due to the nature of the array, i.e.,
insertion and/or removal of an element requires the other elements to shift by one slot. Consequently,
the time needed to perform the updates grows quadratically in terms of the sliding window size. For
smaller sliding window sizes, the approach seems feasible (the authors reported measurements for
windows up to 32, 768 characters long). However, our aim is to maintain a sliding window of the size
of the main memory, therefore the suffix array as proposed by Ferreira et al. is not appropriate.

In this paper, we extend previous work by Fiala, Greene, Larsson, and Senft. Our main
contribution is an indexed sliding window which allows a user to find all positions of an arbitrary
substring in optimal time and space. It turns out that this operation is not trivial, due to details hidden
in Ukkonen’s suffix tree construction algorithm. This is the first data structure for on-the-fly text
indexing which requires amortized O(1) time for updates and worst case optimal time for queries.

In the following section we define the notation and preliminary data structures and algorithms.
In Section 3 we formally present a sliding suffix tree, and we conclude in Section 4 with the discussion
and open problems.

2. Notation and Preliminaries

Capital letters A, B, C . . . denote strings of characters from alphabet Σ, where |Σ| = O(1),
and lower case letters i, j . . . denote integers, except for c, which denotes an arbitrary character from
Σ . Furthermore, lower case Greek letters α, β . . . represent nodes in a tree, and calligraphic capital
letters like T represent tree-based data structures. We denote concatenation of two strings by simply
writing one string beside the other, e.g., AB, and the length of a string A as |A|. By A[i : j] we denote a
substring of A starting at position i and ending at j inclusive, where 1 ≤ i ≤ j ≤ |A|. A suffix of A
starting at i is A[i :] and a prefix of A ending at j is A[: j], both inclusive.

We denote by W the sliding window over an infinite input stream of characters which are from
an alphabet of constant size. By n, we denote the number of all characters read so far. To store a suffix
starting at the current position, we store the current n. At any later time, we can retrieve the contents
of this suffix as W[n′ − (n− |W|) :], where n′ is the stored position of the suffix and n− n′ < |W|
for the suffix to be present in W. For clarity, by n we denote the number of all characters read so far.
In practice, however, the sliding window content is usually stored as a circular buffer in the main
memory. Therefore, n is always bounded by |W|, and the suffix at position n′ can be retrieved as
W[n′ : n] if n ≥ n′, or W[n′ :]W[: n] if n < n′.

2.1. Suffix Tree

A suffix tree is a dictionary containing each suffix of the text as a key, and its position in the text
as its value. The data structure is implemented as a compressed trie. To reduce space, we only store
edge labels implicitly, so that each internal node stores the start index of the label on the incoming edge
and its length, whereas each leaf stores the position of the suffix it represents in the text (see Figure 1).
Additionally, each node α stores a shortcut to any of the descendant leaves denoted by lea f (α). If α is
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a leaf, then lea f (α) = α. During the shift operation of the window, this shortcut will be updated so
that it always points to a valid leaf. For example, on Figure 1 the leaf shortcut from the internal node
labeled 1:1 could point to a leaf labeled 11, 8, 1, 4, or 6.

We denote by |α| a string depth operation of some node α in a suffix tree, and define it as a sum of
all label lengths of edges from the root to α. Consequently, a label is a substring of a suffix starting
and ending at the string depth of the originating node and the string depth of the terminating node,
respectively. We say a node α spells out string A, where A is a concatenation of all labels from the root
to α. For example, the only internal node of depth 2 in Figure 1 (node with value 2:3) has a string depth
of 4, and spells out a string ABRA.

Let A and A′ be strings which are spelled out by nodes α and α′, respectively. We define a suffix
link as an edge from node α′ to α if A = A′[2 :], and denote this by α = suffix_link(α′). Suffix links in
Figure 1 are represented as green dotted lines.

Figure 1. Illustration of the suffix tree for text ABRACADABRA$ including the implicit labels. Suffix
links connecting internal nodes are drawn as dotted green lines. Values in each internal node represent
the start index and the length of a label on the incoming edge, whereas the value of a leaf represent the
suffix position in the text.

2.2. Ukkonen’s Online Suffix Tree Construction Algorithm

In Reference [17], Ukkonen presented an incremental suffix tree construction algorithm which
builds the data structure in a single pass. During the construction, the algorithm maintains the
following invariants in amortized constant time:

• Implicit buffer B, which corresponds to the longest repeated suffix of the text processed so far,
• the active node β, which represents a node where we end up by navigating B in the suffix tree

constructed so far, i.e., B is a prefix of a string spelled out by β.
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The execution of the algorithm can be viewed as an automaton which reads a character c from
the input stream. The automaton starts and remains in the buffering state while c matches the next
character of the incoming edge’s label of β. If the end of the label is reached (i.e., |B| = |β|), a child
in the direction of c is taken, and this child becomes a new active node β. Finally, c is (implicitly)
appended to B.

On the other hand, if B cannot be extended by c in a tree, the automaton enters the expanding state.
First, it inserts a new branch in the direction of c, with a single leaf storing the suffix position n− |B|+ 1.
If |B| = |β|, the new branch is added as a child to β. Otherwise, if |B| < |β|, the incoming edge of β

is split, such that the string depth of the newly inserted internal node is |B|, and the new branch is
added to this node. Once the branch is inserted, the first character is removed from B, obtaining new
B′ = B[2 :]. A new active node corresponding to B′ is found in the following way. Let α denote the
parent of the original active node β. Then the new active node β′ is a node obtained by navigating
suffix B′[|α| :] from a node suffix_link(α). When β′ is obtained, c is reconsidered. If a branch in the
direction of c exists, the automaton switches back to buffering state. Otherwise, it remains in the
expanding state and repeats the new branch insertion. Each time the expanding state is re-entered, B is
shortened by one character. In the worst case, if c does not occur yet in the text, the suffix links will be
followed all the way up to the root node, and c will be added as a new child to the root node. In this
case, the implicit buffer B will be an empty string.

To wrap up, the currently constructed suffix tree is un-finalized, until B is completely emptied.
Moreover, there are exactly |B| leaves missing in the un-finalized tree, and they correspond to suffixes
of B. For finite texts, we finalize the suffix tree at the end by appending a unique character $, which
forces the algorithm to empty B and finalize the tree. For infinite streams, however, there is no final
character. Consequently, we need to support:

1. Queries: When performing a query, we need to report the occurrences, both in the partially
constructed suffix tree and in B.

2. Maintenance: The original Ukkonen’s algorithm supports adding a new character to the indexed
text. When a window is shifted, we also remove the oldest (longest) suffix from the text.

3. Sliding Suffix Tree

The sliding suffix tree is an indexed version of the current sliding window content W. Formally,
we define two operations:

• find(W, Q) — returns all positions of the query string Q in W (obviously, |Q| ≤ |W|) .
• shift(W, c) — appends a character c to W and removes the oldest character from W.

Initially, W is empty, and until the length of W reaches the desired size, the shift operation only
appends new characters.

We build the sliding suffix tree on top of Ukkonen’s online suffix tree construction algorithm in a
similar way to Larsson’s approach [16]. We maintain a possibly un-finalized suffix tree T , including
the implicit buffer B and the active node β (Figure 2 on the left). Figure 2 on the right illustrates the
position of W and B in a stream. Notice that B is always a proper suffix of W.

In the next two subsections we show how to perform the find operation in time Θ(m + occ) in the
worst case and the shift operation in amortized O(1) time. As a model of computation, we use the
standard RAM model.
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Figure 2. On the left: Illustration of partially constructed suffix tree T with implicit buffer B and active
node β. On the right: Illustration of the stream, the sliding window W, the implicit buffer B, and three
cases for positions of the query strings occ1, occ2, and occ3.

3.1. Queries

To find all occurrences of query Q in W, we first navigate Q in T . Let TQ correspond to a subtree
rooted at the node where we finished the navigation. Leaves of TQ make up the first part of the
resulting set. In Figure 2, occ1 corresponds to this type of occurrence. Also, the position of occ2 in the
same figure will be contained in one of the leaves of TQ, since T contains all suffixes that start at the
beginning of W, up to the beginning of B.

The second part of the resulting set are the missing leaves of TQ due to the un-finalized state of T .
More formally, we want to find the missing leaves which correspond to suffixes of B beginning with Q.
occ3 in Figure 2 illustrates one such position. We consider three cases:

Case 1: |B| < |Q|

Obviously, there are no matches of Q in B, and we solely return the leaves of TQ.

Case 2: |B| = |Q|

We check whether the active node β is the root node of TQ. If this is true, then B equals Q, and we
add position n− |B|+ 1 to the resulting set.

Case 3: |B| > |Q|

First, we claim that the navigated subtree TQ always exists, if there are any occurrences of Q to be
found in B.

Lemma 1. If Q exists in buffer B, then a subtree TQ exists by navigating the query Q in T .

Proof. If Q exists somewhere in B, then Q is a substring of the string spelled out by β. From the
property of the suffix tree, by following the suffix links from β we will find a root of TQ which spells
out a string starting with Q.

In this case, we find all occurrences of Q in two steps:

Step 1: Map positions of Q from TQ to B

We consider the relation of each leaf in TQ to β. Take lea f (β) and let this leaf store some position
x. Then, for each leaf in a subtree rooted at TQ, let i correspond to the position stored in a leaf.
If x ≤ i ≤ x + |B| − |Q|, then Q also occurs at position n− |B|+ (i− x) + 1 . We add this position to
the resulting set.

By the definition of lea f , x corresponds to the position stored in any descendant leaf of β.
It’s fine if x ≤ n − 2|B|, as the leaves of TQ store a superset of positions relative to all leaves of
β, due to the condition |β| ≥ |TQ|. Therefore, taking any descendant leaf of β suffices to compute all
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occurrences of Q in B once we visit all leaves of TQ. However, if x > n− 2|B|, we need to proceed to
Step 2.

Step 2: Find all repeated occurrences of Q in B

Additional occurrences of Q may exist in B if x > n − 2|B|, because the suffix tree (and
consequently TQ) is finalized only up to position n − |B|. Observe in Figure 3a that the string B
starting at x overlaps the string B starting at n− |B|+ 1 . Because two equal strings overlap, the first
string determines the beginning of the second one and, consequently, also the beginning of the first
one. This overlapping yields a repetitive pattern inside B, and if Q occurs in the beginning of B then it
will also occur at each subsequent repetition of this pattern. The following lemma formally defines the
repetitive pattern P and Figure 3b illustrates the occurrences of P in B.

Lemma 2 (The Buffer Pumping Lemma). Let lea f (β) store the position x, such that x > n− 2|B|. Then,
B consists of repetitive patterns P, where P = W[x : n− |B|].

Proof. Observe two occurrences of B in Figure 3a. Let P = W[x : n− |B|]. Due to overlapping, string
W[x : x + |P| − 1] equals string W[n− |B|+ 1 : n− |B|+ |P|] = B[1 : |P|] . Consequently, due to new
overlapping, W[x + |P| : x + 2|P| − 1] now equals W[n− |B|+ |P| : n− |B|+ 2|P| − 1] = B[|P|+ 1 :
2|P|] . Repeating this observation, we construct B = PkP′ where k = b |B||P| c and the last repetition P′ is
a prefix of P, and may be empty.

Figure 3. (a) Occurrences of B in the window, if x > n− 2|B|. (b) Repeated pattern P. (c) Potential
occurrences of Q. y1 and y2 are positions stored in the finalized suffix tree. The second two positions of
Q are obtained in Case 3, Step 1. The last position of Q is obtained in Case 3, Step 2.

Let Y = y1, y2, . . . represent positions stored in such leaves of TQ that n− 2|B|+ 1 ≤ yi < n− |B|
for each yi ∈ Y. y1 and y2 in Figure 3c represent two such positions. In Step 1, we computed
positions of Q inside the first occurrence of P in B, as seen in Figure 3c by the third and the fourth Q.
To compute subsequent positions of Q in the repetitions of P in B, for each yi ∈ Y we add positions
yi + |P|, yi + 2|P| . . . up to n − |Q| + 1 to the resulting set. This approach will add all remaining
occurrences of Q in B and complete the query. The fifth occurrence of Q in Figure 3c is in the repetition
of P in B.
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Algorithm 1 combines all three cases presented above in a simplified, clear way.

Algorithm 1: Query procedure in the sliding suffix tree.
Input: Query Q, Unfinalized suffix tree T , Active node β, Buffer B, Current position in a

stream n
Output: Positions of Q in the window

1 S← empty list
2 x ← lea f (β)

3 TQ ← navigate(T , Q)

4 for each leaf ν in TQ do
5 y← position(ν)
6 add y to S
7 if x ≤ y < x + |B| then
8 |P| ← n− |B| − x
9 y′ ← y + |P|

10 while y′ ≤ n− |Q| do
11 add y′ to S
12 y′ ← y′ + |P|

13 return S

Time Complexity

The time complexity of the query first requires O(m) time to navigate Q in T , and then time to
solve the three cases above. The first two cases are solved in O(1) time. Step 1 of the third case is
solved in Θ(|TQ|) = O(occ) time, since we add at most one position per leaf of TQ to the resulting set.
Step 2 of the third case may add multiple positions per leaf of TQ, and is bounded by O(occ) time in
the worst case.

Theorem 1. We can find all occurrences of query Q in a sliding suffix tree in time Θ(m + occ) for constant
alphabet size.

3.2. Maintenance

The maintenance of the sliding suffix tree is based on the work by Larsson and Senft [16,18],
with our addition of maintaining leaf shortcuts in internal nodes.

Path Compression ([16], p. 26)

During the expanding state of Ukkonen, we add to T either one node (a new leaf is added to
the active node) or two nodes (the incoming edge of the active node is split and a new leaf is added).
When the expanding state is visited the first time, a new internal node γ′ is added to T . In the next
step, either an expanding state is re-entered or a buffering state is entered. If the expanding state is
re-entered, we repeat the procedure, obtaining a new node γ and a suffix link from γ′ to γ . If the
buffering state is entered, either a root node or a node containing the matched character is reached.
Instead of creating a new node in T as we did in the expanding state, we only add a suffix link to an
existing node in T .

To remove the oldest stored suffix from T , we first find the corresponding leaf (e.g., by taking the
next leaf from some queue storing all inserted leaves). If the leaf’s parent has three or more children,
the parent remains unchanged and we just remove the leaf from T . On the other hand, if the leaf’s
parent has exactly two children, we remove the leaf from T and also its parent γ from T . To remove γ,
we merge its incoming edges and the remaining outgoing edges.
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Lemma 3. Let γ be a node with two children in T , where one child ω is a leaf storing the position of the longest
suffix n− |W|+ 1 . Then, γ is not a terminating node of any suffix link.

Proof by contradiction. Let a subtree τ be the other child of γ. Assume there is γ′, which has suffix
link terminating at γ. Because γ′ exists, it also has to have at least two children. However, since the
subtree rooted at γ′ is the subtree rooted at γ and the latter has only children ω and τ, γ′ has respective
children ω′ and τ′. Observe that ω spells out a string W, and, consequently, because of the suffix link
relationship ω′ spells out a string cW for some character c ∈ Σ. Furthermore, since W is the longest
string in the window, cW cannot be suffix in W, which contradicts the original assumption. To wrap
up, there is no suffix link terminating at γ.

Avoiding Unwanted Suffix Removals and Keeping a Valid Insertion Point ([16], pp. 26–28)

At the moment of the oldest suffix removal, the corresponding leaf can be an active node β. If this
is the case, then B appears at two positions in the window: At the very beginning as a prefix of the
removed suffix and at the very end as a suffix of the window which has not been finalized yet . Recall
that, by definition, B corresponds to the longest repeated suffix of the window. Consequently, if we
shift the window for one position to the right, the new longest repeated suffix becomes B[2 :]. By doing
this, we also need to execute the expanding state of Ukkonen’s algorithm and add a leaf storing the
position n− |B|+ 1, corresponding to the original B. We can combine the removal of the oldest leaf and
the addition of the new one by simply updating the position stored in the oldest leaf from n− |W|+ 1
to n− |B|+ 1. Figure 4 illustrates this case.

ab b

abcabab cabab abcabab cabab

cabab

1 3 42 5

ab b

ab cabab abcabab cabab

cabab

6 3 42 5

Figure 4. Shifting the window ababcabab to the right for one character, where B = abab denoted by
red labels. Notice the “lost” leaf abab on the right, where instead of removing the oldest leaf, we only
update its position. For brevity, the figure omits the newly appended character to the window.

To find a new β and an edge corresponding to the updated B, we simply follow the suffix link of
the β’s parent and navigate the remainder of B from the obtained node.

Keeping Edge Labels and Leaf Shortcuts Valid ([16], pp. 28–30)

The final step of the maintenance is to update internal node labels and shortcuts to leaves ([16],
pp. 28–30). Recall that the edge labels are implicit, and they only store start and end references to the
text. In time, these references might become stale and point to positions outside W. To keep labels
up-to-date, on each removal of a leaf we could take the position stored in one of its siblings and update
all labels on a root to removed the leaf’s path. However, this would require O(|W|) time. We amortize
this time by assigning to each internal node a credit, which is initially 0. When adding or deleting a
leaf, the leaf issues a credit to its parent. The parent updates its label position according to its child and
increases its credit by 1. If the credit is already 1, beside updating its label, it also recursively issues a
credit to its parent and clears the credit to 0. Let an ancient node be an internal node which contains
stale labels pointing to positions outside W. This approach will update stale labels in amortized O(1)
time. The following theorem assures the labels stored in internal nodes are always up-to-date:

Theorem 2. Every ancient node received a fresh credit from all subtrees rooted in its children.

Proof. See Reference [18], p. 45.
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Similar to updating edge labels, we update shortcuts from the internal node to the leaf. An internal
node can store a shortcut to any valid leaf in its subtree. When adding a new leaf, we can recursively
propagate its reference to the parent. When removing a leaf, we propagate a reference to one of its
siblings to the parent. By using the credit system, shortcuts will be updated the same way as edge
labels in amortized O(1) time.

Time Complexity

Ukkonen’s algorithm adds a suffix to T in amortized O(1) time [17]. To remove the longest leaf
and its parent, we require O(1) time. To update find new β, we require O(1) time to follow the suffix
link, and amortized O(1) time to navigate the remainder of B in T . Edge labels and leaf shortcuts
are also updated in constant O(1) time, because each new leaf will trigger exactly one update to the
internal node.

Theorem 3. The sliding suffix tree can be shifted in amortized Θ(1) time.

4. Conclusions and Open Problems

In this paper, we presented a sliding suffix tree for performing online substring queries on a stream
of characters from the alphabet of constant size. By extending previous work by Fiala, Greene, Larsson,
and Senft [14,16,18], we designed a novel data structure, the use of which can find all positions of the
given substring inside the window in optimal Θ(m + occ) time, where m is the length of the query and
occ the number of its occurrences. Furthermore, the updates are done in amortized O(1) time.

An open question remains whether the data structure can be updated in the worst case O(1)
time. There is a well known linear-time suffix-sorting lower bound [25], but to our knowledge,
no per-character lower bound has been explored. Ukkonen’s algorithm requires, by design,
an amortized O(1) time for updates, due to the implicit buffer of un-finalized nodes. To the best of our
knowledge, no other online suffix tree construction algorithms have been developed without such an
implicit buffer.

As stated, we assume the alphabet Σ of constant size. For Σ of arbitrary size, the current
implementation of the suffix tree requires an additional factor of lg |Σ| time to determine a child in a
tree, but keeping the same space complexity. An interesting question is whether the same asymptotic
times can be achieved for integer alphabets as was done in [25] for texts of fixed length. In our case
|Σ| = O(|W|), but the alphabet can change in time.

Streaming algorithms are common in heavy throughput environments and therefore it is desirable
to involve parallelism, including distributed processing. Most of the research involving parallelism
assumes either a static text (parallel construction of a suffix tree, e.g., [26–29]) or a static data structure
(parallelization of a query, e.g., [30,31]). On the other hand, because the data structure between updates
does not change, individual queries can generally be done in parallel. In our case, the updates are
coming sequentially, which raises the question of whether the presented data structure can be adjusted
to support shifts in a pipeline fashion. Moreover, going to the underlying Ukkonen’s algorithm, it is
not known whether it is possible to parallelize an update itself. Finally, coming back to our case, it is
an open question of how to process interleaving queries and updates in parallel.

The presented data structure, while theoretically feasible, should also be competitive in practice.
Larsson already provided code for maintaining the indexed sliding window ([16], Appendix A),
but without reporting all substring positions. However, the code can be extended to report them.
In general, the main practical concern of tree-based data structures is space consumption and cache
inefficiency. To alleviate this, the data structure should be implemented succinctly (e.g., [32]), with an
appropriate cache-efficient scheme (e.g., [33]).
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